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Abstract

We investigate a class of non-abelian spin-singlet (NASS) quantum Hall phases, proposed
previously. The trial ground and quasihole excited states are exact eigenstates of certain (k + 1)-
body interaction Hamiltonians. Thek = 1 cases are the familiar Halperin abelian spin-singlet states.
We present closed-form expressions for the many-body wave functions of the ground states, which
for k > 1 were previously defined only in terms of correlators in specific conformal field theories. The
states contain clusters ofk electrons, each cluster having either all spins up, or all spins down. The
ground states are non-degenerate, while the quasihole excitations over these states show characteristic
degeneracies, which give rise to non-abelian braid statistics. Using conformal field theory methods,
we derive counting rules that determine the degeneracies in a spherical geometry. The results are
checked against explicit numerical diagonalization studies for small numbers of particles on the
sphere. 2001 Elsevier Science B.V. All rights reserved.

PACS: 73.43.-f; 71.10.-w; 71.10.Pm

1. Introduction and summary

The observation [1–3] of a quantum Hall (QH) state at an even-denominator filling
factor, ν = 5/2, stimulated the development of trial wave functions outside the usual
hierarchy (or later, composite fermion) approach, which generates only odd-denominator
fractions. The 5/2 state is interpreted as half-filling of the first excited Landau level (LL),
the lowest one being filled with electrons of both spins, and can be mapped to half-filling
of the lowest LL, with a suitable Hamiltonian. There are now strong indications that this
state is spin-polarized [4,5], and described [4] by the paired “pfaffian” state of Moore
and Read (MR) [6], which has filling factor 1/2. This state was originally proposed as
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an example that manifests non-abelian braid statistics of its quasiparticle excitations [6].
Generalizations exist in which the particles are “clustered” ink-plets (k = 1, 2, 3, . . . ),
but still spin-polarized [7]. In these states, the non-abelian statistics are associated with
parafermion conformal field theories (CFTs).

It is well known that, despite the presence of a strong magnetic field, spin-singlet QH
states are sometimes favored over their spin-polarized counterparts. The possibility to
manipulate the Zeeman splitting by the application hydrostatic pressure and by tilting the
magnetic field has opened the possibility of systematic studies of transitions between spin-
polarized and non-polarized QH states (see, e.g., [8]). In this light, states analogous to
the spin-polarized clustered QH states of [7], but with a spin-singlet structure, have been
constructed [9]. In [9], trial wave functions for these non-abelian spin-singlet (NASS) states
have been written in terms of correlators in a CFT describing parafermions associated to
the Lie algebra SU(3). We remark that one may consider an alternative series of NASS
states, whose algebraic structure is related to SO(5) rather than SU(3). The simplest state
of this type is a paired spin-singlet state that exhibits a separation of spin and charge in the
quasihole excitation spectrum [10]. The SO(5)-based NASS states will not be discussed in
this paper.

In the present paper, we study in detail some of the properties of the NASS states,
paying special attention to the casek = 2. We give explicit closed form expressions for
the ground state wave functions, and study the degeneracies of their quasihole excitations.
The degeneracies of states with fixed spins and fixed well-separated positions of the
quasiparticles are the origin of the non-abelian braid statistics.

We first strengthen the case for the existence of the incompressible phases of matter
with the universal properties of the states of Ardonne and Schoutens (AS) [9], by showing
that their trial wave functions for the ground state and for states with quasiholes are exact
zero-energy eigenstates of certain (k + 1)-body interaction Hamiltonians for particles in
a single LL, in a similar way as the spin-polarized cases [7]. The explicit closed-form wave
functions for the ground states are obtained. In the study of the quasihole degeneracies, we
then follow two complementary approaches. The first is an analytical path, which relies
heavily on the formal structure of the associated parafermion CFT, and on the analogy
with earlier studies for spin-polarized non-abelian QH states [11–13]. While at present
we lack explicit expressions for the many-body wave functions describing the quasiholes,
we have enough control to derive explicit counting formulas for the degeneracies, for
k = 2, for particles on a sphere. The second approach is a numerical study of the (k + 1)-
body Hamiltonian for the casek = 2, on the sphere. The numbers of zero-energy states
for each number of electronsN and of quasiholesn considered are in exact agreement
with the analytical derivation. In addition, we study the excitation spectrum of the same
Hamiltonian, and compare the ground state with that of electrons interacting via the lowest
LL Coulomb interaction.

A highlight of the analytical approach in this paper comes in the derivation of the total
degeneracies of quasihole states. In the CFT set up (which will be described in more
detail in Section 2) the QH states are described as conformal blocks of “particle” and
“quasihole” operators. The particle operator factorizes as a product of a vertex operator
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and a parafermion field, and the quasihole operator is the product of a vertex operator
and a so-called spin field of the parafermion CFT. The nontrivial fusion rules of these
spin fields cause a degeneracy of the ground states in the presence of quasiholes at fixed
positions and spins. There is also further degeneracy associated with the positions and spins
of the quasiholes, which is finite on the sphere. The two contributions need to be combined
in the right way. It turns out, as in earlier cases, that the various states which stem from
the non-trivial fusion rules have a different spatial degeneracy. Therefore, we can not just
multiply the two degeneracy factors, but we need to break up the degeneracies due to the
fusion rules. To accomplish this task, and arrive at the final counting formula, we analyze
“truncated chiral spectra” in the SU(3) parafermion CFT, using the methods of [14].

This paper is organized as follows. In Section 2, we explain in which way CFT is used to
describe QH states, and review the NASS states as correlators. In Section 3, we introduce
the (k + 1)-body interaction, and show that the AS correlators give zero-energy ground
states. In Section 4 we give the explicit ground state wave functions for the NASS states,
and discuss their spin-singlet properties. Section 5 describes the correlators which give the
states with quasiholes present. The derivation of the counting formula is done in Sections 6
to 9, using the method which is outlined above, with Eq. (49) as the final outcome. Explicit
results of this formula for the degeneracy of the ground states in the presence of quasiholes
are given in the same section for severalN (the number of electrons) andn (the number
of quasiholes). In Section 10 we present numerical diagonalization studies on a sphere,
finding full agreement with the analytical expression obtained in Section 9, and compare
the states with the ground state of the Coulomb interaction.

2. QHE–CFT correspondence

In the QHE, following Laughlin [15], trial wave functions have long been used as
paradigms that represent an entire phase of incompressible behavior. This notion was
reviewed in Ref. [7], so in this paper we will concentrate on the properties of trial states
and their position-space wave functions. As explained by MR [6], many QH trial wave
functions of the (2+ 1)-dimensional system can be obtained as conformal blocks (i.e.,
chiral parts of correlation functions or “correlators”) in a suitable chiral CFT in 2 euclidean
dimensions, as we will briefly explain.

For particles with complex coordinateszj = xj + iyj , j = 1, . . . ,N , for N particles, we
will use reduced wave functions̃Ψ (z), and neglect spin temporarily. For the lowest Landau
level (LLL), the reduced wave function must be holomorphic in thezi ’s. For particles in the
plane, the full wave functionΨ (z) is recovered by multiplying̃Ψ (z) by exp(−∑i |zi |2/4);
we have set the magnetic length to 1. For particles on the sphere [16], the coordinatezi

refers to stereographic projection, and the full wave function is recovered by multiplying by∏
i (1+|zi|2/4R2)−(1+Nφ/2), whereNφ is the total number of magnetic flux quanta through

the sphere [7,12]. In the latter case, the reduced wave functionΨ̃ (z) must be a polynomial
of degree no higher thanNφ in eachzi , so that thez component of angular momentum
of each particle lies betweenNφ/2 and−Nφ/2. Note that we use the term “particles” for
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the underlying particles, which are either charged bosons or charged fermions (electrons),
because it is convenient to consider cases of either statistics together.

The simplest example of a state with a uniform density (a state of zero total angular
momentum on the sphere [16]) is the Laughlin wave function [15]:

(1)Ψ̃ M
L (z1, . . . , zN ) =

∏
i<j

(zi − zj )
M,

for a fixed integerM. The filling factor can be defined for a sequence of states asν =
limN→∞ N/Nφ , whereNφ is identified with the largest power of anyzi in the state. For the
Laughlin state it isν = 1/M. Note that this function is antisymmetric (describes fermions)
for M odd, and symmetric (describes bosons) forM even.

The Laughlin wave function can be obtained as

(2)Ψ̃ M
L (z1, . . . , zN ) = lim

z∞→∞(z∞)a
〈
Ve(z1) · · ·Ve(zN)e−i

√
M Nϕ(z∞)

〉
,

with Ve(z) = exp(i
√
M ϕ) a chiral vertex operator in thec = 1 chiral CFT describing a

single scalar fieldϕ compactified on a radiusR2 = M. The operatore−i
√
M Nϕ(z∞) brings

in a positive background charge, which guarantees the overall neutrality of the system. The
constanta must be chosen in such a way that the effect of the background charge does not
go to zero in the limitz∞ → ∞; in Eq. (2) we needa = MN2. This procedure is simpler
for our purposes than the uniform background charge used in MR [6], though the latter has
the additional feature of reproducing the factors in the unreduced wave function.

Other, more complicated, QH states can be constructed by invoking more complicated
CFTs. The CFT framework guarantees that a number of consistency requirements for
such states are met [6]. The trial wave functions become more meaningful, and the
corresponding phase really exists, when there is a (local) Hamiltonian for which the trial
state is the nondegenerate ground state, and the excitation spectrum (for the sameNφ as
the ground state) has a gap in the thermodynamic limit. Short range 2-body interaction
Hamiltonians with these properties for the Laughlin state were found by Haldane [16], and
3-body interactions for which the MR state is an exact zero energy eigenstate were found
beginning from the work of Ref. [17]. Read and Rezayi (RR) discovered [7] that these
constructions are the first two cases in an infinite sequence, and found the parafermion
states as the exact zero energy eigenstates of (k + 1)-body interactions for allk. Here we
will show similarly that, in the case of particles with spin, the NASS states of Ref. [9]
are exact eigenstates of zero energy for (k + 1)-body spin-independent interactions, with
the Halperin state and the corresponding 2-body interaction [16] as the only case known
previously. First, we recall the construction in Ref. [9], then in the following section we
establish that the wave function defined by a correlator here is a zero-energy eigenstate of
a (k + 1)-body interaction Hamiltonian.

The NASS states proposed in [9] can be viewed as non-abelian generalizations of
the abelian spin-singlet Halperin states labeled as(m + 1,m + 1,m) (see Eq. (6)), or
alternatively, as spin-singlet analogs of the spin-polarized “clustered” or “parafermion”
states of RR [7]. The filling fraction of the NASS states isν = 2k

2kM+3, with M an integer
(M is odd when the particles are fermions, even when they are bosons). The wave functions
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of these states are constructed as conformal blocks in basically the same way as was done
above for the Laughlin state. In the basic caseM = 0, the component of the ground state
with any set ofN/2 of the particles having spin up, and the remainder spin down, is defined
(up to phases that may be needed when reconstructing the full state from these components)
as the correlator [9]

Ψ̃
k,M=0
NASS = lim

z∞→∞(z∞)3N2/(2k)
〈
exp

(
i

N

2
√
k
(α2 − α1) · 	ϕ

)
(z∞)

(3)× Bα1

(
z
↑
1

) · · ·Bα1

(
z
↑
N/2

)
B−α2

(
z
↓
1

) · · ·B−α2

(
z
↓
N/2

)〉
.

In this equation the “particle operators” (to avoid confusion, we emphasize that this means
the operators that correspond to the particles in the CFT, not the operators that create actual
particles in the (2+ 1)-dimensional system) are current operatorsBα(z) in an SU(3)k
(i.e., levelk) Wess–Zumino–Witten CFT. These currents can be written in terms of two
bosons	ϕ = (ϕ1, ϕ2) and a Gepner parafermionψα associated to SU(3)k/[U(1)]2 [18].
The currents are labeled by the corresponding rootsα of SU(3)

(4)Bα(z) = ψα exp
(
iα · 	ϕ/√k

)
(z).

The roots are given byα1 = (
√

2,0), α2 = (−√
2/2,

√
6/2). We note that these two

roots form an SU(2) doublet under an SU(2) subalgebra of SU(3); the embedding of the
subalgebra is isomorphic to that given in terms of 3× 3 Hermitian matrices [generators of
SU(3)] by the 2×2 Hermitian blocks at the upper left corner. For such an embedding, there
is also a U(1) subalgebra [generated by “hypercharge” diag(1,1,−2); the particles carry
hypercharge 1] that commutes with the SU(2) and corresponds to the particle number. Note
that a (hyper-)charge at infinity is again needed for neutrality.

Working out the vertex-operator part of this correlator, we arrive at the following
factorized form of the NASS state (after multiplication by an additional Laughlin factor
to obtain generalM 1)

Ψ̃
k,M
NASS

(
z
↑
1 , . . . , z

↑
N/2; z↓

1, . . . , z
↓
N/2

)

(5)

= 〈
ψα1

(
z
↑
1

) · · ·ψα1

(
z
↑
N/2

)
ψ−α2

(
z
↓
1

) · · ·ψ−α2

(
z
↓
N/2

)〉
× [

Ψ̃
(2,2,1)
H

(
z
↑
i ; z↓

j

)]1/k
Ψ̃ M

L

(
z
↑
i ; z↓

j

)
.

The wave functioñΨ (2,2,1)
H is one of the Halperin wave functions [19]

Ψ̃
(m′,m′,m)
H

(
z
↑
1, . . . , z

↑
N/2; z↓

1, . . . , z
↓
N/2

)
(6)=

∏
i<j

(
z
↑
i − z

↑
j

)m′ ∏
i<j

(
z
↓
i − z

↓
j

)m′ ∏
i,j

(
z
↑
i − z

↓
j

)m
.

The latter give rise to spin-singlet states wheneverm′ = m + 1 [16]. The wave function
Eq. (5) contains a term which is a correlator of parafermions, the explicit form of which
will be found below.

1 We can also obtain the Laughlin factor by using the particle operators (19) and (20) in the correlator, together
with a suitably adjusted background charge.
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We also mention here that the CFT construction implies that the number of sectors
of edge states (representations of the chiral algebra), and the number of ground states
(conformal blocks withN particle operators inserted) on the torus forN divisible by 2k,
are both given by(k+1)(k+2)(2kM+3)/6, which is an integer. ForM = 0, this coincides
with the numbers for SU(3)k current algebra. The filling factor isP/Q = 2k/(2kM + 3),
so if P andQ are defined as being coprime, then the denominatorQ = 2kM + 3 unless
2k and 3 have a common factor, that is unlessk is divisible by 3, in which case we have
Q = (2kM +3)/3. The number of ground states on the torus is then always divisible by the
denominatorQ of the filling factor, as it should be. We also expect that for somek values
there are ground states on the torus for otherN values, as for the MR states [20] and RR
states.

3. Solution of (k + 1)-body Hamiltonian

It is known [16] that the abelian Halperin spin-singlet state is the unique (on the sphere)
exact zero-energy eigenstate of a two-body interaction Hamiltonian. Other than the trivial
case(1,1,0), which is two filled Landau levels, where the Hamiltonian in question is zero,
the simplest case ism = 1 in Eq. (6), the(2,2,1) state, which corresponds toM = 0 in
Eq. (3) or (5). In the latter case this Hamiltonian is simply a repulsiveδ-function interaction
between any two particles. As in Refs. [7,12], it is simplest to start by generalizing this
M = 0 case. Because higherM values are obtained by multiplying by additional Laughlin
factors, the Hamiltonians forM = 0 can be straightforwardly extended toM > 0 by
extending the range of the (k + 1)-body part, and adding 2-body interactions as needed,
which have the effect of requiring zero-energy states to contain the Laughlin factors. We
will not detail this here, however, see Section 10.

The natural choice of Hamiltonian forM = 0 is to consider the (k + 1)-bodyδ-function
as in Ref. [7], but here for particles with spin. The Hamiltonian (acting within the LLL) is

(7)H = V
∑

i1<i2<···<ik+1

δ2(zi1 − zi2)δ
2(zi2 − zi3) · · · δ2(zik − zik+1),

with V > 0. Note that here we have reverted to labeling the particles independently of their
spin. For this Hamiltonian, a state is a zero-energy eigenstate if it vanishes whenever any
k+1 particles coincide; for this to be satisfied for some nontrivial states, the particles must
be bosons.

We will now show that the correlator as in Eq. (3) is such a zero-energy eigenstate. The
argument we give here makes direct use of the current algebra satisfied by the currents,
and also sheds new light on the previous spinless case of RR, where a slightly different
argument was used. Without loss of generality, we can consider letting the firstk + 1
particles, of either spin, come to the same point, sayz = 0, that iszσ1

1 , zσ2
2 , . . . , zσk+1

k+1 all
→ 0. In the standard radial quantization scheme for CFT, we can consider the current
operators as acting in a Hilbert space that is built starting from a highest weight state
that in the present case is simply the vacuum|0〉 of radial quantization about the origin



E. Ardonne et al. / Nuclear Physics B 607 [FS] (2001) 549–576 555

z = 0. Aszσi

i tend to 0 one by one, the resulting operator product expansion (ope) contains
no singular terms. This follows from the standard current-algebra ope’s of the currents,
together with the fact that the rootsα1 and−α2 do not sum to either 0 or another root (for
simplicity, let us replace these two roots by the natural notationσ =↑ and↓, respectively).
Indeed the only nonvanishing term as thez

σi

i tend to zero sequentially is the operator at 0
that corresponds to the state

(8)Bσ1,−1Bσ2,−1 · · ·Bσk+1,−1|0〉
in the highest weight representation, and we need to show that this vanishes for all choices
of σ1, . . . ,σk+1. Here we have used the modes of the currents,

(9)Ba(z) =
∑
n

z−n−1Ba,n,

which holds for all generatorsa of SU(3), not only roots. In fact, the commutation relations
of the affine Lie algebra for these modes also imply thatB↑,−1 andB↓,−1 commute, so we
need only to prove

(10)(B↓,−1)
m(B↑,−1)

k+1−m|0〉 = 0,

for all m in the range 0� m � k + 1.
Let us begin by choosingm = 0. Then we need to show that

(11)(B↑,−1)
k+1|0〉 = 0.

But this is simply the pure-current-algebra null-vector equation, which first entered the
physics literature in Refs. [21,22]. Thus this is satisfied in the irreducible, unitary vacuum
highest weight module of the SU(3) affine Lie algebra at levelk, and there are similar
equations for all current algebras, and for each “integrable” highest weight representation.
This already suffices to rederive the RR states, which are related to SU(2) current
algebra [7]. The RR states are in fact the same as those in Eq. (3) above, but with all
spins↑, so the only root that appears lies in an SU(2) subalgebra (the spin singlet property
of the above states is of course lost when this is done, and the charge at infinity should be
adjusted). Hence, we have very quickly rederived the fact that the RR states forM = 0 are
the zero-energy states of the (k + 1)-bodyδ-function Hamiltonian.

It is straightforward to complete the proof for the NASS states. Essentially, we use the
SU(2) symmetry under whichB↑,−1 andB↓,−1 form a doublet, and notice that the set of
states labeled bym forms a highest weight multiplet under this algebra, of SU(2) spink/2.
(This is clear from the 2+ 1 point of view, where we are looking at states ofk + 1 spin
1/2 bosons all at the same point.) Then since the highest weight vanishes, all the others do
also, which completes the proof.

As in RR, a similar argument also establishes that quasihole states, written as similar
correlators but with spin fields (primary fields of the SU(3) current algebra) inserted at the
quasihole positions [9], are exact zero-energy eigenstates. These are considered explicitly
in Section 5. Similar arguments also imply that the zero-energy ground states ofH on the
torus are given by correlators for some numberN of the above fields inserted, with the
number of such ground states (forN divisible by 2k) already given in Section 2.
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4. Ground state wave function

Based on the results of the previous section, we expect the structure of the trial wave
functions — that is, of the chiral correlators (5) — of the NASS states to be similar to that
of the RR states, and also to generalize the Halperin(2,2,1) state. The RR wave functions
were constructed by dividing the (same-spin) particles into clusters ofk, writing down
a product of factors for each pair of clusters, and finally symmetrizing over all ways of
dividing the particles into clusters. Hence in the case with spin, we guess that we should
divide the up particles into groups ofk, the downs into groups ofk and then multiply
together factors that connect up with up, down with down, or up with down clusters, and
finally ensure that the function is of the correct permutational symmetry type to yield
a spin-singlet state (in particular, it should be symmetric in the coordinates of the up
particles, and also in those of the downs). We expect that the up–up and down–down parts
of this should closely resemble the RR wave functions, before the symmetrization; it was
shown in Ref. [7] that the functions found there vanish whenk + 1 particles come to the
same point, even inside the sum over permutations that symmetrizes the final function.
These considerations guided the following construction.

Due to the spin-singlet nature of the state, the wave function will be nonzero only if
the number of spin-up and spin-down particles is the same. Furthermore, there must be an
integer number of clusters, so the total number of particlesN must be divisible by 2k, and
will be written asN = 2kp, wherep ∈ N. One example was already given in [9], namely
the wave function for the casek = 2,M = 0 with the number of particles equal to 4 (i.e.,
p = 1),

(12)Ψ̃
k=2,M=0
NASS

(
z
↑
1 , z

↑
2 ; z↓

1, z
↓
2

)= (
z
↑
1 − z

↓
1

)(
z
↑
2 − z

↓
2

)+ (
z
↑
1 − z

↓
2

)(
z
↑
2 − z

↓
1

)
.

This is part of the two-dimensional irreducible representation of the permutation group on
4 objects,S4, as can easily be seen. This is the correct symmetry type to obtain a spin-
singlet state, as we discuss further below.

We will now describe the different factors that enter the NASS wave functions. Because
the only effect ofM being nonzero is to give an overall Laughlin factor, we will assume at
first thatM = 0. First we give the factors that involve particles of the same spin, say spin
up. They are the same as in RR [7]. We will divide the particles into clusters ofk in the
simplest way,

(13)
(
z
↑
1, . . . , z

↑
k

)
,
(
z
↑
k+1, . . . , z

↑
2k

)
, . . . ,

(
z
↑
(p−1)k+1, . . . , z

↑
pk

)
,

and the same for thez↓’s. (In a more precise treatment, we would say that the firstN/2
particles are spin up, the remainder spin down.) We write down factors that connect theath
with thebth cluster:

χz↑
a,b = (

z
↑
(a−1)k+1 − z

↑
(b−1)k+1

)(
z
↑
(a−1)k+1 − z

↑
(b−1)k+2

)(
z
↑
(a−1)k+2 − z

↑
(b−1)k+2

)
(14)× (

z
↑
(a−1)k+2 − z

↑
(b−1)k+3

) · · ·(z↑
ak − z

↑
bk

)(
z
↑
ak − z

↑
(b−1)k+1

)
.

Fork = 1, we would writeχz↑
a,b = (z

↑
a − z

↑
b )

2. The factors that connect up with down spins
are simpler:
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(15)χ
z↑,z↓
a,b = (

z
↑
(a−1)k+1 − z

↓
(b−1)k+1

)(
z
↑
(a−1)k+2 − z

↓
(b−1)k+2

) · · · (z↑
ak − z

↓
bk

)
.

For k = 1, the factor would beχz↑,z↓
a,b = (z

↑
a − z

↓
b ). We multiply all these factors for all

pairs of clusters, up–up, down–down, or up–down:

(16)
p∏

a<b

χz↑
a,b

p∏
c,d

χ
z↑,z↓
c,d

p∏
e<f

χz↓
e,f .

Notice that fork = 1, we do obtain the Halperin(2,2,1) wave function.
To obtain a spin-singlet state when the spatial function is combined with the spin state

(which lies in the tensor product ofN spins 1/2), some symmetry properties must be
satisfied. For theM = 0 case, the particles are bosons, hence the full wave function must
be invariant under permutations of spins and coordinates of any two particles. This can be
used to obtain the correct form of the function from that component in which, say the first
N/2 are spin up, the rest spin down, as above, so knowledge of that component is sufficient.
The requirement that the full wave function be a spin-singlet can be shown to reduce to the
Fock conditions: the component just defined must be symmetric under permutations of
the coordinates of the up particles, and also of the down particles, and must also obey the
Fock cyclic condition, as given in Ref. [23] (modified in an obvious way for the boson
case). These three conditions can be shown to imply that the spatial wave function is of
a definite permutational symmetry type (belongs to a certain irreducible representation
of the permutation group), that corresponds to the Young diagram with two rows of
N/2 boxes each. In general, given a function of arbitrary symmetry, a Young operator
can be constructed that projects it onto a member of the correct representation (though
the result may vanish); this construction generalizes the familiar symmetrization and
antisymmetrization operations. For the present case, the Young operator is the following
operation, equivalent to summing over the function with various permutations of its
arguments, and some sign changes: first, antisymmetize inz1, zN/2+1; then inz2, zN/2+2;
. . . ,zN/2, zN ; then symmetrize inz1, . . . ,zN/2; then finally symmetrize inzN/2+1, . . . ,zN .
This clearly satisfies the first two requirements of Fock, and can be proved to satisfy also
the cyclic condition. It remains to check that it is nonzero, we believe it is. Incidentally,
the application of the Young operator is the analog of symmetrizing over the down spins in
the spatial wave function of the permanent state (see, e.g., Ref. [12]), to which it reduces
for the case of BCS paired wave functions of spin 1/2 bosons (there are similar statements
in the more familiar case of spin-singlet pairing of spin-1/2 fermions). However, based
on the example of the Halperin (k = 1) case, we also considered the function defined as
in Eq. (16), and then simply symmetrized over all the ups and over all the downs. For
the Halperin function [which in fact is already symmetric in Eq. (16)], this satisfies the
cyclic condition, as can be seen using the fact that the(1,1,0) state is a Landau level filled
with both spins, plus the Pauli exclusion principle for fermions. Fork = 2, 3, we verified
the cyclic condition numerically for several moderate sizes. Hence, we expect that this
simpler form actually works for allk (as well as for allN divisible byk). Apparently, this
procedure and the application of the Young operator give the same function in the end (up
to a normalization).



558 E. Ardonne et al. / Nuclear Physics B 607 [FS] (2001) 549–576

ForM = 0, our wave function is then:

(17)Ψ̃
k,0
NASS= Sym

p∏
a<b

χz↑
a,b

p∏
c,d

χ
z↑,z↓
c,d

p∏
e<f

χz↓
e,f ,

where Sym stands for the symmetrization over the ups and also over the downs. This
function is nonzero, as may be seen by letting the up coordinates coincide in clusters ofk

each, and also the downs, all clusters at different locations, and making use of the result in
RR [7] that only one term in the symmetrization is nonzero in the limit. This term is the
Halperin(2k,2k, k) function for 2p particles. To obtain the wave function for generalM,
we multiply by an overall Laughlin factor,̃ΨM

L .
We can give a simple proof that our wave function (forM = 0) vanishes if anyk + 1

particles, each of either spin, come to the same point. This works also for the RR wave
functions, and is simpler, though less informative, than the proof in RR [7]. It works
term by term, inside the sum over permutations in the symmetrizer. Thus, without loss of
generality, we may use the simple clustering considered above. We note that on the clock
face formed by the labels 1, . . . ,k within each cluster, there is always a factor connecting
any two particles at the same position, regardless of their spin. This factor vanishes when
the particles coincide. Since there are onlyk distinct positions, whenk + 1 particles come
to the same point, the clock positions must coincide in at least two cases, so that the wave
function vanishes, which completes the proof.

We do not have a direct general proof of the equality of these explicit wave functions and
the formal expressions Eq. (5), but we have performed a number of consistency checks.
First, the wave functions are polynomials of the correct degree. From Eq. (5), we can
infer what the total degree should be. The parafermions of the correlator contribute with
(see [18])−1 · 2kp · (1 − 1

k
). The factors of the(2,2,1) part are 2· 2

k
· 1

2kp(kp − 1) and
1· 1

k
·(kp)2. Adding these gives, forM = 0,pk(3p−2). We need to check whether Eq. (16)

gives the same degree. For theith up particle, the degree ofz↑
i in the product of up–up

factors is 2(p − 1), and in the up–down factors isp. Thus the net degree inz↑
i is Nφ =

3p−2= 3N/2k−2, or for generalM, Nφ = 3p+M(N−1)−2= (M+3/2k)N−2−M.
This gives the filling factorν = 2k/(2kM + 3) [9], which reduces to that for the Halperin
states fork = 1, and also the shift, defined asNφ = N/ν −S, which here isS = M + 2 on
the sphere (for more on the shift, see Ref. [24]). Finally, the total degree isN/2 times that
in z

↑
i , namelykp(3p − 2) for M = 0, the same as for the correlator. Also, the numerical

work described in Section 10 confirms that the ground state of the appropriate Hamiltonian
on the sphere fork = 2, M = 1 at the given number of flux does have a unique spin-zero
ground state at zero energy, so that the correlator and the wave function constructed above
must coincide. This also implies that the wave functions above must be spin-singlet.

5. Correlators corresponding to states with quasiholes

To obtain wave functions for NASS states with quasiholes, one inserts corresponding
operators into the correlator that corresponds to the ground state wave function. Here we
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will give the form of the correlators, using standard CFT techniques, but not the wave
functions. The operators we insert have the form of a spin field times a vertex operator,
similar to the RR states [7] (note that the term “spin field” is traditional, and has no
relation to the SU(2) “spin” symmetry). In the exponent of the vertex operators, the
fundamental bosons are multiplied by (fundamental)weights of the Lie algebra SU(3):
)1 = (

√
2/2,

√
6/6), )2 = (0,

√
6/3). We take the quasiholes from the triplet3 of SU(3).

The corresponding operators are

C)1

(
w↑)= σ)1 exp

(
i)1 · 	ϕ/√k

)(
w↑),

(18)C−)2

(
w↓)= σ−)2 exp

(−i)2 · 	ϕ/√k
)(
w↓).

In order to find the wave function for generalM, we note the following. The two bosons
	ϕ = (ϕ1, ϕ2) can be written in terms of a (hyper-)charge and spin boson (ϕc andϕs , respec-

tively) by means of a simple rotation:ϕ1 =
√

3
2 ϕc + 1

2ϕs andϕ2 = −1
2ϕc +

√
3

2 ϕs . TheM-
dependence is then brought in via a rescaling of the scale associated with the charge boson
ϕc. The particle and quasihole operators for generalM become in terms of these bosons

(19)B ′
α1

= ψ1 exp

(
i√
2k

(√
2kM + 3ϕc + ϕs

))(
z↑),

(20)B ′−α2
= ψ2 exp

(
i√
2k

(√
2kM + 3ϕc − ϕs

))(
z↓),

(21)C′
)1

= σ↑ exp

(
i√
2k

(
1√

2kM + 3
ϕc + ϕs

))(
w↑),

(22)C′−)2
= σ↓ exp

(
i√
2k

(
1√

2kM + 3
ϕc − ϕs

))(
w↓),

where we have writtenψα1 = ψ1, ψ−α2 = ψ2, σ)1 = σ↑ andσ−)2 = σ↓ for simplicity.
The most basic spin fieldsσ↑,↓ transform as a doublet of the SU(2) subalgebra we iden-
tify with the spin of the particles. Also, the hypercharge of the quasihole operators has the
same sign as that of the particle operators. This implies that these are indeed quasiholes,
as in earlier cases [6,7]; the wave functions are nonsingular as any particle coordinatezi

approaches any quasihole coordinatewj .
Note that when these operators are used in the CFT correlator (together with a suitably

chosen background charge), the extra Laughlin factor is automatically generated. The
correlator for the component of the wave function withN↑,↓ spin-up and -down particles
andn↑,↓ spin-up and -down quasiholes is given by

Ψ̃
k,M
NASS,qh = lim

z∞→∞(z∞)a

〈
exp

( −i√
2k

{[√
2kM + 3(N↑ + N↓) + n↑ + n↓√

2kM + 3

]
ϕc

+ [N↑ − N↓ + n↑ − n↓]ϕs

})
(z∞)

× C′
)1

(
w

↑
1

) · · ·C′
)1

(
w↑

n↑
)
C′−)2

(
w

↓
1

) · · ·C′−)2

(
w↓

n↓
)

(23)× B ′
α1

(
z
↑
1

) · · ·B ′
α1

(
z
↑
N↑
)
B ′−α2

(
z
↓
1

) · · ·B ′−α2

(
z
↓
N↓
)〉

.
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The value ofa will be given momentarily. In the wave function (23) we inserted the
most general background charge required for neutrality in the Cartan subalgebra of SU(3).
However, the background charge can involve only the charge bosonϕc, which corresponds
to the spin-independent background magnetic field in the QH problem. Thus we find the
condition

(24)N↑ + n↑ = N↓ + n↓,

which is part of the requirement of SU(2) symmetry for the correlator. The correlator is a
spin-singlet, which means that the wave functionfor the particles is a nonzero spin state
of the particles, with spin determined by the quasiholes. Effectively, the quasiholes carry
spin 1/2 which is added to the spin-singlet ground state. Note that a quasihole labeled
up carries a spin down from the latter point of view, by Eq. (24), just as it carries negative
charge (hence the term quasihole), since there is a deficiency of particles at its location. For
N = N↑ +N↓ sufficiently large,N � n in fact, the spin (up or down) for each quasihole can
be chosen freely, as we will see in some examples. Using condition (24), we can calculate
thata must be

(25)a = 2kM + 3

2k

(
N + n

2kM + 3

)2

,

wheren = n↑ + n↓, in order that the limitz∞ → ∞ exists and is nonzero.
By working out the vertex-operator part, we arrive at the following form

Ψ̃
k,M
NASS,qh

(
z
↑
1 , . . . , z

↑
N↑; z↓

1, . . . , z
↓
N↓ ;w↑

1 , . . . ,w
↑
n↑ ;w↓

1 , . . . ,w
↓
n↓
)

(26)

=
〈
σ↑
(
w

↑
1

) · · ·σ↑
(
w↑

n↑
)
σ↓
(
w

↓
1

) · · ·σ↓
(
w↓

n↓
)

× ψ1
(
z
↑
1

) · · ·ψ1
(
z
↑
N↑
)
ψ2
(
z
↓
1

) · · ·ψ2
(
z
↓
N↓
)〉

× [
Ψ̃

(2,2,1)
H

(
z
↑
i ; z↓

j

)]1/k
Ψ̃ M

L

(
z
↑
i ; z↓

j

)∏
i,j

(
z
↑
i −w

↑
j

)1/k∏
i,j

(
z
↓
i −w

↓
j

)1/k
×
∏
i<j

(
w

↑
i − w

↑
j

) 1
2kM+3 (

2
k
+M)

∏
i,j

(
w

↑
i −w

↓
j

) −1
2kM+3 (

1
k
+M)

×
∏
i<j

(
w

↓
i − w

↓
j

) 1
2kM+3 (

2
k +M)

.

Note that the correlator is nonzero only if the parafermion and spin fields can be fused to
yield the identity operator.

The number of magnetic fluxNφ seen by any particle is found to be

(27)Nφ = 2kM + 3

2k
N + 1

2k
n − (M + 2),

where we used Eq. (24). SinceNφ must be an integer (so that the wave function is
a polynomial in thezi ’s), this gives another condition, that(3N +n)/2 [which is an integer
by Eq. (24)] must be divisible byk. [For the RR states, there is an analogous condition,
2N+n must be divisible byk. Fork even, this means thatn is even, as in thek = 2 case (the



E. Ardonne et al. / Nuclear Physics B 607 [FS] (2001) 549–576 561

MR state) [6]. In Ref. [7], only the casen andN both divisible byk was considered.] From
Eq. (27), we can deduce that the quasiparticle charge is 1/(2kM + 3). This corresponds
to a fractional flux, 1/2k of the usual flux quantum. In effect, the flux quantum has been
reduced by 1/k by the formation of clusters, as in paired states and in spin-polarized RR
states [7]. The factor of 1/2 is present already in the Halperink = 1 case. So ifk is not
divisible by 3, the quasihole charge is 1/Q (Q is the denominator of the filling factor,
defined in Section 2), as in many other cases, but ifk is divisible by 3, the quasihole charge
is 1/3Q. This is similar to what happens in the MR and RR states, where the quasihole
charge is further fractionalized (smaller than 1/Q) whenk is divisible by 2 [7].

The conditions (24) and thatNφ be integer are clearly necessary, but in fact are also
sufficient, to ensure that the quasihole wave functions are nonzero polynomials in thezi ’s,
except in the special casen = 1 where the function vanishes. To see this, one must examine
the fusion rules for the parafermion system, and check that the fields can be fused to the
identity operator under the stated conditions. This will be considered in the next section.

For completeness, we give the conformal dimensions of the particle and quasihole
operatorsB ′

α(z) andC′
) (w). To obtain these, we need the dimensions of the parafermionic

and spin fields, which are-ψ = 1− 1/k and-σ = k−1
k(k+3) , respectively [18]. Using these,

we find (see also [9])-part= (M + 2)/2 and-qh = (5k−1)M+8
2(k+3)(2kM+3) .

We can show that the quasihole states we have obtained are zero-energy eigenstates for
the (k + 1)-body Hamiltonian above, as follows. We again concentrate on the caseM = 0.
The argument using the ope’s of the currentsB↑,↓(z) again applies [7], as long as the
k + 1 zi ’s are brought to a point that does not coincide with a quasihole coordinatewj . To
complete the argument, we must also consider the case where the latter condition does not
hold. There are two ways to do this. One is to note first that, as a function of thezi ’s for
fixedwj ’s, the correlator is a polynomial, as it must be to be a valid QHE wave function. (It
is not a polynomial in the quasihole coordinateswj .) This is because we chose to examine
quasiholes rather than the opposite charge objects. Then the fact that it vanishes whenk+1
zi ’s coincide away from a quasihole coordinatewj also implies that it vanishes when they
are at awj , by continuity, which holds because the function is a polynomial in thezi ’s.

A second argument is also instructive. We may generalize the argument using the current
algebra null vectors to directly address the limit ofB ’s approaching awj . There is a
generalization of the central equation for this case,

(28)(B↑,−1)
k|↑〉 = 0.

Here the state|↑〉 = C)1(0)|0〉 is the state in radial quantization corresponding to the
quasihole operator at 0. There are similar equations, with successively lower exponents,
for the higher-order quasiholes (with multiples of the charge of the basic one) obtained by
successively fusing quasiholes together. These are the null vector equations for the highest
weights in distinct representations of the affine Lie algebra (or for the distinct primary
fields) [21,22]. We want to emphasize that the equation says that for certain choices of
the spins, the wave function vanishes when onlyk particles come to the same point (or
fewer for the higher-order quasiholes). This is a generalization of the fact that the Laughlin
quasihole is defined as the factor

∏
i (zi − w) which vanishes when any one particle
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approachesw. (This generalization applies already to the spinless RR states.) It is also
a generalization of the Halperin case, where a quasihole is a factor

∏
i (z

↑
i − w↑) which

vanishes when a single up particle goes tow↑, but not when a single down particle does.
Whenk basic quasiholes are fused atw (taking the leading term at each fusion), the null
vector equations state that the function does vanish when a single particle of appropriate
spin approachesw, so we have a Laughlin- (or rather Halperin-) type quasihole in that case,
as was already known for the MR (k = 2 RR) state, for example. Note that the above spin
k/2 state is the highest weight in a multiplet, so there is a set ofk + 1 such null vectors in
total. This does not include all possible spin choices, as we have pointed out. To complete
the proof that the function vanishes when anyk + 1 zi ’s (i.e., k + 1 particles of any spin)
come towj , we must show that, for allm,

(B↓,−1)
m(B↑,−1)

k+1−m|↑〉 = 0,

(29)(B↓,−1)
m(B↑,−1)

k+1−m|↓〉 = 0.

This can be done by an elementary argument, applying the SU(2) lowering operator to
Eq. (28), then anotherB↑,−1, using the same equation, and then lowering further, and so on.

6. Fusion rules

From now on, we focus mainly on the casek = 2, which is a spin-singlet analogue of the
MR state. The numerical studies reported in Section 10 were all performed for this special
case. Analytical results fork � 2 will be presented elsewhere [27].

As pointed out in the introduction, the non-trivial fusion rules play a crucial role in the
ground state degeneracies. In fact, the correlator in Eq. (26) does not represent a single
wave function, because in general there is more than one way in which the spin fields and
parafermion fields can be fused to the identity. To show how this works, we will give the fu-
sion rules, and explain that they can be written in terms of a Bratteli diagram. By using the
correspondence between the fields of the parafermion theory and fields of the correspond-
ing Wess–Zumino–Witten models (see [18]), one finds the fusion rules listed in Table 1.

Table 1
Fusion rules of the parafermion and spin fields associated to the parafermion theory SU(3)2/[U(1)]2
introduced by Gepner [18]

× σ↑ σ↓ σ3 ρ ψ1 ψ2 ψ12

σ↑ 1 + ρ

σ↓ ψ12+ σ3 1 + ρ

σ3 ψ1 + σ↓ ψ2 + σ↑ 1 + ρ

ρ ψ2 + σ↑ ψ1 + σ↓ ψ12+ σ3 1 + ρ

ψ1 σ3 ρ σ↑ σ↓ 1
ψ2 ρ σ3 σ↓ σ↑ ψ12 1
ψ12 σ↓ σ↑ ρ σ3 ψ2 ψ1 1
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Fig. 1. Bratteli diagram for the spin fields of SU(3)2/[U(1)]2.

An examination of the fusion rules shows that there are different cases, according to the
parity, even or odd, ofn↑, n↓, N↑, N↓. In the case where all four numbers are even, the
spin fields and the parafermions can be fused to the identity separately. In the case where
all four are odd, the spin fields and the parafermions can be fused toψ12 separately, and
these twoψ12’s can then be fused to the identity. Because the quasiholes only involve the
σ↑,↓ fields, we in fact only need the first two columns of Table 1. With this restriction, the
fusion rules can be written in terms of a Bratteli diagram, see Fig. 1.

Each arrow stands for either aσ↑ or σ↓ field. The arrow starts at a certain field which
can only be one of the fields on the left of the diagram at the same height. This last field
is fused with the one corresponding to the arrow, while the arrow points at a field present
in this fusion. As an example, the arrows starting at the∗ are encoding the fusion rules
ρ × σ↑(↓) = ψ2(1) + σ↑(↓) andσ3 × σ↑(↓) = ψ1(2) + σ↓(↑). One checks that the diagram is
in accordance with the first two columns of Table 1. The symbol1 at the right-hand side of
Fig. 1 indicates that in the end we have fused the fields to the identity. This is possible only
whenn↑ andn↓ are both even; in the case where both numbers are odd,ψ12 is obtained at
that position in the diagram. In the remaining two cases, wheren = n↑ +n↓ is odd, we can
draw a similar diagram with the last point at the top, representingψ1 or ψ2 (except when
n = 1, to which we return in a moment). In these cases,N = N↑ + N↓ must also be odd,
in order that the fusion of the parafermionsψ1 andψ2 for the particles can produce the
appropriate field which can fuse with the result of the spin field fusions to finally give the
identity. In the casen = 1, it is not possible to fuse the spin fields to obtain a parafermion,
and the correlator vanishes.

For the counting formula we need to know the number of ways in which a given number
of spin fields can be fused to give a field in the parafermion sector, that is 1,ψ1, ψ2,
orψ12. This number equals the number of paths (of length the number of spin fields) on the
Bratteli diagram leading to the corresponding point on the diagram. One finds that when
the numbers of spin-up and -down quasiholes aren↑ andn↓, respectively, this number,
the number of fusion channels, isdn↑,n↓ = fn−2, where the Fibonacci number is defined
by fm = fm−1 + fm−2, with the initial conditionsf0 = 1 andf1 = 1. This is valid for
n � 2 in all four cases ofn↑, n↓ even or odd, while forn = 1, dn↑,n↓ = 0, and forn = 0,
d0,0 = 1. The result is obtained by examining the Bratelli diagram and seeing that the
number of paths obeys the recurrence relation that defines the Fibonacci number. We note
that this result, the Fibonacci numberfn−2, is the same as forn quasiholes in thek = 3 RR
states [7]. This is a manifestation of level-rank duality, here between SU(3)2 and SU(2)3.

The final fusion of the spin fields with the parafermions from the particles must produce
the identity, in order that the correlator be nonzero. Whendn↑,n↓ is nonzero, necessary and
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sufficient conditions for this areN↑ + n↑ ≡ N↓ + n↓(mod2) andN↑ − n↓ ≡ 0 (mod2).
The first condition is the mod2 version of the condition (24), while the second is equivalent
to the condition(3N + n)/2 ≡ 0 (mod2), on using Eq. (24). Note that, as can be inferred
from the fusion rules for theψ fields (see Table 1), the fusion of theψ fields from the
particle operators does not increase the degeneracy. The abelian properties of theψ fields
correspond to the abelian statistics (Bose or Fermi) of the underlying particles.

These results give the degeneracydn↑,n↓ of quasihole states for fixed positions and
spins of the quasiholes, which is the basis for non-abelian statistics properties. We see
that the result does not depend on how many quasiholes are spin up or spin down, and the
sum over all choices of spins gives a further factor of 2n spin degeneracy for sufficiently
largeN , when only the positions are fixed. In the following sections, we examine the
total degeneracies of quasihole states when both their positions and spins are unrestricted.
These are more suitable for numerical checks, and are finite numbers on the sphere (for a
disk in the plane, they are infinite, and contain information about edge excitations as well
as bulk quasiholes). As in cases studied earlier [12,7], the total degeneracies are not just
the numbers found above times a factor for the spatial degeneracy contribution, but involve
partitioning the Fibonacci numbers above into a sum of positive integers. We also note here
that when a generic Hamiltonian has a ground state in the NASS phase, the degeneracies
will not be exact, but will be as given in this section when all quasiholes are asymptotically
far separated. This will not be considered further in this paper.

7. Spatial degeneracies

Techniques for calculating degeneracies for a spherical geometry are described in full
detail in [12]. On the sphere, the relation between the number of particles and the number of
flux quanta for the ground state is given byNφ = ν−1N − S. By increasing the number of
flux quanta at fixedN , quasiholes are created. Moreover, when flux have been added, there
may be zero-energy states withN not satisfying the conditions required in the ground state,
for example thatN be even in the MR state [12]. In general, we would define the number
of flux “added” as-Nφ = Nφ − ν−1N + S. This is defined relative to a ground state at
the same number of particles, even though such a zero-energy state forN not divisible by
2k (or k for the RR states) would require a non-integer number of flux, and does not exist.
Consequently, while ourNφ is always an integer, as discussed in Section 5,-Nφ does not
have to be an integer. The number of quasiholesn can then be defined asn = k-Nφ (for
the RR states), orn = 2k-Nφ for the NASS states considered here, in agreement with our
formula forNφ in Eq. (27).

To explain the spatial degeneracies, we use the Laughlin case as an example, and follow
the discussion of [12]. The Laughlin wave function forN particles in the presence ofn
quasiholes can be written as [15]

(30)Ψ̃ M
L,qh(z1, . . . , zN ;w1, . . . ,wn) =

∏
i<j

(zi − zj )
M
∏
i,k

(zi −wk).
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For this state,n = -Nφ (adding one quantum of flux creates one quasihole), so we have
Nφ = M(N − 1) + n, where we used thatS = M for the Laughlin state. To continue, we
calculate the degeneracy due to the presence of the quasiholes, by expanding the factor∏

i,k(zi − wk) in sums of products of the elementary symmetric polynomials

(31)em =
∑

i1<i2<···<im

wi1wi2 · · ·wim.

Viewing the coordinateswi as coordinates of bosons, we find thatn bosons are to be placed
in N+1 orbitals. The dimension of the space of available states (linearly-independentwave
functions) equals the number of ways in which one can putn bosons inN + 1 orbitals,
which is

(32)

(
N + n

n

)
.

This is the spatial degeneracy we are after, although for the simple case of the Laughlin
states.

The situation for the MR state is discussed in detail in [12]. For the MR state, there is
an additional complication, namely quasihole states in which there are unpaired fermions
are possible; this is the origin of the degeneracies for fixed quasihole positions, already
discussed. We will denote the number of unpaired particles byF , with the requirement
thatN − F be even, so that the number of unbroken pairs(N − F)/2 is an integer. For
n sufficiently large,N need not be even in the zero-energy states. It was found that the
spatial degeneracy depends on the number of unbroken pairs; in fact, for the MR state, it
was given by [12]

(33)

(
N−F

2 + n

n

)
.

For the clustered state of [7] (in which the particles form clusters of orderk rather than
pairs), the spatial degeneracy is given similarly by [7,13]

(34)

(
N−F

k
+ n

n

)
,

whereN − F must be divisible byk (there appears to be no known general analytic proof
of this formula fork > 2).

Based on these earlier results, and because the NASS wave functions involve clusters of
up particles and separately of downs, we expect that the spatial degeneracy for the NASS
states is just a product of two binomial coefficients, involving theF1, F2 “unclustered”
particles (or parafermions) for spins up and down, respectively:

(35)

(
N↑−F1

k
+ n↑

n↑

)(
N↓−F2

k
+ n↓

n↓

)
.

Again, N↑ − F1 andN↓ − F2 must be divisible byk. Notice that these numbers never
depend onM.
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The casek = 1, F1 = F2 = 0 gives the spatial degeneracies for the general Halperin
(m′,m′,m) abelian states (as was mentioned briefly in Ref. [12] for a particular case). For
the spin-singlet cases(m + 1,m + 1,m) (m = M + 1) of interest here, the conditions that
correspond to zero-energy states with only the particle and quasihole numbers,N andn,
fixed are thatN↑ +n↑ = N↓ +n↓. ForN sufficiently large, these allow any choice of spin,
up or down, for each quasihole, giving a factor of 2n spin degeneracy for fixed positions
(this holds for allk). Such degeneracy does not contribute to the degeneracy on which
non-abelian statistics depends, and the statistics is abelian in the presentk = 1 case (as of
course was expected). The full degeneracy in this casek = 1 is obtained by summing (35)
overN↑, N↓, n↑, n↓, subject to the conditions just stated, withF1 = F2 = 0. These imply
that the summation is over only the possible values ofSz = (N↑ −N↓)/2, and the result is

(36)

(
N + n

n

)
.

Note that this number includes the spin degeneracy. If we take the ratio to the number

(37)

(
(N + n)/2

n

)
of quasihole states with, say,n↓ = 0, the result tends to 2n asN → ∞, which is again
the spin degeneracy for fixed positions. In the remainder of this paper, we concentrate
exclusively onk = 2.

With the orbital degeneracies in hand, we need to know how to break up the degeneracies
stemming from the fusion rules of the spin fields. So in fact we need to know the number of
unpaired particles of either spin,F1, F2, for each possible path on the Bratteli diagram. The
next section will treat this problem, by partitioning the numbersdn↑,n↓ in the following way

(38)dn↑,n↓ = fn↑+n↓−2 =
∑
F1,F2

{
n↑ n↓
F1 F2

}
2
.

The symbol
{n↑ n↓
F1 F2

}
2

is interpreted as the number of zero-energy states containingn↑, n↓
quasiholes at fixed positions andF1, F2 unpaired parafermions. The symbol vanishes if the
conditions thatF1 − n↓, F2 − n↑ be even are not satisfied; these conditions are equivalent
to the two mod 2 conditions discussed at the end of Section 6. The subscript 2 indicates
that we are dealing with the casek = 2.

8. Counting SU(3)2/[U(1)]2 parafermion states

It was explained in [12] that the state counting for the MR state involves the systematics
of Majorana fermions, which act as BCS quasiparticles (unpaired fermions) occupying
zero-energy states [20]. For the more general RR (spin-polarized) states with orderk

clustering [7], the Majorana fermion is replaced by an SU(2)k/U(1) parafermion [7,13].
We recall that for the NASS state at levelk = 2, the role of the Majorana fermion is taken

over by the parafermions that are associated to SU(3)2/[U(1)]2. The (spin-up or -down)
quasiholes correspond to (two different) spin fieldsσ↑,↓ of this parafermion theory (see
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Section 5). In Section 6, we calculated the number of different quantum states (conformal
blocks for the correlators) that can result from introducingn↑σ↑ and n↓σ↓ spin fields
(and also varying the number of particlesN↑, N↓) with the resultdn↑,n↓ = fn↑+n↓−2. The
degeneracy results from the presence of varying numbers of particles that are not members
of clusters, which in the correlators can be identified with the fundamental parafermions
ψ1, ψ2 of the parafermion theory.F1 (F2) is the number ofψ1 (ψ2) excitations. These
numbers are subject to the conditions thatF1 ≡ n↓ (mod2), F2 ≡ n↑ (mod2), otherwise
the number of zero-energy states is zero; these conditions come from those discussed in
Section 6. In the previous section, we found that the orbital degeneracy depends on the
numbersF1 andF2, see Eq. (35). We now turn to the calculation of the symbols

(39)

{
n↑ n↓
F1 F2

}
2
,

which partition the degeneraciesdn↑,n↓ in the correct way. We will also keep track of the
angular momentum (L) multiplet structure associated with these parafermion states. To do
this, we have to go through a series of steps.

First of all, we consider the infinite (chiral) character corresponding to the full
parafermionic CFT (see [25])

(40)ch(x1, x2;q) =
∑
F1,F2

q(F 2
1 +F 2

2 −F1F2)/2

(q)F1(q)F2

x
F1
1 x

F2
2 ,

where(q)a =∏a
j=1(1 − qj ) for integera. HereF1 andF2 are unrestricted non-negative

integers, andx1, x2, q are indeterminates.
What is needed for our purposes here is the truncation of this expression to (a sum of)

polynomialsYn↑,n↓ (x1, x2;q) that describes the states that occur whenn↑, n↓ spin fields
(quasiholes) are present. The approach is described in Refs. [14,26], see also Ref. [13],
and details for the present case will be given in Ref. [27]. We find that these polynomials
satisfy the following recursion relations

Y(n↑,n↓) = Y(n↑−2,n↓) + x1q
(n↑−1)/2Y(n↑−2,n↓+1),

(41)Y(n↑,n↓) = Y(n↑,n↓−2) + x2q
(n↓−1)/2Y(n↑+1,n↓−2)

with initial conditions

Y(1,0) = Y(0,1) = 0,

Y(0,0) = Y(2,0) = Y(0,2) = 1,

(42)Y(1,1) = q1/2x1x2.

Recursion relations similar to the above (but lacking thex1,2 dependence), have been
considered in the mathematical literature on special polynomials associated to SU(3)2,
see for instance [28]. The coefficient ofx

F1
1 x

F2
2 in the polynomialY(n↑,n↓) is a polynomial

in q with the sum of the coefficients equal to the symbol (39), that is

(43)Y(n↑,n↓)(x1, x2,1) =
∑
F1,F2

x
F1
1 x

F2
2

{
n↑ n↓
F1 F2

}
2
.
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We notice that the recursion relations preserve the conditions on the parities ofF1, F2 (the
exponents ofx1, x2) that are part of the definition of the symbol (39). In the limit where
(n↑, n↓) → (∞,∞), the sum of these polynomials over the four choices,n↑ andn↓ each
either even or odd, approaches the expression ch(x1, x2;q) given above.

The coefficient ofxF1
1 x

F2
2 in the polynomialYn↑,n↓ has a special form, which allows us to

extract information on theL quantum numbers of the parafermion states: after multiplying
with a factorq−(n↑F1+n↓F2)/4, we recognize a sum of terms of the formqlz , which together
form a collection of angular momentum (L) multiplets with quantum numbersLz = lz [13].

To illustrate the above, we present the polynomials for the case of two added flux quanta,
giving eight quasiholes. The polynomials are

Y(8,0) = 1+ (
q2 + q3 + 2q4 + q5 + q6)x2

1 + q8x4
1

+ (
q6 + q7 + q8 + q9 + q10)x4

1x
2
2,

Y(7,1) = (
q

1
2 + q

3
2 + q

5
2 + q

7
2
)
x1x2 + (

q
7
2 + 2q

9
2 + 2q

11
2 + 2q

13
2 + q

15
2
)
x3

1x2

+ q
19
2 x5

1x
3
2,

Y(6,2) = 1+ (
q2 + q3 + q4)x2

1 + (
q2 + q3 + 2q4 + q5 + q6)x2

1x
2
2

+ (
q6 + q7 + q8)x4

1x
2
2,

Y(5,3) = (
q

1
2 + 2q

3
2 + 2q

5
2 + q

7
2
)
x1x2 + (

q
7
2 + q

9
2 + q

11
2
)
x3

1x2

+ (
q

9
2 + q

11
2 + q

13
2 + q

15
2
)
x3

1x
3
2,

Y(4,4) = 1+ q2x2
1 + q2x2

2 + (
q2 + 2q3 + 3q4 + 2q5 + q6)x2

1x
2
2 + q8x4

1x
4
2,

(44)etc.

From the polynomialY(5,3) (as an example), we read off the following nonzero values of
the symbols{

5 3
1 1

}
2
= 6

(
L = 3

2
,L = 1

2

)
,{

5 3
3 1

}
2
= 3 (L = 1),

(45)

{
5 3
3 3

}
2
= 4

(
L = 3

2

)
.

In fact, it is possible to write the polynomialsY(n↑,n↓) in a closed form [29],

(46)Y(n↑,n↓)(x1, x2;q) =
∑′

F1,F2

q(F 2
1 +F 2

2 −F1F2)/2x
F1
1 x

F2
2

[
n↑+F2

2
F1

][
n↓+F1

2
F2

]
,

where
[
a
b

]
is the q-deformed binomial (q-binomial), defined as

[
a
b

] = (q)a
(q)b(q)a−b

, and
theprime on the sum denotes the restriction onF1, F2 values. Using the property that in
the limit q → 1 theq-binomials become ordinary binomials, we find the following explicit
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formula for{ }2 (under the same conditions onF1, F2, otherwise it vanishes):

(47)

{
n↑ n↓
F1 F2

}
2
=
( n↑+F2

2
F1

)( n↓+F1
2
F2

)
.

Note that if we take the sum over allF1 andF2, we indeed find the correct value, namely
a Fibonacci number

(48)
∑′

F1,F2

( n↑+F2
2
F1

)( n↓+F1
2
F2

)
= fn↑+n↓−2.

While Eq. (47) gives us just the number, we can also obtain the angular momentum
content easily. The binomial

(
a
f

)
is interpreted as the number of possible ways of putting

f fermions ina boxes which have quantum numbersLz = −(a − 1)/2, . . . , (a − 1)/2
assigned to them. In this way, an angular momentum multiple structure is assigned to the
binomials (see [12]). The angular momentum content of the symbols{}2 is obtained by
adding the angular momenta associated to the binomials in the usual way.

9. Final counting formula

We are now in the position to write down the formula for the total degeneracy of zero-
energy quasihole states of thek = 2 non-abelian spin-singlet states. Recall that there
are two conditions on the numbers of quasiholes (see Section 5). The first condition is
N↑ + n↑ = N↓ + n↓, which implies that the correlator is a spin-singlet, or that the wave
functions have total spin determined by the spin-1/2 quasiholes added. The other condition
was that(3N + n)/2 be even, to ensure thatNφ is an integer, whereN = N↑ + N↓, and
n = n↑ + n↓ = 4-Nφ , which relates the number of excess flux quanta and the number of
quasiholes added. These imply thatN↑ − n↓ = N↓ − n↑ must be even.

The result of the previous few sections is now that the total number, summed over all
spin components, of zero-energy states as a function of the number of particles and added
flux quanta is

(49)

#(N,-Nφ) =
∑′

N↑,↓;n↑,↓;F1,2

( n↑+F2
2
F1

)( n↓+F1
2
F2

)( N↑−F1
2 + n↑
n↑

)( N↓−F2
2 + n↓
n↓

)
,

where the prime on the sum indicates that it is restricted to values obeying all the conditions
just mentioned, and toN↑ − F1 andN↓ − F2 even as discussed in Section 7. Note again
that these conditions imply thatn↑ + F2 andn↓ + F1 are even.

In addition, the orbital angular momentum decomposition of the states can be obtained,
by combining the angular momenta found in the orbital and parafermion factors in the
preceding two sections. The spin quantum number of any given state is simplySz = (N↑ −
N↓)/2 and one readily recognizes the multiplet structure for the SU(2) spin symmetry. (We
remark that the parafermion theory by itself does not have a proper SU(2) spin symmetry.)

In Table 2, we present counting results forN = 4, 8, 12 and-Nφ = 1, 2, 3, 4. We
specify the number of states as a function of theL andS quantum numbers. In Table 3
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Table 2
Counting results for the NASS states atk = 2. N is the number of electrons;-Nφ is the number of
excess flux quanta. The results are given as a function of theL (angular momentum) andS (total
spin) quantum numbers. The total number of states is also indicated

-Nφ = 1 -Nφ = 2 -Nφ = 3 -Nφ = 4

N = 4 #= 20 S = 0 1 2 #= 104 S = 0 1 2 #= 321 S = 0 1 2 #= 755 S = 0 1 2
L = 0 1 0 1 L = 0 1 0 1 L = 0 2 0 1 L = 0 2 0 1
L = 1 0 1 0 L = 1 0 2 0 L = 1 0 2 0 L = 1 0 3 0
L = 2 1 0 0 L = 2 2 1 1 L = 2 2 2 2 L = 2 3 2 2

L = 3 0 1 0 L = 3 1 3 0 L = 3 1 4 1
L = 4 1 0 0 L = 4 2 1 2 L = 4 3 3 2

L = 5 0 1 0 L = 5 1 3 0
L = 6 1 0 0 L = 6 2 1 1

L = 7 0 1 0
L = 8 1 0 0

N = 8 #= 105 S = 0 1 2 #= 1719 S = 0 1 2 3 4
L = 0 2 0 1 L = 0 4 1 3 0 1
L = 1 0 2 0 L = 1 1 7 2 1 0
L = 2 2 1 1 L = 2 7 7 6 1 0
L = 3 0 1 0 L = 3 3 9 3 1 0
L = 4 1 0 0 L = 4 6 6 4 0 0

L = 5 2 5 1 0 0
L = 6 3 2 1 0 0
L = 7 0 1 0 0 0
L = 8 1 0 0 0 0

N = 12 #= 336 S = 0 1 2
L = 0 3 0 1
L = 1 0 3 0
L = 2 3 3 2
L = 3 1 3 0
L = 4 2 1 1
L = 5 0 1 0
L = 6 1 0 0

we give some results forN not a multiple of four. Notice that forn = 1, there are no zero-
energy states, as expected from Section 6. The results listed in Tables 2 and 3 are for the
cases we checked numerically, as we discuss in the next section, and are in full agreement
with those results.

10. Numerical methods and results

We next turn to some numerical studies of the NASS states. We consider only cases
where the particles are fermions, to represent electrons. We have studied thek = 2,M = 1
(ν = 4/7) case in both the toroidal (PBC) and spherical geometries. We first present the
results for the sphere. As discussed before the flux-charge relation for this state isNφ =
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Table 3
Counting results for the NASS states atk = 2 with fractional-Nφ (symbols as in Table 2)

-Nφ = 1/2 -Nφ = 3/2
N = 2 #= 3 S = 0 1 #= 10 S = 0 1

L = 0 0 1 L = 0 1 0
L = 1 0 1

N = 6 #= 10 S = 0 1 #= 175 S = 0 1 2 3
L = 0 1 0 L = 0 0 2 0 1
L = 1 0 1 L = 1 2 1 1 0

L = 2 0 3 1 0
L = 3 2 1 0 0
L = 4 0 1 0 0

-Nφ = 1/4 -Nφ = 5/4
N = 5 #= 0 #= 48 S = 1/2 3/2

L = 1/2 1 1
L = 3/2 1 1
L = 5/2 1 0

-Nφ = 3/4 -Nφ = 7/4
N = 3 #= 4 S = 1/2 #= 28 S = 1/2 3/2

L = 1/2 1 L = 0 0 0
L = 1 1 1
L = 2 1 0

7N/4 − 3. The number of single-particle orbitals (the lowest LL degeneracy) isNφ + 1.
In order to make contact with the results on more conventional geometries the radiusR of
the sphere has to be chosen so that the number of flux isNφ = 2R2 (where the magnetic
field strengthB is fixed, such that the magnetic length is 1 in our units), soR =√

Nφ/2
[16]. The filling factor isν = N/Nφ = 2πn̄, wheren̄ = N/(4πR2) is the particle number
density.

For numerical purposes, it is best to re-express the interaction Hamiltonian in terms
of projection operators onto different values of the total angular momentum for different
groups of particles [16]. For theM = 1, k = 2 case of the NASS states, the required
Hamiltonian can be written as

(50)H = U
∑

i<j<k

Pijk(3Nφ/2− 3,3/2)+ V ′∑
i<j

Pij (Nφ,0),

with U,V ′ > 0. Here Pijk(L,S) (Pij (L,S)) are projection operators for the three
(respectively, two) particles specified onto the given values of total angular momentum
L and spinS for the three (respectively, two) particles. Each projection is normalized to
P 2 = P . To see that this is the required Hamiltonian, that corresponds to the short range
δ-function interaction forM = 0, and gives the same numbers of zero-energy states found
above, note the following. First, the maximal angular momentum for several particles
corresponds to the closest approach of those particles [16]. In particular, the two-body
term is a contact interaction, andV ′ = V0, the zeroth Haldane pseudo-potential [16]. The
two-body term implies that any zero-energy states must have no component with total
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Fig. 2. The spectrum of the NASS model ground state forN = 8 and 4/7 filling. The last panel shows
all S values combined. The insets are the low lying levels.

angular momentumNφ and total spin zero, which, since we are dealing with spin 1/2
fermions, means the wave function must vanish when any two particles coincide. The wave
function must therefore contain a factorΨ̃ 1

L ; multiplication by this factor defines a one-one
mapping of the full space of states of spin 1/2 bosons in the lowest LL, withNφ reduced by
N − 1, onto the subspace of states of the fermions that is annihilated by the two-body term
in H . Under this mapping, the three-body Hamiltonian for theM = 0 case corresponds
to the three-body term inH , and selects the corresponding states as zero-energy states. In
particular, the total spin of the three bosons when they coincide (and hence of the fermions)
must be 3/2. Hence the zero-energy eigenstates of the present Hamiltonian are given by
the results derived earlier. Note also thatH can be rewritten in terms ofδ-functions and
their derivatives. The zero-energy eigenstates of this Hamiltonian were found for various
N andNφ values, and analyzed in terms ofL andS. The results are shown in Tables 2
and 3, and agree with the counting formulas presented above.

Next we discuss the full spectra of the Hamiltonian. In Fig. 2 we show the excitation
spectrum of anN = 8, Nφ = 11 system classified by the total spinS = 0 to S = 4.
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Fig. 3. The spin up–up and spin up–down pair correlation functions, together with their sum (solid
line) and difference (dashed line), versus the chord distance, calculated in the ground state forN = 8,
Nφ = 11 (ν = 4/7).

Whenever necessary we have shown the low-lying spectrum in an inset. The frame in the
lower right hand corner shows the entire spectrum irrespective of the total spin quantum
number of the state. The choice ofU andV ′ is immaterial to the ground state, which is
always the unique zero-energy eigenstate ofH . Obviously, the excitation spectrum will
depend on the choice of these coefficients. In producing Fig. 2 we choseU = V ′ = 1 so
thatH is a sum of projection operators. There appears to be a well-defined gap, suggesting
that the system is incompressible (for spin as well as charge) in the thermodynamic limit, as
assumed in the preceding analysis. In this connection, we may point out that, as well as the
quantized Hall conductivity for charge, our system then has a quantized Hall conductivity
for spin, given byk/4π in natural (̄h = 1) units, which is associated with the SU(2)k
subalgebra of the chiral algebra (see, e.g., Ref. [20] and references therein). Collective
modes withS = 0 (L = 2,3,4) and S = 1 (L = 1,2,3) below the continuum can be
tentatively identified in the spectra (see insets in Fig. 2). That is, these may be finite-size
dispersion curves of single neutral excitations in plane-wave (spherical harmonics on the
sphere) wave functions, which would be charge and spin modes, respectively. We shall not
address the precise nature of these neutral modes here.

In Fig. 3 we show the various pair correlation functions of interest,g↑↑(r), g↑↓(r), as
well asgTotal = g↑↑(r) + g↑↓(r) andg↑↓(r) − g↑↑(r). The widely-different correlations
between like and opposite spins is no doubt magnified by finite-size effects.

The 8-electron system is the first non-trivial size and is probably too small for any mean-
ingful comparisons of the overlap with the 2-body Coulomb potential problem. Nonethe-
less we found a nontrivial overlap-squared (about 55%) with the ground state of the
Coulomb potential for particles in the lowest LL (again, with no Zeeman term), at the
sameN , Nφ . By modifying the value of the lowest pseudo-potential for the Coulomb in-
teraction this overlap-squared can be improved to 93% (and probably beyond) without any
intervening phase transition (an energy gap with the ground state is maintained at all times
while the pseudo-potentials are varied). However, in the lowest LL we do not expect to
produce a better trial wave function than one constructed by the composite fermion (CF)
method [30], in which two flux quanta per particle are attached (in the opposite direction
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Fig. 4. The ground state energy of the pure Coulomb potential in the lowest Landau level versusNφ ,
atN = 8. The numbers of fluxNφ for the NASS and the spin-singlet CF states are marked.

to the background magnetic field) and the resulting CFs fill completely the first two LLs of
CFs (with both spins). By construction this is a uniform (L = 0) spin-singlet state. We have
not constructed this state, as it occurs at a different flux for a givenN (Nφ = 7N/4), making
a direct comparison with our NASS state difficult. We note, however, that forN = 8 the CF
state corresponds to a spin-singlet Fermi-liquid-like state, as atν = 1/2. That is because the
net effective field of the CFs is zero for this size (states that lie in sequences for different fill-
ing factors can coincide at finite size on the sphere, because the shiftsS may be different —
see, e.g., [31]). We expect that, as usual, this CF state will have a very large overlap with
the exact ground state of the Coulomb potential. However, our numerical data forN = 8
shows a much stronger cusp at theNφ of the NASS state than at theNφ of the state obtained
by the hierarchy/CF construction, where in fact no cusp can be discerned. See Fig. 4.

We have also studied theN = 8 size on the torus. Unfortunately, as on the sphere this
size is too small for any meaningful comparison (e.g., there are only four distinct many-
bodyk vectors for this size; one is at the zone center, the other three at the zone boundary).
We would just like to point out that, for the analog ofH on the torus, the degeneracy for the
4/7 state is 2 (excluding the 7-fold center of mass degeneracy), in agreement with the count
in Section 2, since the number of particles is divisible by 4. These are twok = 0 states.
For the pure Coulomb potential in the lowest LL the state at 4/7 is in fact compressible:
The total spin isS = 1 and itsk vector varies with the geometry of the PBC unit cell.
However, one obtains an incompressible state by increasingV0 or V1 and we obtained
overlap-squared as large as 50% when we compared the lowest two states (which happen
to be bothS = 0, k = 0 states) to the model NASS states. Note that the shift is zero on
the torus, and there can be no interference fromν = 1/2 here. We have not performed
any further or systematic studies of such issues because, as in the case of the sphere, we
suspect that the CF-based state will be closer to that of the Coulomb potential. That is, we
expect that the system with Coulomb interaction in the lowest LL atν = 4/7 is in fact in
the hierarchy/composite-fermion phase (whether spin-singlet or not), not the NASS phase
considered in this paper. We will return to more comprehensive studies of larger sizes in
the future.
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