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We study excitations in edge theories for non-abelian quantum Hall states,
focussing on the spin polarized states proposed by Read and Rezayi and on the
spin singlet states proposed by two of the authors. By studying the exclusion
statistics properties of edge-electrons and edge-quasiholes, we arrive at a novel
K-matrix structure. Interestingly, the duality between the electron and quasihole
sectors links the pseudoparticles that are characteristic for non-abelian statistics
with composite particles that are associated to the ``pairing physics'' of the non-
abelian quantum Hall states.

KEY WORDS: Fractional quantum Hall effect; exclusion statistics; quasipar-
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1. INTRODUCTION

The fractional quantum Hall effect has led to the identification of new
states of matter, which can be characterized as incompressible quantum
fluids with off-diagonal long-range order (``topological order''). After the
initial discovery of the ``principal Laughlin series'' of quantum Hall fluids
at filling factor &=1�m, a large class of so-called abelian quantum Hall
fluids has been identified, accounting for the rich spectrum of fractional
quantum Hall plateaus that have been observed in the lowest Landau level.
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The observation of a quantum Hall plateau at filling factor &=5�2 (see
ref. 1 for a recent experiment) has made it clear that the traditional set of
abelian quantum Hall states (which all share the property of having an
odd-denominator filling factor) will not suffice for explaining the phenomena
observed in the second Landau level. Prompted by this development, new
categories of incompressible quantum fluids have been proposed. Among
them are various ``paired'' or ``clustered'' states, such as the Pfaffian states
first proposed by Moore and Read.(2) The quasiparticles over these states
satisfy what is called non-abelian braid statistics, and by abuse of language
one speaks of ``non-abelian quantum Hall states.''

The characteristic order of the abelian quantum Hall fluids should be
viewed as ``topological'' and it can be characterized by a collection of
integer numbers, which together constitute a so-called K-matrix. Many of
the low energy characteristics of the Hall fluid are encoded in this K-matrix
and the quantum numbers of the elementary electron-type excitations.
They include the filling factor & and the spin Hall conductance _. In addi-
tion the (fractional) quantum numbers of the various quasihole type excita-
tions are determined by using (the inverse of ) the K-matrix.

A systematic framework for the physical implications of the topologi-
cal order embodied in the K-matrix is provided by effective Chern�Simons
and conformal field theories for bulk and edge excitations, respectively. In
a systematic treatment of the low energy dynamics, these theories arise as
special limits of a unifying field theory for the low energy behaviour of
quantum Hall systems.(3)

It is well-known that bulk-excitations over fractional quantum Hall
fluids satisfy fractional (anyonic) braid statistics. Closely related to this are
the fractional exclusion statistics of both bulk(4) and edge excitations.(5, 6) It
has been observed(7, 6) that for abelian quantum Hall fluids, the (edge)
statistics matrix K (in the sense of Haldane's definition of exclusion
statistics(8)) is closely related to the K-matrix.

The main purpose of the present paper is to present a K-matrix struc-
ture associated to specific series of non-abelian quantum Hall states. To
this end, we study the exclusion statistics of edge excitations over these
quantum Hall states, and identify from that analysis statistics matrices K.
We shall then argue that these same matrices can be viewed as K-matrices
for these non-abelian quantum Hall states.

Our analysis here builds on earlier results published in refs. 9�13. In
ref. 14 we presented our present results in brief form, and elaborated on the
physical meaning of the newly obtained K-matrices. An important claim,
which we make on the basis of the K-matrix structure here presented, is
that there is a direct logical link between the non-abelian statistics of the
fundamental quasiparticles and the pairing or clustering of the fundamental
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electrons that constitute a non-abelian quantum Hall state. This link takes
the form of a duality transformation, connecting the pseudoparticles that
are responsible for the non-abelian statistics with the composite particles
originating from the pairing or clustering of fundamental electrons.

This paper is organized as follows. In Section 2 we briefly review the
K-matrix theory for abelian quantum Hall states, and make a generaliza-
tion in order to be able to treat spin singlet states. We continue in Sec-
tion 3 by making the link to abelian exclusion statistics. We argue that the
statistics matrix is (basically) given by the K-matrix. Also, we introduce an
important notion of duality. In Section 4 we generalize this concept to the
non-abelian case, where composites and pseudoparticles play a vital role. It
is argued that the well known formulas for the physical quantities such as
the filling factor, derived from the abelian K-matrix structure, still hold for
the non-abelian K-matrices describing various clustered non-abelian quan-
tum Hall states. Section 5 deals with the relation between the universal
chiral partition function (UCPF) and exclusion statistics. In Sections 6 and
7 the K-matrices for two classes of non-abelian clustered states are iden-
tified. Section 8 is reserved for discussions, while some of the more mathe-
matical results, for instance on character formulas, are discussed in the
appendices.

2. K-MATRICES FOR ABELIAN QUANTUM HALL STATES

In this section, we briefly review the K-matrix structure for abelian
quantum Hall states. We do not derive, but merely state the results we
need in this paper. For a more detailed review, see for instance ref. 15.

The information needed to describe an abelian quantum Hall state can
be encoded in the following way, henceforth referred to as the fqH data.
The four important ``objects'' which will do the job are the K-matrix (which
will also play the role as statistics matrix), the so called charge and spin
vectors, t and s, respectively, and the angular momentum vector j . A few
remarks with respect to the notation of spin vectors need to be made at
this point. In refs. 16 and 17, the concept of a ``spin vector'' was introduced.
This ``spin vector'' is in fact related to the angular momentum of the elec-
trons on (for instance) the sphere and is needed to calculate the so-called
shift. In our case we need to distinguish between this angular momentum
vector and the vector containing the real spin of the particles. Therefore, we
have denoted the angular momentum vector by j , and the vector containing
the spin quantum numbers by s.

In order to have the possibility to connect the K-matrix with the
statistics matrix (as we will do in the following sections), we will dis-
tinguish between the K-matrix for the ``electron part'' and the ``quasihole
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part'' of the theory. These will be denoted by Ke and K, , respectively. The
corresponding charge, spin and angular momentum vectors are te , t, , se ,
s, , je , and j, in an obvious notation. In all the cases we considered, it is
possible to choose a basis in which the K-matrices are just each others
inverse, Ke=K&1

, .
As stated above, the K-matrices will play several roles in the theory.

First of all, they couple the different Chern�Simons gauge fields which play
a central role in a Lagrangian description of the quantum Hall states. In
the abelian case, the Chern�Simons part of the Lagrangian for a system on
a surface of genus g reads as follows

LCS=
1

4?
= +&*(K ij

e a i
+ �& a j

*+2t i
e A+ �& a i

*+2j i
e|+ �&a i

*+2s i
e;+ �&a i

*) (2.1)

where the fields a are the Chern�Simons gauge fields. The Greek indices
run over [0, 1, 2], and the Roman indices over the number of channels.
The first three terms in Eq. (2.1) are rather standard and described in, for
instance, refs. 15�17. The first term is the famous Chern�Simons term, the
other three describe the couplings to various fields. The gauge field A+

describes the electromagnetic field and |+ is the ``spin connection'' which
gives rise to the curvature of the space on which the system is defined. To
explain the last term, we briefly discuss the concept of the spin Hall con-
ductance and the related spin filling factor _ (see ref. 18 and references
therein).

In general, one would define the spin conductance in the same way as
the charge conductance, namely as a response to a certain field. In the case
of a quantum Hall system, the role of the electric field is taken over by a
gradient in the Zeeman energy. The gauge field describing this is denoted
by ;+ in Eq. (2.1). The spin Hall conductance is then related to the ``spin-
current'' induced perpendicular to the direction of the gradient of the
Zeeman energy.

Let us now briefly recall the results obtained from this formulation for
the filling factors and the shift corresponding to a surface of genus g. The
filling factors can be calculated by means of simple inner products5

&=te } K&1
e } te=t, } K&1

, } t,
(2.2)

_=se } K&1
e } se=s, } K&1

, } s,

424 Ardonne, Bouwknegt, and Schoutens

5 Throughout this paper the transpose in equations like (2.2) is implicitly understood in order
to simplify the notation.



The relation between the charge (and spin) vectors of the electron and
quasihole parts are given by

t,=&K&1
e } te , s,=&K&1

e } se (2.3)

The last important property we will discuss is the so called ``shift'' in the
flux on surfaces of general genus g. The relation between the number of
electrons Ne and the corresponding number of flux quanta N8 is given by

N8=
1
&

Ne&S (2.4)

where the shift S is given by

S=
2(1& g)

&
(te } K&1

e } je) (2.5)

Although je plays a somewhat different role than te and se , we define j, by
analogy to (2.3)

j,=&K&1
e } je (2.6)

In the present paper, we shall establish that the various relations given
above are not just valid for the abelian case. They also apply in the non-
abelian case, under the condition that a formulation is used in which the
pseudoparticles do not carry charge or spin (see Section 4). We shall see
that in all the cases we consider, such a formulation can indeed be given.

The other important role the K-matrices play will be described in the
next section, namely the role as statistics matrix in the sense of the Haldane
exclusion statistics of the (quasi) particles. Also, we will explain a notion
of ``duality'' which is important in this context, and rederive some of the
relations given above.

3. ABELIAN EXCLUSION STATISTICS

An important consequence of the concept of an ``ideal gas of fractional
statistics particles'' is the notion of 1-particle distribution functions which
generalize the familiar Fermi�Dirac and Bose�Einstein distributions. These
distributions can be derived from ``1-particle grand canonical partition
functions.'' These quantities, which we denote by *i , satisfy the following
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set of equations, which were independently derived by Isakov, Dasnie� res de
Veigy�Ouvry and Wu (IOW)(19)

\*i&1
* i + `

j

*Kij
j =zi (3.1)

where *i=*i (z1 ,..., zn), with zi=e ;(+i&=) the generalized fugacity of species i.
Note that the energy = may also include contributions from the coupling
of the charge and spin of the quasiparticles to external electric and
magnetic fields. Hence the information about charge and spin of the quasi-
particles is also encoded in these generalized fugacities. The fugacities of the
particles will be important for the distinction between abelian and non-
abelian statistics, as we will point out later. The matrix K is the so-called
``statistics matrix'' and describes, at least in the original situation in which
Haldane introduced his new notion of statistics, the statistical interaction
of particles of different species.

From the solutions *i of the IOW-equations (3.1) the one-particle
distribution functions ni (=) are obtained as

ni (=)=zi
�

�zi
log `

j

* j |zi=e ;( +i&=)=:
j

zj
�

�z j
log *i |zi=e ;( +i&=) (3.2)

where we have assumed that the matrix K is symmetric.
The relation between, on the one hand, the K-matrix of an abelian

quantum Hall fluid and, on the other hand, the exclusion statistics of its
charged edge excitations, can be described as follows. The charged edge
excitations are described by a specific Conformal Field Theory (CFT), also
known as a chiral Luttinger liquid. Following a procedure first proposed in
ref. 20, one may associate a notion of fractional exclusion statistics to a set
of fundamental excitations in this CFT. Selecting a particular set of
negatively charged ``electron type'' excitations together with a ``dual'' set of
positively charged quasihole excitations, one precisely finds fractional
exclusion statistics in the sense of Haldane, with statistics matrix K given
by

K=Ke�K, (3.3)

with Ke and K, the K-matrices for the abelian quantum Hall state. For the
principal Laughlin series at filling fraction &=1�m, this result was obtained
in ref. 6, in its general form it first appeared in our paper.(14) The relation
of the identification (3.3) with character identities involving so called
Universal Chiral Partition Functions will be discussed in Section 5.
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In ref. 7, a slightly different identification between the K-matrix and a
statistics matrix, amounting to K=Ke , was proposed. The two proposals
can be reconciled by realizing that we, in our analysis of edge excitations,
restrict ourselves to quanta of positive energy only. From the duality rela-
tions that we discuss below, one learns that, in a precise sense, quasihole
quanta of positive energy can be traded for holes in a ``Fermi sea'' of elec-
tron-type quanta at negative energy, and in this way one arrives at a
complete description in terms of the matrix Ke alone.

One of the main themes in this paper will be the identification of
statistics matrices K for excitations over non-abelian quantum Hall states.
Extending the identification (3.3) to the non-abelian case, we shall propose
K-matrices for the non-abelian quantum Hall states. We would like to
stress that, although many of the formulas from the well known abelian
K-matrix description still hold for the generalized K-matrices we find here,
the description for the non-abelian states is on an entirely different footing.
The abelian K-matrices were introduced to describe quantum Hall states in
the ``most general'' way, i.e., by trying to implement the hierarchical
schemes in a general way. In the non-abelian case, we need the K-matrix
structure to keep track of the non-abelian statistics. So although we use a
matrix structure, we are not describing a hierarchical situation.

We continue this section with a discussion of the fundamental ``par-
ticle-hole'' duality between the electron and the quasihole sectors of the
theory. To show how this duality works, we assume that we have n
quasiholes , and n electron-like particles 9 described by the matrices K,

and Ke , respectively. We assume that (i) K,=K&1
e , and (ii) there is no

mutual exclusion statistics between the two sectors (meaning that the
statistics matrix is given by the direct sum (3.3)). These two conditions in
fact constitute what we mean by duality in this context. In the context of
low-energy effective actions for abelian fqH systems, a similar notion of
duality has been considered (see, e.g., ref. 17 and references therein).

With the matrices K, and Ke , two independent systems of IOW-equa-
tions can be written down, and these systems are related by the duality (for
clarity, we will denote the single level partition function for the quasiholes
and electron-like particles by *i and +i respectively; the corresponding
fugacities will be denoted by xi and yi )

*i=
+i

+i&1
, xi=`

j

y&(Ke)ij
&1

j (3.4)

as can be verified easily.
As an illustration of the duality, we calculate the central charge of the

conformal field theory that describes the edge excitations. We focus on the
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abelian case. In the non-abelian case, which we discuss in the next section,
there will be a subtraction term due to the presence of pseudoparticles.

In general, for abelian quantum Hall states, the central charge cCFT is
given by

cCFT=
6
?2 |

1

0

dz
z

log *tot(z) (3.5)

where *tot(z) denotes the product >j * j evaluated at zj=z for all j. It has been
shown (see refs. 13, 12 and references therein), that this can be rewritten in
the following form

cCFT=
6
?2 :

i

L(!i ) (3.6)

where L(z) is Rogers' dilogarithm

L(z)=&
1
2 |

z

0
dy \log y

1& y
+

log(1& y)
y + (3.7)

The quantities !i which appear in Eq. (3.6) are solutions to the central
charge equations

!i=`
j

(1&! j )
Kij (3.8)

For the abelian quantum Hall case, we have two matrices K, and Ke and
we need the solutions !i and 'i of the equations

!i= `
n

j=1

(1&!j )
(K,)ij, 'i= `

n

j=1

(1&'j )
(Ke)ij (3.9)

By virtue of the duality, these solutions are related by a simple equation:
'i=1&!i . This leads to

:
i

L(!i )+:
i

L(' i )=:
i

(L(!i )+L(1&!i ))=nL(1)=n
?2

6
(3.10)

So in the abelian case, we correctly find that the central charge is just given
by the number of species in the theory, cCFT=n.
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4. NON-ABELIAN EXCLUSION STATISTICS

In this section, we focus on K-matrices and statistics matrices for non-
abelian quantum Hall states. We shall first introduce new types of particles,
pseudoparticles and composite particles, and explain the role they play in
the non-abelian case. We also extend the notion of duality to the non-
abelian case. After that we discuss various aspects (filling factors and shift
map) of the quantum Hall data K, t, s and j in the non-abelian case.

Among the new particles that appear in non-abelian theories are so
called ``composite'' particles in the electron sector. These will show up as
particles which have multiple electron charges. We introduce an integer
label li for an order-li composite particle of charge (te) i=&li .

In the quasihole sector, we encounter so called pseudoparticles, which
do not carry any energy, but rather act as a book-keeping device that keep
track of ``internal degrees of freedom'' of the physical quasiholes. The
notion of a ``pseudoparticle'' can be traced back to so-called string solu-
tions to the Bethe equations for quantum integrable systems in one dimen-
sion, such as the Heisenberg XXX chain (see ref. 21, where the contribution
to the thermodynamics of the string solutions for the XXX chain is com-
puted). Pseudoparticles were used (and received their name) in the TBA
analysis of integrable systems with non-diagonal particle scattering (see,
e.g., ref. 22). In the context of exclusion statistics they have been discussed
in refs. 7, 11, 12, and 14. We assign the label li=0 to all pseudoparticles.

An important observation, first made in ref. 14, is that the duality
between the electron and quasihole sectors naturally links the presence of
composite particles in one sector to the presence of pseudoparticles in the
other. Physically, this is a link between the pairing physics of the non-
abelian quantum Hall states and the non-abelian statistics of their funda-
mental excitations.

4.1. Composites, Pseudoparticles, and Null-Particles

The presence of pseudoparticles and composite particles calls for a
slight generalization of the discussion of the previous section. When focus-
ing on the dependence of the *i on the energy =, the natural specialization
of the generalized fugacities zi is given by zi=zli, with z=e&;=. In the
presence of li{1, the 1-particle distribution functions take the form [note
that a composite particle labeled by = carries energy li =]

ni (=)=zi
�

�zi
log `

j

[*j]
lj |zi=e ;(+i&li =)=:

j

ljzj
�

�zj
log *i |zi=e ;(+i&li =) (4.1)
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With the following definition of *tot(z)

*tot(z)=`
i

[*i (zj=zlj )] li (4.2)

the central charge cCFT is again given by the expression (3.5). We note that
in the specialized IOW equations, with zi=zli, the right hand side of the
equations for pseudoparticles is equal to 1. When focusing on quantum
numbers other than energy, such as spin, we will consider slightly more
general versions of the quantity *tot .

In all examples (abelian and non-abelian) that are explicitly discussed
in this paper, we assume a choice of particle basis such that le=&te . For
the abelian quantum Hall states we further assume that (te) i=&1 for all i.
In the quasihole sector we specify (l,) i=(1�qqp)(K,) ij (le) j , where qqp is
the smallest (elementary) charge in the quasihole sector. [This implies that,
even in the abelian case, we may treat some of the quasiholes as composites
of the most fundamental ones, thereby generalizing the discussion of the
previous section.]

Under these assumptions, we find that under duality *tot(x) and
+tot( y) are related in the following way

*tot(x)=x#+:
tot( y), y=x&; (4.3)

with

:=;=1�qqp , #=&�q2
qp (4.4)

A clear sign of non-abelian statistics is found in the way the quantity
*i for physical particles depends on the fugacity zi . Putting zl=1 for all
pseudoparticles, and focusing on the small z behaviour of *i , one finds

*i=1+:i zi+O(z2) (4.5)

In the abelian case, :i=1, whereas in the non-abelian case :i>1. The
factors :i lead to multiplicative factors in the Boltzmann tails of the one-
particle distribution functions for physical particles. The quantities :i are in
fact the largest eigenvalues of the fusion matrix, (13) i.e., the quantum dimen-
sions(23) of the conformal field theory associated to the quantum Hall state,
and can easily be calculated for the cases we deal with (see Sections 6 and 7.2).

In ref. 14, we presented a generalized K-matrix structure for some
recently proposed quantum Hall states. The proposed K-matrices were
identified via their role as statistics matrices for the fundamental charged
edge excitations. In the quasihole sector, the non-abelian statistics leads to
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a specific set of pseudoparticles and an associated statistics matrix K, .(11, 12)

The matrix Ke , related to K, by the duality Ke=K&1
, , refers to particles

which are identified as composites of the fundamental electron-like excita-
tion. From the point of view of the wave functions for the non-abelian
quantum Hall states, (2, 24, 10) the presence of composite excitations is very
natural. This is because the non-abelian states show a behaviour which is
called clustering (of order k, where k is a label of the states(24, 10)). This
order-k clustering means that up to k particles can come to the same posi-
tion, without making the wave function zero, whereas, as soon as k+1
particles are located at the same positions, the wave function becomes iden-
tically zero. In refs. 25 and 14 it was argued that the wave functions which
show pairing (at k=2), are related (in the non-magnetic limit, i.e., in the
limit of & � �) to BCS superconductivity.

Composite particles are identified as particles whose generalized
fugacities are specific combinations of the generalized fugacities of other
particles, i.e., all quantum numbers of composite particles are completely
determined in terms of the quantum numbers of their constituents. It has
been shown in ref. 12 that particular kinds of composite particles, so-called
null-particles, accounting for the null-states in the quasiparticle Fock spaces,
are often needed to interpret the system in terms of Haldane's exclusion
statistics or, equivalently, to write the partition function in UCPF form
(see also Section 5.2).

We now turn to the computation of the central charge cCFT in the
non-abelian case. It was shown in ref. 12, that the presence of pseudopar-
ticles leads to a simple correction term that is subtracted from the abelian
result cCFT=n. For the pseudoparticles, a system of equations like Eq. (3.9)
can be written down

!$i= `$
j

(1&!$j )
Kij (4.6)

where the prime indicates that the product is restricted to pseudoparticles.
The correction term is given by a sum over the dilogarithm of the solutions
of (4.6), leading to

cCFT=n&
6
?2 :$

i

L(!$i ) (4.7)

4.2. On Filling Factors

Up to now, we merely asserted that the statistics matrices K can also
serve as (generalized) K-matrices for non-abelian quantum Hall states. To
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make this statement more clear, we will now investigate how some of the
``K-matrix results'' for abelian quantum Hall states generalize to the non-
abelian case. In this derivation, we make the assumption that the pseudo-
particles do not carry charge or spin. In all cases that are explicitly con-
sidered in Sections 6 and 7 this assumption holds in the simplest formulation.
If pseudoparticles do carry spin or charge, the formulas we obtain below
need to be modified.

Let us start with the filling factor corresponding to state which is
described by the IOW-equations, for a statistics matrix Ke , charge vector
te , and labels le=&te . We couple the system to an electric field by taking
yi= y&(te)i. [This is when the orientation of the electric field is such that the
response is carried by the negatively charged excitations.] The large y (i.e.,
low temperature) behaviour of the IOW-equations (3.1) is then given by
the following set of relations

`
j

+ (Ke)ij
j ty&(te)i (4.8)

which imply, when K is symmetric (which is assumed throughout the
paper) and invertible

+tot=`
i

+&(te)i
i tyte } Ke

&1 } te (4.9)

Because the left hand side of Eq. (4.9) in the T � 0 limit determines the filling
factor & through +totty&, we find the well-known formula

&=te } K&1
e } te (4.10)

For the opposite orientation of the electric field, a similar expression is
obtained by starting from the K-matrix for the (positively charged) quasi-
holes

&=t, } K&1
, } t, (4.11)

This result could also have been obtained by using Eq. (4.10) and the
transformation properties of Ke and te under duality. We remark that the
above derivations explicitly assume that only the physical particles respond
to the electric field, i.e., that all pseudoparticles are neutral.

Let us now turn to the spin Hall conductance, and the corresponding
spin filling factor. The derivation of the corresponding spin filling factor

_=se } K&1
e } se (4.12)
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goes along the same lines as the derivation of the electron filling factor. As
an extra step, one needs to relate the fugacities of the spin up and down
particles by yA=1�ya=z. This results in

`
i

+ (se)i
i tzse } Ke

&1 } se (4.13)

leading to Eq. (4.12). It is important to note that this formula only holds
in the cases where the pseudoparticles in the ,-sector do not carry spin. As
a check on this formula, one would like to have a procedure to obtain the
spin filling factor directly from the wave functions, as is possible for the
electron filling factor. To do this, one has to count the zeros of the wave
function with respect to one reference particle (of a given spin, say, up).
The total number of zeros gives the total flux needed on the sphere as a
linear function of the total number of electrons Ne . By using the relation
between Ne and N8 given in (2.4) one obtains the electron filling factor and
the shift. To obtain the spin filling factor, one has to keep track of two
different types of zeros, namely those with respect to a particle of the
same spin, and the ones with respect to particles of the other spin. We will
denote the number of these zeros by N A

8 and N a
8 respectively. The electron

and spin filling factors are obtained from

N8=N A
8+N a

8=
1
&

Ne&S

(4.14)

N A
8&N a

8=
1
_

Ne&S

We applied this procedure to the non-abelian spin singlet states of ref. 10
(the explicit form of the wave functions will be given elsewhere(26)), and
indeed found the same results for the electron and spin filling factor as
obtained from the K-matrix formalism, Eq. (7.1). Also the electron filling
factor for the Read�Rezayi states is reproduced correctly, see Eq. (6.1).
In addition, for both types of states we found that the shift on the sphere
is in agreement with (2.5) for g=0.

Summarizing, we have presented evidence that duality relations

K,=K&1
e , t,=&K&1

e } te , s,=&K&1
e } se , j,=&K&1

e } je

(4.15)

are applicable to both abelian and non-abelian quantum Hall states, and
that the expressions (2.2) for the filling factors & and _ apply to the non-
abelian case, in a formulation where pseudoparticles do not carry spin or
charge.
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4.3. Shift Map

Suppose we have a fractional quantum Hall system described by the
data (Ke , te , se , je). We can then construct a family of fractional quantum
Hall systems, parametrized by M # Z+ , by applying the ``shift map'' SM

introduced in ref. 27. In the cases we consider, M odd (even) corresponds
to a fermionic (bosonic) state respectively. At the level of wave functions
9(z), SM simply acts as a multiplicative Laughlin factor >i< j (z i&zj )

M.
Thus, SM increases the number of flux quanta by

N8 [ N8+M(Ne&1)=\1
&

+M+ Ne&(S+M ) (4.16)

i.e.,

&&1 [ &&1+M, _ [ _, S [ S+M (4.17)

In fact, SM acts on the fqH data (Ke , te , se , je) as

SMKe=Ke+M te te

SM te=te
(4.18)

SM se=se

SM je=je+
M
2

te

One easily checks that (4.18), together with (4.10), leads to the shift in &&1

as given in (4.17). By duality (4.15) one obtains

SM K,=K,&
M

1+&M
t,t,

SM t,=
1

1+&M
t,

(4.19)
SMs,=s,

SM j,=j,&
M
2 \&S&1

1+&M+ t,
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A few remarks should be made. By using the duality (4.15), one actually finds
for the action of the shift map on s, : SM s,=s,+(M(t, } se)�(1+&M)) t, .
However, the shift map is only supposed to act on the charge component
of the particles, thus we would like to demand that SM s,=s, . Therefore,
for consistency, we require

t, } se=&te } K&1
e } se=0 (4.20)

leading to (4.19). Of course, relation (4.20) is just the statement that for
spin singlet states there should be a Z2 symmetry (te , se) [ (te , &se).
Equation (4.20) is fulfilled for all our examples (if we take se=0 for the
spin polarized states). Although, in general, je has to be treated as an inde-
pendent variable, for the examples discussed in Sections 6 and 7 all for-
mulas are consistent with the relation je=se+(S�2(1& g)) te .

In this paper we will be mainly concerned with fractional quantum
Hall systems corresponding to conformal field theories ĝk, M which are
deformations of the conformal field theory based on the affine Lie algebra
ĝk at level k. The ĝ-symmetry greatly simplifies the determination of the
fqH data (Ke , te , se , je) for ĝk . The fqH data for (ĝ)k, M are then simply
obtained by applying the shift operator SM as in (4.18). The action of the
shift map can be visualized as follows. Charge is usually identified with a
particular direction in the weight lattice of g. The degrees of freedom
associated to this direction can be represented by a chiral boson compac-
tified on a circle of some radius R. The shift map SM has the effect of
rescaling the radius R while keeping all other directions in the weight
diagram fixed.

4.4. Composites

The description of a physical system in terms of a set of n quasipar-
ticles with mutual exclusion statistics given by a matrix (Kij ) i�i, j�n is not
unique. In particular one may extend the number of quasiparticles by
introducing composites as we will now explain.

Consider the IOW-equations (3.1) with

a11 } } } a1n z1

K=\ b b + , z=\ b + (4.21)

an1 } } } ann zn

If we define the operation Cij , corresponding to adding a composite of the
quasiparticles i and j to the system, by
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Cij K=

a11 } } } a1n b a1i+a1j

b b b b
aij+1 b

b
aji+1 b

b
an1 } } } ann b ani+anj

} } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } b } } } } } } } } } } } } } }

ai1+aj1 } } } ain+ajn b aii+2aij+aj j

(4.22)

and

Cijz=(z1 ,..., zn ; zizj ) (4.23)

such that, in particular,

Cij t=(t1 ,..., tn ; ti+tj )
(4.24)

Cijs=(s1 ,..., sn ; si+sj )

then the two systems are equivalent, at least at the level of thermo-
dynamics. The solutions [*i ] to the IOW-equations defined by (K, z) and
[*$i ] defined by (K$, z$)=(CijK, Cijz) are simply related by

*$i =
*i+*j&1

*j
, *$j =

*i+*j&1
*i

,

(4.25)

*$n+1=
*i*j

*i+*j&1
, *$k=*k , (k{i, j, n+1)

Note that, in particular, it follows *i=*$i *$n+1 and *j=*$j *$n+1 such that
*tot=*$tot . Also, from *i=*$i*$n+1 and *j=*$j*$n+1 one sees that the original
one-particle partition functions for i and j, receive contributions from the
new particles i and j, respectively, as well as from the composite particle
n+1. The operation Cij has the effect that states in the spectrum containing
both particles i and j get less dense (their mutual exclusion statistics is
bumped up by 1), while the resulting ``gaps'' are now filled by the new com-
posite particle.
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A consistency check on the equivalence of the systems described by
(K, z) and (K$, z$) is the fact that both lead to the same central charge as
a consequence of the five-term identity for Rogers' dilogarithm (see ref. 12).

Finally, note that the shift map SM of Eq. (4.18) and composite opera-
tion Cij of Eqs. (4.22) and (4.24) commute, i.e.,

SM Cij=CijSM (4.26)

as one would expect.

5. THE UCPF AND EXCLUSIONS STATISTICS

5.1. Quasiparticle Basis and Truncated Partition Function

Quasiparticles in two dimensional conformal field theories are
represented by so-called chiral vertex operators ,(i)(z) that intertwine
between the irreducible representations of the chiral algebra. Given a set of
quasiparticles ,(i)(z), i=1,..., n, one has to determine a basis for the Fock
space created by the modes , (i)

&s , i.e., a maximal, linearly independent set
of vectors

, (iN )
&sN

} } } , (i2)
&s2

, (i1)
&s1

||) (5.1)

with suitable restrictions on the mode sequences (s1 ,..., sN) (which may
depend on the ``fusion paths'' (i1 ,..., iN)), as well as a set of vacua ||) (see
refs. 13 and 12 for more details). The partition function Z(z; q) is then
defined by

Z(z; q)=Tr \\`
i

zNi
i + qL0+ (5.2)

where the trace is taken over the basis (5.1) and Ni denotes the number
operator for quasiparticles of type i while L0=�i s i for a state of type (5.1).
During this discussion on the UCPF, we use the following, in the literature
standard notation q=e&;=0, where =0 is some fixed energy scale, and
zi=e ;+i.

Exclusion statistics in conformal field theory can be studied by means
of recursion relations for truncated partition functions.(20) Truncated parti-
tion functions PL (z; q), for L=(L1 ,..., Ln), are defined by taking the parti-
tion function of those states (5.1) where all the modes s for quasiparticles
of species i satisfy s�Li . By definition, for large L, we will have (see
refs. 13 and 12 for more details)

PL+ei
(z; q)�PL (z; q)t* i (z iqLi ) (5.3)
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where ei denotes the unit vector in the i-direction. In particular, if the
generalized fugacities zi are given by zi=zli, for some fixed z, and the
quasiparticle modes are truncated by Li=liL, then we find, using (4.2)

PL+1(z; q)�PL(z; q)t*tot(zqL) (5.4)

where PL(z; q)=Pl1L, l2L,..., lnL
(zi=z li; q). Thus, given a set of recursion rela-

tions for the truncated partition functions PL (z; q), one derives algebraic
equations for the one-particle partition functions *i (z) by taking the large
L limit. In particular one can find an equation for *tot(z) from PL(z; q) by
using (5.4). For all conformal field theories that have been studied this way
it turns out that one finds agreement between these *-equations and the
IOW-equations (3.1) corresponding to a specific statistics matrix K (see, in
particular, ref. 13).

5.2. The Universal Chiral Partition Function

Based on many examples, it has become clear that the characters of
the representations of all conformal field theories can be written in the form
of, what is now known as, a universal chiral partition function (UCPF)
(see in particular, ref. 28 and references therein)

Z(K; Q, u | z; q)= :$
m \`

i

zmi
i + q

1
2

m } K } m+Q } m
`

i _
((1&K) } m+u)i

mi &
(5.5)

where K is a (rational) n_n matrix, Q and u are certain n-vectors and the
sum over m1 ,..., mn , is over the nonnegative integers subject to some
restrictions (which, throughout this paper, are taken to be such that the
coefficients in the q-binomials are integer). The q-binomial (Gaussian poly-
nomial) is defined by

_M
m &=

(q)M

(q)m (q)M&m
, (q)m= `

m

k=1

(1&qk) (5.6)

The vectors Q and u as well as the restrictions on the summation variables,
will in general depend on the particular representation of the conformal
field theory, while K is independent of the representation. To write the con-
formal characters in the form (5.5) may require introducing null-quasipar-
ticles which account for null-states in the quasiparticle Fock space.(12) The
null-quasiparticles are certain composites, hence their fugacities zi in (5.5)
are specific combinations of the fugacities of their constituents.
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It has been conjectured that the UCPF (5.5) is precisely the partition
function (5.2) of a set of quasiparticles with exclusion statistics given by the
same matrix K, where ui=� corresponds to a physical quasiparticle
and ui<� to a pseudoparticle.(11, 12) This conjecture has been verified in
numerous examples (see refs. 11 and 12 for references). A convincing piece
of evidence in support of this conjecture is the fact that the asymptotics of
the character (5.5) (in the thermodynamic limit q � 1&) is given by exactly
the same formula as the one for the IOW-equations(12) (see also refs. 29
and 30 for zi=1). In the next section we establish the correspondence in
a more direct way.

For future convenience let us introduce the limiting form of the UCPF
(5.5) when all ui � �, i.e., the case that all quasiparticles are physical and
the exclusion statistics is abelian

Z�(K; Q)= :$
m \`

i

zmi
i + q

1
2

m } k } m+Q } m

> i (q)mi

(5.7)

Note that the limiting UCPFs (5.7) are not all independent, but satisfy (see
ref. 31)

Z�(K; Q)=Z�(K; Q+ei )+zi q
1
2

Kii+Qi Z�(K; Q+K } ei ) (5.8)

as a consequence of

1
(q)m

=
qm

(q)m
+

1
(q)m&1

(5.9)

5.3. Relation to Exclusion Statistics

The relation between the UCPF and exclusion statistics can be made
more explicit as follows. Suppose the truncated partition functions PL (z; q)
are given by ``finitized UCPFs'' of the form

PL (z; q)= :$
m \`

i

zmi
i + q

1
2

m } K } m+Q } m
`

i _(L+(1&K) } m+u) i

mi &
(5.10)

for some vectors (Q, u). Of course, the number of parameters in this
expression is overdetermined. Usually we think of u as being fixed while the
meaning of the parameters L are determined by the cut-off scale. We can
of course absorb the u by shifts in L (in fact, in practice we often make
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shifts in the definition of L to simplify the recursion relations). We also
remark that we have introduced finitization parameters Li also for the
pseudoparticles in (5.10) to facilitate deriving recursion relations. In making
the identification with the truncated partition functions these parameters
are kept at a fixed (usually ``small'' or even zero) value.

Using

_M
m &=_M&1

m &+qM&m _M&1
m&1& (5.11)

we find that PL (z; q) satisfies the system of recursion relations

PL (z; q)=PL&ei
(z; q)+ziq

&1
2

Kii+Qi+ui+LiPL&K } ei
(z; q) (5.12)

Upon dividing by PL (z; q), setting q=1, taking the large L limit, and using
(5.3), we obtain

1=*&1
i +zi `

j

*&Kji
j (5.13)

which are equivalent to the IOW-equations (3.1) with statistics matrix K.
Moreover, for any polynomial PL (z; q) satisfying the recursion rela-

tion (5.12), the polynomial

QL (z; q)=\`
i

z&Li
i + q1�2L } K } L+(Q+u) } LPK } L(z; q&1) (5.14)

satisfies the recursion relations (5.12) with dual data (K$; Q$, u$, z$), given
by (cf. (3.4))

K$=K&1, Q$+u$=K&1 } (Q+u), z$i=`
j

z&Kij
&1

j (5.15)

Thus, under the assumption that the set of finitized UCPFs (5.10), for fixed
Q+u, form a complete set of solutions to (5.12), the dual polynomial
QL (z$, q) of (5.14) can again be written as a (finite) linear sum of finitized
UCPFs with dual data (5.15). Moreover, by taking the large L limit of
(5.14), using Eqs. (5.3) and (5.13), one recovers the duality relations (3.4)
and (4.3).

The above calculation shows that, for quasiparticles whose truncated
partition function is given by an expression of the form (5.10), the ther-
modynamics of these quasiparticles is described by Haldane's exclusion
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statistics with statistics matrix K. Even though many truncated characters
are indeed of the form (5.10) (we will encounter various examples in the
remainder of this paper) this is not the general situation. However, in
examples it turns out that for all recursion relations for truncated charac-
ters there is an associated recursion relation, leading to the same *-equa-
tion, which does admit a solution of the form (5.10). The true solution to
this recursion relation will in general differ from (5.10) by terms of order qL.
In a sense we can talk about the universality class of recursion relations as
those recursion relations that give rise to the same *-equations and hence the
same exclusion statistics.

5.4. Composites, Revisited

In Section 4.4 we have seen, at the level of thermodynamics (i.e., the
IOW-equations), how to introduce composite particles into the system in
such a way that the resulting system is equivalent to the original system.
Due to the intimate relation of exclusion statistics with the UCPF,
explained in Section 5.3, one would expect that a similar construction is
possible at the level of the UCPF. Indeed, upon substituting the following
polynomial q-identity (see Appendix A for a proof )

_M1

m1 &_
M2

m2 &= :
m�0

q(m1&m)(m2&m) _M1&m2

m1&m &_M2&m1

m2&m &
__M1+M2&(m1+m2)+m

m & (5.16)

into the UCPF (5.10) at the (i, j)th entry, and subsequently shifting the
summation variables mi [ mi+m, mj [ mj+m, yields an equivalent
UCPF, based on n+1 quasiparticles with data (CijK; CijQ, Ciju) and Cijz,
where

CijQ=(Q1 ,..., Qn ; Qi+Q j )
(5.17)

Cij u=(u1 ,..., un ; u i+uj )

while CijK and Cijz are defined in Eqs. (4.22) and (4.23), respectively.
Various limiting forms of (5.16), relevant to introducing a composite of two
physical particles or one physical particle and one pseudoparticle, are given
in Appendix A as well.
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6. sl2: K-MATRICES FOR NON-ABELIAN SPIN POLARIZED
STATES

In this section we discuss a family of non-abelian spin polarized frac-
tional quantum Hall systems with underlying conformal field theory
(sl2@)k, M and filling factor

&k, M=
k

kM+2
(6.1)

For k=2 these systems, the so-called q-Pfaffians (where now q=1�&=
M+1), were introduced in ref. 2 while the generalizations to k>2 were
introduced in ref. 24. The system contains a single quasihole ,, with charge
1�(kM+2) and an electron operator 9 with charge &1. At the (sl2@)k-point
(i.e., M=0) the quasihole operator , has sl2-weight :�2, where : is the
(positive) root of sl2 and corresponds to one component of the chiral ver-
tex operator transforming in the spin-1�2 representation (``spinon,'' see
refs. 32�35), while the electron operator has weight &: and corresponds to
the current J&: . For general M the charge lattice has to be stretched.

The fqH data (Ke , te) and their duals (K, , t,) for k=1 (corresponding
to the abelian spin polarized Laughlin states with &=1�(M+2)(36)) were
discussed in ref. 6 and for k=2 (the q-Pfaffian) in ref. 14. Here we discuss
the generalization (see also ref. 11) to arbitrary k, corresponding to the
Read�Rezayi states.(24)

As indicated before, we analyze the conformal field theory (sl2@)k, M by
first analyzing the affine Lie algebra point M=0 and subsequently apply-
ing the shift map to obtain the result for general M.

The exclusion statistics and UCPF for the doublet of spinon operators
in (sl2@)k were studied in refs. 35, 37, 11, and 12. It turns out that in this
case we need k&1 additional charge- and spin neutral pseudoparticles.
Omitting the negative isospin spinon, we find (see, in particular, refs. 11
and 12)

K,=\
1 &1

2 b

+ , t,=\
0
b
0
1
2
+

&1
2 1 &1

2 b
. . .

. . .
. . . b

&1
2 1 &1

2 b
&1

2 1 b &1
2

} } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } }
&1

2 b 1
2 (6.2)

leading, with (4.11), to a filling factor of &=k�2 in accordance with (6.1).
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The data for arbitrary M now follow by applying the shift map SM of
(4.19), i.e.,

KM
, =SMK,=

b
1
2

Ak&1 b

b &
1
2

} } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } }

&
1
2

b
(k&1) M+2

2(kM+2) (6.3)

tM
, =\

0

+b
0

1
kM+2

where, in order to simplify the notation, we have introduced the Cartan
matrix Ak&1 of slk (cf. (B.3)). One verifies that (4.11) is satisfied. The IOW-
equations, determining the exclusion statistics of the quasiholes, can now
be explicitly written down. E.g., for the q-Pfaffian (k=2) the following
equation for *tot easily follows from (3.1), in agreement with ref. 9

(*tot&1)(*1�2
tot &1)=x2* (3M+2)�(2(M+1))

tot (6.4)

The small x behaviour of *tot for general k was obtained from the
IOW-equations in ref. 13, with the result

*tot(x)=1+:k x+O(x2), :k=2 cos \ ?
k+2+ (6.5)

It was argued that the factors : can also be obtained as quantum dimen-
sion of the appropriate CFT. It is easily checked that the small x behaviour
of *tot in (6.4) indeed satisfies (6.5) for k=2. Similar equations for *tot with
k=3, 4 were given in ref. 13.

To determine the fqH data (Ke , te) in the electron sector we observe
that the electron operator 9(z) is identified with J&:(z). By acting with the
negative modes of J&:(z) on the lowest weight vector in the lowest energy
sector of some integrable highest weight module L(4) at level k, one
obtains what is known as the principal subspace W(4) of L(4) (or, rather,
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the reflected principal subspace). It is known that the character of the prin-
cipal subspace can be written in the UCPF form(38, 39) (see Appendix B for
a brief summary of the results for (sln@)k). For (sl2@)k this requires, besides
the electron operator 9 itself, clusters of up to k electron operators. The
corresponding K-matrix is given by the k_k matrix Ke=2Bk where (Bk) ij

=min(i, j) (see (B.4)), while te=&(1, 2,..., k). Applying the shift map
(4.18) thus gives

KM
e =\

M+2
2M+2

b
kM+2

2M+2
2(2M+2)

b
2(kM+2)

} } }
} } }
. . .
} } }

kM+2
2(kM+2)

b
k(kM+2)+ , tM

e =&\
1
2
b
k+ (6.6)

One easily verifies that the data (K, , t,) and (Ke , te) are indeed related by
the duality relations (4.15), and that Eqs. (4.10) and (4.11) are satisfied.

Moreover, the resulting IOW-equations for +tot=+1+2
2 in case of the

q-Pfaffian are given by

(+2(M+1)
tot & y2)(+M+1

tot & y)=+3M+2
tot (6.7)

which are indeed related to (6.4) by the duality relations (4.3). Explicitly,

*tot(x)= y&2+2(M+1)
tot ( y), y=x&2(M+1) (6.8)

Finally, in order to show that the quasihole-electron system based on
K=KM

, �KM
e , gives a complete description of the (sl2@)k, M conformal field

theory, we have to show that the chiral character of the latter can be
written in terms of a (finite) combination of UCPF characters based on
KM

, �KM
e . This is indeed possible and discussed in Appendix C. Here we

suffice to remark that the central charge, related to the asymptotic
behaviour of the characters, works out correctly. Indeed, using standard
dilogarithm identities one finds with (4.7)

c,+ce=
3k

k+2
(6.9)

which equals the central charge of (sl2@)k, M .
The above description of the Read�Rezayi states has an interesting

application, namely the identification of a particle which acts as a super-
current in the non-magnetic limit. This identification was made in ref. 14,
to which we refer for a more detailed discussion. We use the variable
q=1�&=M+k�2, in terms of which the non-magnetic limit corresponds to
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q � 0. In this limit, all the statistics parameters of the largest composite
(with charge &k), go to zero, while the statistics parameters of the
quasihole diverge. This is easily seen when one writes the statistic matrices
(6.6) and (6.3) in terms of q. For these quantum Hall states the fundamen-
tal flux quantum is h�ke, because of the order-k clustering. Upon piercing
a quantum Hall state with this amount of flux, a quasihole with charge
e�kq is formed. This follows from the fact that the filling factor is e2�qh in
physical units. For q�1�k this is the lowest charge possible and the elec-
tron like excitations correspond to multiple insertions of the flux quantum.
This situation changes when we take the limit q � 0. Following ref. 14, we
take q=1�N, with N a large integer. The largest composite is formed by
inserting an amount of flux &qkh�e=&kh�Ne, thus a fraction of the flux
quantum. The maximal occupation with this particle (in absence of other
particles) is nmax=1�k2q=N�k2. Thus the maximal amount of flux that can
be screened by this type of composites is (&kh�Ne)(N�k2)=&h�ke, which
is precisely the flux quantum. In conclusion we find that in the non-
magnetic limit, the largest composite has bosonic statistics, and can screen
an amount of flux up to the flux quantum. This clearly resembles the
behaviour of the supercurrent in BCS superconductors.

7. sl3: K-MATRICES FOR NON-ABELIAN SPIN SINGLET
STATES

In ref. 10 a family of non-abelian spin singlet (NASS) states 9k, M

wave functions with filling factors

&k, M=
2k

2kM+3
, _k, M=2k (7.1)

was constructed. The system has two quasihole excitations [,A , ,a] with
one unit of up�down spin and charge 1�(2kM+3), while the electron
operators [9A , 9a] have charge &1. The underlying conformal field

theory is (sl3@)k, M . In terms of sl3 -weights the spin and charge assignment
in the M=0 case is as follows. Denote the positive simple roots of sl3

by :i , i=1, 2 and the remaining positive non-simple root by :3=:1+:2 .
Let =i , i=1, 2, 3, denote the weights of the fundamental three dimensional
irreducible representation 3 of sl3 such that =i } =j=$ ij&1�3 and :i==i&=i+1 ,
i=1, 2, then [,A , ,a]=[,=1, ,=2] while [9A , 9a]=[J&:2

, J&:3
] (See

Fig. 1). The charge and spin direction are identified in the sl3 weight
diagram as indicated in the figure. For other M the analogous picture is
obtained by ``stretching'' the charge axis.
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Fig. 1. sl3 weight diagram.

In the following sections we analyze the fqH data for the conformal
field theory (sl3@)k, M . We first discuss the case k=1 (which corresponds to
the abelian spin singlet Halperin state with parameters (M+2, M+2,
M+1)(40)) in some detail and then generalize to the non-abelian case k>1.

7.1. (sl3@)k=1, M

The exclusion statistics and UCPF character for the (sl3@)k=1, M=0 con-
formal field theory, in terms of the quasiparticles [,=1, ,=2, ,=3], were
worked out in refs. 41, 20, 13, and 12. Specializing to the subset [,A , ,a]=
[,=1, ,=2] we have

K,= 1
3 \ 2

&1
&1

2 + , t,=\
1
3
1
3+ , s,=\ 1

&1+ (7.2)

With (4.11) this leads to &=2�3 in agreement with (7.1). Applying the shift
map (4.19), the fqH data for (sl3@)k=1, M are thus given by

KM
, =SM K,=

1
2M+3 \

M+2
&(M+1)

&(M+1)
M+2 + (7.3)

while

tM
, =\

1
2M+3

1
2M+3+ , sM

, =\ 1
&1+ (7.4)
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The IOW-equation for the total one-particle partition function *tot=*A*a ,
resulting from (7.3), is given by

*tot&xA xa* (2M+2)�(2M+3)
tot &(xA+xa) * (M+1)�(2M+3)

tot &1=0 (7.5)

The K-matrix in the electron sector is determined as follows. First of
all, the principal subspace of the (sl3@)k=1, M=0 integrable highest weight
modules is generated by [J&:1

, J&:2
] and has a K-matrix given by (see

Appendix B)

K=\ 2
&1

&1
2+ (7.6)

The electron operators [9A , 9a], however, are identified with [J&:2
, J&:3

].
Interpreting J&:3

as the composite (J&:1
J&:2

), we can apply the construction
of Section 4.4 and find an equivalent K-matrix for the combined [J&:1

, J&:2
,

J&:3
] system

2 0 1

K$=C12 K=\0 2 1+ (7.7)

1 1 2

Thus, we conclude that the electron fqH data are given by

Ke=\2
1

1
2+ , te=&\1

1+ , se=\ 1
&1+ (7.8)

And thus, by applying the shift map

KM
e =SM Ke=\M+2

M+1
M+1
M+2+ , tM

e =&\1
1+ (7.9)

Note again that the fqH data in the electron and quasihole sectors, given
in Eqs. (7.3), (7.4) and (7.9), are related by the duality (4.15).

The IOW-equation for +tot=+A+a , resulting from (7.9), is given by

+2M+3
tot &+2M+2

tot &( yA+ ya) +M+1
tot & yAya=0 (7.10)

and is dual to (7.5) in the sense of (4.3). Explicitly,

*tot(xA , xa)=( yAya)&1 +tot( yA , ya)2M+3 (7.11)

where

yA=x&(M+2)
A x&(M+1)

a , ya=x&(M+1)
A x&(M+2)

a (7.12)
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It remains to show that the fqH data (K, , t, , s,) and their duals
(Ke , te , se) give a complete description of the chiral spectrum of the

(sl3@)k=1, M conformal field theory by constructing the (sl3@)k=1, M characters
in terms of (finite) linear combinations of UCPFs based on Ke�K, . This
is delegated to Appendix D. Here we only observe that, since there are no
pseudoparticles, Eq. (3.10) immediately gives ce+c,=2 which is the

correct value of the central charge for (sl3@)k=1, M . Note also that c, and ce

separately depend on M and are, in general, not simple rational numbers,
e.g., for M=0 we have numerically ce=0.6887 and c,=1.3113 while for
M � � all the central charge is concentrated in the , sector.

Upon generalizing to higher levels k>1, it turns out we need an
equivalent description of the system described above in terms of three
quasihole operators, namely by adding a quasihole operator ,&=3 of sl3

weight &=3 , i.e., of charge 2�3 (for M=0) and spinless. The K-matrix for
this system can be obtained as a submatrix of the K-matrix describing
quasiparticles in the 3�3* of sl3

(12) or, equivalently, by using that ,&=3 is
the composite (,&=1,&=2) (41) and using (4.22). We find

1
2M+3

K$M
, =C12KM

, =
1

2M+3 \
M+2
M+2

1

M+2
M+2

1

1
1
2+ , t$M

, =\ 1
2M+3+ (7.13)

2
2M+3

In the electron sector we can similarly introduce the composite (J&:2
J&:3

)
and obtain

M+2 M+2 2M+3 1

K$M
e =C12KM

e =\ M+2 M+2 2M+3+ , t$e=&\1+ (7.14)

2M+3 2M+3 4M+6 2

Now we observe a curiosity; while obviously the fqH data (7.13) and (7.14)
are dual, since they are equivalent to the dual systems given in (7.3) and
(7.9), they are not related by the duality transformation (4.15) because
both K, and Ke are not invertible. The equivalence can also be observed
at the level of the resulting IOW-equations which are now given by

(*1�(2M+3)
tot &xAxa)(*tot&xA xa* (2M+2)�(2M+3)

tot

&(xA+xa) * (M+1)�(2M+3)
tot &1)=0

(7.15)
(+2M+3

tot & yAya)(+2M+3
tot &+2M+2

tot &( yA+ ya) +M+1
tot & yAya)=0
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Because of the first factor the equations (7.15) do not transform into
eachother under (7.11). However, the physical solutions, which are deter-
mined by the second factor, do! Summarizing, we conclude that it is
obvious that the notion of duality should have an extension that incor-
porates non-invertible K-matrices. We leave this for future investigation.

7.2. (sl3@)k, M

As argued in refs. 42 and 12, the generalization of the results of the
previous section to levels k>1 requires the addition of 2(k&1) pseudopar-
ticles incorporating the non-abelian statistics of the quasihole operators
[,A , ,a]. Since these pseudoparticles couple differently to [,A , ,a] than to
the composite particle ,A a =(,A,a) (i.e., different than the naive coupling
given by the composite construction), it appears that the first construction
in Section 7.1 does not generalize to higher levels.

It is known that for (sln@)k, M=0 the pseudoparticles couple to the
physical particles by means of the matrix A&1

n&1�Ak . Here we have used
the result for the restricted Kostka polynomials as given in, e.g., refs. 43, 30,
44, and 45 (see the discussion in ref. 42 for details). Then, by applying the
shift map (4.19), we obtain

K$M
, =

b

b

A&1
2 �Ak&1 b &

2
3

&
2
3

&
1
3

b &
1
3

&
1
3

&
2
3

} } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } }

&
2
3

&
1
3

b
(4k&1) M+6

3(2kM+3)
(4k&1) M+6

3(2kM+3)
(2k&2) M+3

3(2kM+3)

&
2
3

&
1
3

b
(4k&1) M+6

3(2kM+3)
(4k&1) M+6

3(2kM+3)
(2k&2) M+3

3(2kM+3)

&
1
3

&
2
3

b
(2k&2) M+3

3(2kM+3)
(2k&2) M+3

3(2kM+3)
(4k&4) M+6

3(2kM+3)

(7.16)
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where the components of A2 refer to the quasiholes in the 3 and 3*, respec-
tively, and

t$,=\0, 0,..., 0

2(k&1)
} 1

2kM+3
,

1
2kM+3

,
2

2kM+3+ (7.17)

For instance, for level k=2 we have

K$M
, =

4
3

2
3

b &
2
3

&
2
3

&
1
3

(7.18)

2
3

4
3

b &
1
3

&
1
3

&
2
3

} } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } }

&
2
3

&
1
3

b
7M+6
12M+9

7M+6
12M+9

2M+3
12M+9

&
2
3

&
1
3

b
7M+6
12M+9

7M+6
12M+9

2M+3
12M+9

&
1
3

&
2
3

b
2M+3
12M+9

2M+3
12M+9

4M+6
12M+9

Note that the matrix K$M
, of (7.16) is not invertible, as was observed for

k=1 in Section 7.1. Thus, we cannot simply identify the dual sector by per-
forming the transformation (4.15).

To obtain the dual sector we proceed as in Section 7.1. We start with
the K-matrix of the principal subspace spanned by [J&:1

, J&:2
]. As dis-

cussed in Appendix B, for (sl3@)k , this K-matrix is given by K=A2�Bk and
requires, besides the currents [J&:1

, J&:2
] a set of 2(k&1) composites

(J&:i
} } } J&:i

l

), 2�l�k, i=1, 2 (7.19)

Starting with this matrix we introduce additional composites according to
the procedure of Section 4.4, beginning with the electron operator 9a=
(J&:1

J&:2
) (recall that 9A=J&:2

), and continuing until all composites

(9A } } } 9A

nA

9a } } } 9a

na

), nA+na�k (7.20)
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have been introduced. Note that the set of composites (7.20), for fixed
nA+na , span a (nA+na+1)-dimensional irreducible representation of spin
SU(2). The electron K-matrix is then the 1

2 k(k+3)_1
2k(k+3) submatrix of

the resulting K obtained by omitting the composites which cannot be
written in terms of electron operators only. Let us be illustrate this proce-
dure the case of k=2. Starting with the principal subspace K-matrix

2 &1 b 2 &1

&1 2 b &1 2

K=\ } } } } } } } } } } } } } } } } } } } } } } } } } }+ (7.21)

2 &1 b 4 &2

&1 2 b &2 4

we introduce, respectively, the composites 9a=(J&:1
J&:2

), (J&:2
(J&:1

J&:1
)),

(J&:2
(J&:1

J&:2
)), and (J&:2

((J&:2
(J&:1

J&:1
))). Then, after removing the

rows and columns corresponding to J&:1
, (J&:1

J&:1
) and (J&:2

(J&:1
J&:1

)),
we obtain

K$e=\
2 1 b 2 2 1

+ ,

1 2 b 1 2 2

} } } } } } } } } } } } } } } } } } } } }

2 1 b 4 3 2
2 2 b 3 4 3
1 2 b 2 3 4

1 1

1 &1

t$e=&\2+ , s$e=\ 2 + (7.22)

2 0

2 &2

Similarly, one obtains the electron K-matrix for (sl3@)k, M=0 at higher levels,
and the generalization to arbitrary M follows, as before, by applying the
shift map (4.18). Unfortunately, the procedure described above is
ambiguous. The resulting K-matrix depends on the order in which the
composites are taken as well as the precise identification of the clusters
(7.20) with the original clusters (7.19), e.g., should we identify (9a9a) with
(J&:1

(J&:1
(J&:2

J&:2
))) or ((J&:1

J&:1
)(J&:2

J&:2
))? Ultimately, the ``correct''

matrix Ke is selected by the requirement that the complete spectrum can be
built out of the quasihole and electron operators or, more concretely, that
the characters of (sl3@)k, M can be written as a linear combination of UCPFs
based on K,�Ke . A nontrivial (and highly selective) check is whether the
central charge, given by (4.7), works out correctly, i.e., whether c,+ce=
8k�(k+3), for the K-matrices (7.16) and the ``appropriate'' generalization
of (7.22) to higher levels and arbitrary M. We have checked this numeri-
cally for low values of k and M as well as exactly, for all k, in the M � �
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limit, in which case the central charge is entirely concentrated in the
,-sector. We refrain from giving the explicit matrices Ke until we have
performed an additional simplifying reduction.

First observe that, for k=2, the matrix K$e of Eq. (7.22) is invertible,
in contrast to the matrix K$M

, of (7.18). One could therefore simply have
started with K$e and have obtained the dual sector by the duality transfor-
mations (4.15). This would result in a ,-sector, different from the one dis-
cussed above, with two physical quasiholes and three pseudoparticles.
Unfortunately, this procedure breaks down, in general, for higher k as the
matrices Ke , constructed according to the procedure outlined above, are no
longer invertible. However, note that the matrix (7.22) can be reduced to
an equivalent 4_4 matrix by inverting the composite procedure��in this
case by removing (9A9a) in the fourth column, since this column can be
created by applying C12 . This procedure works for general k>1 and leads
to a 2k_2k electron K-matrix, for the composites (7.19) with either na=0
or nA=0 (i.e., we lose the SU(2) multiplet structure), given by

Ke=

2 0 2 0 } } } 2 0 2 1

0 2 0 2 } } } 0 2 1 2

2 0 4 0 4 1 4 2

0 2 0 4 1 4 2 4

b b b b
2 0 4 1 2(k&1) k&2 2(k&1) k&1

0 2 1 4 k&2 2(k&1) k&1 2(k&1)

2 1 4 2 } } } 2(k&1) k&1 2k k
1 2 2 4 } } } k&1 2(k&1) k 2k

(7.23)

and

te= &(1, 1; 2, 2;...; k, k)
(7.24)

se=(1, &1; 2, &2;...; k, &k)

The generalization KM
e to arbitrary M follows by applying the shift map,

in this case by adding the matrix M(J2�D) where J2 is the 2_2 matrix
with all entries equal to 1, and (D) ij=ij (1�i, j�k) (see ref. 14 for an
explicit expression in the case k=2). This matrix is invertible, so we simply
define KM

, =(KM
e )&1. A convenient permutation of rows and columns of

KM
, leads to the following matrix
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(KM
, )perm

=

b 0 &
1
3

b 0 &
2
3

A&1
2 �Ak&1 b

b &
2
3

0

b &
1
3

0

} } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } }

0 0 &
2
3

&
1
3

b
(4k&1) M+6

3(2kM+3)
&M

3(2kM+3)

&
1
3

&
2
3

0 0 b
&M

3(2kM+3)
(4k&1) M+6

3(2kM+3)

(7.25)

containing two physical particles and 2(k&1) pseudoparticles. Also,

t,=\0, 0; 0, 0;...;
1

2kM+3
,

1
2kM+3+ (7.26)

s,=(0, 0; 0, 0;...; &1, 1)

as one would expect. We have checked that the total central charge ce+c,

for Eqs. (7.23) and (7.25) works out correctly, namely ce+c,=8k�(k+3).
Moreover, we have checked for low values of k that the equation for *tot ,
resulting from the IOW equations based on (7.25), are identical to those
based on (7.16). Furthermore, in all formulations, the equations (4.10) and
(4.11) are consistent with (7.1).

For k=2, 3, we checked the small x behaviour for *tot , Eq. (4.5). We
again expect the constants : to be the quantum dimensions of the
associated conformal field theory. Using some results in ref. 23, these quan-
tum dimensions are given by

:k=1+2 cos \ 2?
k+3+ (7.27)
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For k=2, the equation for *tot reads (upon taking xA=xa=x)

(*1�2
tot &1)2=x2* (8M+5)�(8M+6)

tot +x* (6M+4)�(8M+6)
tot &x* (2M+1)�(8M+6)

tot (7.28)

which leads to the following small x behaviour

*tot=1+2 \1+- 5
2 + x+O(x2) (7.29)

in agreement with :2=(1+- 5)�2 from (7.27); the extra factor 2 comes
from the sum over the two physical particles, see Eq. (4.5). For k=3 we
find

(*1�2
tot &1)=x* (8M+3)�(6(6M+3))

tot (*1�6
tot +1)1�3 (*1�3

tot +1)2�3 (7.30)

which gives :3=2, consistent with (7.27). Note that for the abelian case
k=1, we find for the small xA, a -behaviour, using (7.5),

*tot=1+(xA+xa)+O(x2) (7.31)

in agreement with (7.27) and the fact that for k=1 we have an abelian
state.

As was the case for the spin polarized states of Section 6, also for the
non-abelian spin singlet states a particle behaving as a supercurrent can be
identified in the non-magnetic limit. The situation here is slightly more
complicated than in the case of the spin polarized states discussed in Sec-
tion 6. This is because in the formulation above, there is no candidate par-
ticle with the property that all the statistics parameters go to zero in the
limit q � 0 (with q=1�&=M+3�2k). However, if one acts with C2k&1, 2k

on SMKe , with Ke given by Eq. (7.23), one introduces a composite with
charge &2k and spin 0, which has the desired properties. In the ,-sector,
the particle content is changed to one quasihole and 2k pseudoparticles, of
which a few carry spin.

The possibility to introduce a composite with the right properties
enables one to repeat the discussion of Section 6, with the only difference
that the flux quantum in this case equals h�2ke. So, also in this case, we can
identify a supercurrent in the non-magnetic limit.

8. DISCUSSION

In this paper we derived the K-matrix structure for two classes of so
called non-abelian quantum Hall states, putting the results of ref. 14 on a
firmer basis. In doing so, we extensively made use of a duality between the
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edge electron and quasihole excitations. The abelian formalism was
extended to include electron spin, in order to be able to treat spin singlet
states. Moreover, we showed that many results of the abelian K-matrix
formulation for hierarchy states also hold for our generalized K-matrices,
thereby justifying their name. We would like to stress that the non-abelian
states of refs. 24 and 10 are not hierarchical states; the K-matrix structure
is necessary as a bookkeeping device for the non-abelian statistics.

An important concept we did not discuss is the torus degeneracy;(46)

it is not clear at the moment how to generalize this to the non-abelian case
(some remarks are made in Appendix D). Another important issue to be
settled has to do with the cases where the pseudoparticles do carry spin (or
charge). These may arise by creating extra composites in the electron sector;
by the duality, the , sector changes accordingly, and pseudoparticles carry-
ing spin may arise. The formulas Eq. (2.2) then need a proper adjustment,
because they do not give the same result any more, and the physical quan-
tities like the filling factors need to be invariant under the introduction of
extra composites. We would like to remark that a description in which the
pseudoparticles do not carry spin or charge is possible in the cases we
examined, and the various physical quantities were obtained correctly.

As for the Laughlin wave functions, one would like to have a Landau�
Ginzburg field theory describing the excitations for the non-abelian states.
The backbone of such a theory will be a Chern�Simons term, in which the
gauge fields are coupled in a special way. We expect that the K-matrices
derived in this paper will play a crucial role. From a Landau�Ginzburg
theory (using the K-matrices etc. from the electronic sector), one should be
able to identify the possible excitations in the ,-sector, as vortex solutions
of the classical equations of motion. Identifying this Landau�Ginzburg
theory is left for future investigations (see ref. 47 for related studies).

Another interesting issue for the non-abelian states is the determina-
tion of the degeneracies of the states when extra flux is applied through the
sample. These degeneracies can be calculated using conformal field theory
techniques, and can, interestingly, be simulated on a computer using a spe-
cial, ultra local, interaction for the electron interaction. For the Pfaffian,
exact counting results were obtained in ref. 48; the more general Read�
Rezayi states were treated in ref. 49. Counting results for the NASS states
will be given elsewhere.(26)

Finally, while our discussion of fqH-bases of conformal field theories
based on quasiparticles with a statistics matrix K�K&1 was restricted to
(sln@)k (for n=2, 3), it is obvious that such a description generalizes to more
general conformal field theories (see ref. 31 for more examples), even
though these may not have an interpretation in the context of the fractional
quantum Hall effect.
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APPENDIX A. BASIC HYPERGEOMETRIC SERIES

Consider the basic hypergeometric series

r,s(a1 ,..., ar ; b1 ,..., bs ; q, z)

= :
m�0

(a1 ; q)m (a2 ; q)m } } } (ar ; q)m

(q; q)m (b1 ; q)m } } } (bs ; q)m
((&1)m q1�2 m(m&1))1+s&r zm (A.1)

where

(a; q)n= `
n&1

k=0

(1&aqk) (A.2)

We have the q-Pfaff�Saalschu� tz sum(50, 51)

3,2(a, b, q&n; c, abq1&n�c; q, q)=
(c�a; q)n (c�b; q)n

(c; q)n (c�ab; q)n
(A.3)

Taking b=0 in (A.3) gives the q-Chu�Vandermonde sum

2,1(a, q&n; c; q, q)=
(c�a; q)n

(c; q)n
an (A.4)

Now, taking a=q&m1, b=qM1+M2&(m1+m1)+1, c=qM2&(m1+m2)+1 and
n=m2 in (A.3) gives

_M1

m1 &_
M2

m2 &= :
m�0

q(m1&m)(m2&m) _M1&m2

m1&m &
__M2&m1

m2&m &_M1+M2&(m1+m2)+m
m & (A.5)

Taking a=q&m1, c=qM2&(m1+m2)+1 and n=m2 in (A.4) gives

1
(q)m1

_M2

m2 &= :
m�0

q (m1&m)(m2&m) 1
(q)m (q)m1&m _M2&m1

m2&m & (A.6)

while taking a=q&m1, n=m2 and c=0 in (A.4) gives

1
(q)m1

(q)m2

= :
m�0

q(m1&m)(m2&m) 1
(q)m (q)m1&m (q)m2&m

(A.7)
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APPENDIX B. THE PRINCIPAL SUBSPACE

In this appendix we review an important result of refs. 38 and 39
which is used throughout the paper. Consider an affine Lie algebra ĝk (see,
e.g., ref. 52 for notation and definitions). If L(4) is the integrable highest
weight module of ĝk with highest weight 4 and highest weight vector v4 ,
then the principal subspace W(4)/L(4) is defined to be the subspace
generated from v4 by the negative modes of the positive simple root
currents J:i

(z).
The character of the principal subspace W(4) of the integrable highest

weight module L(4) for 4=k040+kj4j (1� j�n, k0+kj=k) of (sln+1@)k

was determined in refs. 38 and 39.6 It is given by the UCPF

chW=:
p \` zspi

(s)

i + q
1
2

p } K } p+Qj } p

> i >s (q)pi
(s)

(B.1)

where

K=An�Bk , Qj=ej� (0,..., 0
k0

, 1, 2,..., kj ) (B.2)

and zi denotes the (generalized) fugacity of the current J:i
. Also, (An) ij=

2$ij&$i&1, j&$i+1, j is the Cartan matrix of sln+1 , i.e.,

An=\
2 &1

+ (B.3)

&1 2 &1
&1 2 &1

. . .
. . .

. . .
&1 2 &1

&1 2

and (Bk)rs=min(r, s)| r, s=1,..., k , i.e.,

1 1 1 } } } 1

1 2 2 } } } 2

Bk=\1 2 3 } } } 3+ (B.4)

b . . . b
1 2 3 } } } k
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Furthermore, in (B.1), we have written p=( p (s)
j ) s=1,..., k

j=1,..., n with respect to
(An) ij� (Bk)rs .

APPENDIX C. (sl2@)k, M CHARACTER

The UCPF character for (sl2@)k=1, M was discussed in ref. 6 (see also
ref. 28). Here we discuss the q-Pfaffian case, i.e., k=2. For convenience we
put q=M+1.

C.1. Quasihole Sector

In ref. 9, finitized partition sums XL=Xl=(8L&q&2)�16q and YL=
Yl=(8L+q&6)�16q for the quasihole sector of the q-pfaffian CFT were intro-
duced. XL (YL) are restricted by requiring that the total charge be an even
(odd) multiple of 1�2q. In ref. 9, it was established that the following recur-
sion relations hold

XL=XL&2q+xq(8L&q&2)�16q(YL+YL&q)
(C.1)

YL=YL&2q+xq(8L+q&6)�16qXL&1

or, equivalently,

XL=XL&2q+q1�2(XL&q&XL&3q)+x2q(2L&1)�2qXL&1 (C.2)

By putting XL �XL&qt*1�2q
tot , for large L, we reproduce Eq. (6.4). To build

the entire spectrum of the (sl2@)k=2, M conformal field theory we need 3q
sectors whose initial conditions are given in Table I. The vacua of the sec-
tors are labeled by, respectively, charge and the sl2 irrep in which they
appear for M=0 (the labels 1, _ and � stand for the sl2 singlet, doublet

Table I. (sl2@)k=2, M : Qausihole Sector

Sector Initial conditions Q,

}&re
q

, 1� Xs=1, Ys=0 \0,
s

2q+
}&(2r+1) e

2q
, _� X2q&r=xq(15q&2&8r)�16q, Y2q&r=1 \&

1
2

,
5q&1&2r

4q +
}&re

q
, �� Xs=1, Ys=0 \0,

s
2q+
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and triplet, respectively, in analogy with the Ising model). The parameter
r takes the values r=0, 1,..., q&1.

The solutions to (C.1) can be written in terms of finitized UCPFs with
(cf. (6.3))

K,=\
1

&
1
2

&
1
2

q+1
4q + (C.3)

Indeed, the recursion relations (5.12), with K=K, and Q+u=0, are
explicitly given by

PL1 , L2
=PL1&1, L2

+qL1&1�2PL1&1, L2+1�2
(C.4)

PL1 , L2
=PL1 , L2&1+xqL1&(q+1)�8qPL1+1�2, L2&(q+1)�4q

and lead to (C.1) upon identifying

XL=q1�4 Q1
2
P0, L�2q , YL=q

1
4

Q1
2& 1

16P&1�2, L�2q+(q&1)�4q (C.5)

The values for Q, in each sector are listed in Table I, while the parameters
s=0,..., 2q&1, in Table I, are given in Table II.

C.2. Electron Sector

For the electron sector of the q-pfaffian, the paper(9) introduced the
truncated partition sums 0L , which contain all states constructed from the
edge electron operator 9&s with s�L&(q&1)�2. It satisfies the recursion
relation

0L=0L&1+ yqL&1�2(q&1)0L&q+ y2q2L&(2q&1)0L&2q

& y3q3L&1�2(9q&5)0L&3q (C.6)

and results in Eq. (6.7) by putting 0L �0L&1t+tot for large L. In this case
the recursion relation does not appear to be solved by finitized UCPFs.

Table II. Relation Between Sectors and Parameter s

Sector |0, 1) }&e
q

, �� }&2e
q

, 1� } } } |0, �) }&e
q

, 1� }&2e
q

, �� } } }

s 0 1 2 } } } q q+1 q+2 } } } 2q&1
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Table III. (sl2@)k=2, M : Electron Sector

Sector Initial conditions Q,

}&re
q

, 1� 0r&1= } } } =0q+r&1=1 (r, 2r)

}&(2r+1)
2q

, _� 0r= } } } =0q+r&1=1 (r, 2r+1)

}&re
q

, �� 0&q+r&1=q1�2(q&1)&r�y, 0r=1 (r&1, 2r+1; &1, &1, &1,...)

However, there exists a recursion relation, leading to the same equation for
+tot , that is solved by a finitized UCPF and differs from the solution to
(C.6) by terms of order qL (i.e., belongs to the same universality class, see
the discussion in Section 5.3) and thus gives the correct solution in the
limit L � �. The UCPF is based on the K-matrix (cf. (6.6))

Ke=\q+1
2q

2q
4q+ (C.7)

The initial conditions and values for Qe in each sector are listed in Table III.
There is a slight subtlety in the case of the sectors |&re�q, �) . These

vectors do not correspond to an extremal vector in the (sl2@)k=2, M modules.
Thus the results of Appendix B do not apply. While the exclusion statistics
of the currents is unchanged, and hence the K-matrix is still given by (C.7),
it can easily be shown that the extremal vectors in the modules cannot be
reproduced by any two dimensional vector Q. In fact, to correctly reproduce
the extremal vectors one needs an infinite dimensional vector Q (given in
Table III) with a corresponding infinite dimensional K-matrix K(�)

e that is
equivalent to (C.7) by the composite construction. Specifically, one intro-
duces derived matrices K (n)

e and associated generalized fugacities z(n) by

q+1 2q+1 3q+1 z
K (1)

e =C12Ke=\2q+1 4q 6q + , z(1)=\z2+ (C.8)

3q+1 6q 9q+1 z3

K (2)
e =C23K (1)

e =\
q+1
2q+1
3q+1
5q+2

2q+1
4q

6q+1
10q

3q+1
6q+1
9q+1
15q+1

5q+2
10q

15q+1
25q+1+ , z(2)=\

z
z2

z3

z5+
(C.9)
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and, ultimately,

K(�)
e = lim

n � �
K (n)

e = lim
n � �

C2, n C2, n&1 } } } C23 C12Ke

=

q+1 2q+1 3q+1 5q+2 7q+3 } } } (2k+1) q+k } } }

2q+1 4q 6q+1 10q+1 14q+1 } } } 2(2k+1) q+1 } } }

3q+1 6q+1 9q+1 15q+1 21q+2 } } } 3(2k+1) q+(k&1)

5q+2 10q+1 15q+1 25q+1 35q+1 } } } 5(2k+1) q+(k&2)

7q+3 14q+1 21q+2 35q+1 49q+1 } } } 7(2k+1) q+(k&3)

b b b b b
. . . b

(2k+1)2 q+1
. . .

(C.10)

while

z(�)=(z, z2; z3, z5, z7,...) (C.11)

For every finite n, the UCPF based on (K (n)
e ; Q (n)

e ), where Q (n)
e is the

(n+2)-dimensional truncation of the vector Qe in Table III, gives an
accurate description of the module up to some level (which appears to be
at at least polynomially increasing with n). To describe the entire module
accurately, one needs to take the limit n � �.

C.3. The Character

Combining the 3q sectors in Tables I and II should reproduce the
spectrum of the chiral (sl2@)2, M conformal field theory. Consider the com-
bination of UCPFs

Ztot= :
3q

k=1

a(k) Z�(Ke ; Q (k)
e ) Z��2(K, ; Q (k)

, , u (k)
, ) (C.12)

where the coefficients a(k) and vectors Q (k)
e , Q (k)

, =&u(k)
, are given in Table IV

and where

Z��2(K, ; Q (k)
, , u (k)

, )

#q1�4(Q1
(k))2 \Z(K, ; Q (k)

, , u (k)
, )+q&1�16Z \K, ; Q (k)

, , u (k)
, &\1�2

0 +++
(C.13)
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Table IV. (sl2@)k=2, M : Character

Sector Q, Qe a(k)

}&re
q

, 1� \0,
s

2q+ (r, 2r) x&2rqr2�2q

}&(2r+1) e
2q

, _� \&
1
2

,
5q&1&2r

4q + (r, 2r+1) x&(2r+1)q((2r+1)2�8q)+1�16

}&re
q

, �� \0,
s

2q+ (r&1, 2r+1; &1; &1;...) x&2rq(r2�2q)+1�2

corresponds to the limit

lim
L � �

:
2q&1

t=0

(XL&t+YL&t) (C.14)

We have numerically checked that (C.12) indeed equals the (sl2@)k=2, M

character

Ztot=
1

(q)�
:

n # Z
\x2nq(1�2q) n2

`
k�1

(1+qk&1�2)

+x2n+1q(1�2q)(n+1�2)2+1�16 `
k�1

(1+qk)+ (C.15)

corresponding to a free fermion and a boson compactified on a circle of
radius R2=q. It should be possible to prove the equality of (C.12) and
(C.15) along the lines of ref. 31 (see also Appendix D). Finally, we note
that the number of summands in (C.12) equals the torus degeneracy for the
q-Pfaffian computed in ref. 25.

APPENDIX D. (sl3@)k, M CHARACTER

We will restrict the discussion in this section to (sl3@)k, M for level k=1.

D.1. Quasihole Sector

The recursion relation for the quasiholes (,A , ,a) in (sl3@)k, M for k=1
and M=0 was worked out in refs. 20 and 13. The generalization to
arbitrary M reads
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XL=XL&(2M+3)+(xA+xa) q(2L&(M+2))�(2(2M+3))XL&(M+2)

+xAxaq(2L&1)�(2M+3)XL&1 (D.1)

By putting XL �XL&1t*1�(2M+3)
tot we recover the IOW-equation (7.5). To

build the entire spectrum out of quasiholes and electrons we need 3M+4
sectors whose initial conditions are given in Table V. The vacua of the
sectors are labeled by, respectively, charge, spin, and the sl3 irrep in which
they occur for M=0. The parameter r takes the values r=1, 2,..., M+1.

The solution to (D.1) can be written in terms of finitized UCPFs (see
(5.10)). Indeed, the recursion relations (5.12) with (see (7.3))

K,=
1

2M+3 \
M+2

&(M+1)
&(M+1)

M+2 + (D.2)

and Q+u=(0, 0) are explicitly given by

PL1 , L2
=PL1&1, L2

+xAqL1&(M+2)�(2(2M+3))

_PL1&(M+2)�(2M+3), L2+(M+1)�(2M+3)
(D.3)

PL1 , L2
=PL1 , L2&1+xa qL2&(M+2)�(2(2M+3))

_PL1+(M+1)�(2M+3), L2&(M+2)�(2M+3)

Setting XL#PL�(2M+3), L�(2M+3) leads to (D.1). The values for Q=&u in
the various sectors, as determined by the initial conditions, are given in
Table V.

Table V. (sl3@)k=1, M : Quasihole Sector

Sector Initial conditions Q,

|0, &, 1) X0=1 (0, 0)

}&2re
3

, &, 3� X2M+3&r=1 \2M+3&r
2M+3

,
2M+3&r

2M+3 +
}&(2r&1) e

3
, A, 3*� XM+2&r=1 \M+2&r

2M+3
,

M+2&r
2M+3 +

}&(2r&1) e
3

, a, 3*� XM+2&r=1 \M+2&r
2M+3

,
M+2&r

2M+3 +
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D.2. Electron Sector

The recursion relations for the electrons (9A , 9a) are given by

0L=0L&1+( yA+ ya) qL&M�20L&(M+2)+ yAyaq2L&(2M+1)0L&(2M+3)

(D.4)

with initial conditions listed in Table VI. They can be solved by finitized
UCPFs with (see (7.9))

Ke=\M+2
M+1

M+1
M+2+ (D.5)

and Q+u=(1, 1), by putting 0L=PL, L . The values for Qe in the various
sectors are listed in Table VI.

D.3. Character

Combining the 3M+4 sectors in Tables V and VI should reproduce
the spectrum of the chiral (sl3@)k=1, M conformal field theory. Indeed, con-
sider the following combination of UCPFs

Ztot= :
3M+3

k=0

a(k) Z�(Ke ; Q (k)
e ) Z�(K, ; Q (k)

, ) (D.6)

where the coefficients a(k) are defined in Table VII.

Table VI. (sl3@)k=1, M : Electron Sector

Sector Initial conditions Q,

|0, &, 1) 0&1=00= } } } =0M=1 (0, 0)

}&2re
3

, &, 3� 0r&1=0r= } } } =0M+r=1 (r, r)

}&(2r&1) e
3

, A, 3*� 0r&1=0r= } } } =0M+r&1=1 (r&1, r)
0M+r=1+ yA q1�2(M+2)+(r&1)

}&(2r&1) e
3

, a, 3*� 0r&1=0r= } } } =0M+r=1 (r, r)
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We claim that (D.6) equals the (sl3@)k=1, M character

Ztot=
1

(q)2
�

:
pi # Z

(x p1
A x p2

a ) q
1
2

p } K, } p
(D.7)

corresponding to the partition function of two chiral bosons on the deformed
weight lattice of sl3 . E.g., (D.7) for M=0 is precisely the Frenkel�Kac
character (see, e.g., ref. 52) of the sum of the integrable highest weight
modules of (sl3@) at level k=1.

To prove this claim, first observe that we can rewrite (D.6) as a sum
over 2M+3 sectors by using (5.8). Specifically,

Z� \K, , \
2M+3&r

2M+3
2M+3&r

2M+3 +++xaq (M+2&2r)�(2(2M+3))Z� \K, , \
M+2&r

2M+3
M+2&r

2M+3 ++
=Z� \K, , \

2M+3&r
2M+3

&r
2M+3 ++ (D.8)

after which the claim follows by applying the statements of Theorem 4.1
and Corollary 5.2 in ref. 31.

Note that even though we use 3M+4 sectors in generating the entire
spectrum from the recursion relations (D.1) and (D.4), the (sl3@)k=1, M

partition function (D.7) can be written in terms of UCPFs based on
K=Ke�K, using only 2M+3 sectors. So, even though the UCPF form of
a partition function is not unique, and we do not understand the precise
relation between the number of sectors and the torus degeneracy in the
sense of Wen et al., (46) it is satisfying to see that the number 2M+3 equals
det Ke which is the torus degeneracy for abelian fqH systems.
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