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Abstract. Matrix product state techniques provide a very efficient way to 
numerically evaluate certain classes of quantum Hall wave functions that can 
be written as correlators in two-dimensional conformal field theories. Important 
examples are the Laughlin and Moore-Read ground states and their quasihole 
excitations. In this paper, we extend the matrix product state techniques 
to evaluate quasielectron wave functions, a more complex task because the 
corresponding conformal field theory operator is not local. We use our method 
to obtain density profiles for states with multiple quasielectrons and quasiholes, 
and to calculate the (mutual) statistical phases of the excitations with high 
precision. The wave functions we study are subject to a known difficulty: the 
position of a quasielectron depends on the presence of other quasiparticles, even 
when their separation is large compared to the magnetic length. Quasielectron 
wave functions constructed using the composite fermion picture, which are 
topologically equivalent to the quasielectrons we study, have the same problem. 
This flaw is serious in that it gives wrong results for the statistical phases 
obtained by braiding distant quasiparticles. We analyze this problem in detail 
and show that it originates from an incomplete screening of the topological 
charges, which invalidates the plasma analogy. We demonstrate that this can 
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be remedied in the case when the separation between the quasiparticles is large, 
which allows us to obtain the correct statistical phases. Finally, we propose 
that a modification of the Laughlin state, that allows for local quasielectron 
operators, should have good topological properties for arbitrary configurations 
of excitations.

Keywords: conformal field theory, fractional QHE, fractional statistics, tensor 
network simulations
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1. Introduction

The study of the fractional quantum Hall effect [1] has been of great importance for the 
understanding of many-body states in the extreme quantum regime. It also provides 
paradigmatic examples of topologically ordered states of matter [2], and the so far 
only experimentally observed candidate [3, 4] for a state with bulk non-abelian excita-
tions. Like in all condensed matter systems, the theoretical description of the fractional 
quantum Hall effect is based on constructing various kinds of effective field theories. 
However, it is also very special, in that a lot of understanding has been gained by the 
study of various explicit many-body wave functions, the most famous one being the 
Laughlin wave function [5].

In certain cases, as for instance the Laughlin states at filling fractions ν = 1/q or 
the non-abelian Moore-Read state [6] at ν = 5/2, the ‘representative’ many-body wave 
functions are eigenstates of known Hamiltonians with (admittedly singular) short range 
interactions. The belief is that these idealized Hamiltonians can be adiabatically con-
nected to realistic ones without changing the topological properties of the states. There 
are, however, many examples of proposed representative wave functions which are not 
eigenstates of any known Hamiltonian. The most well-known of these are the compos-
ite fermion states [7, 8], which describe the most prominent members of the hierarchy 
of abelian states in the lowest Landau level (LLL) at rational filling fractions ν = p/q, 
with q odd [9]. All these wave functions fit into a theoretical framework based on a 
deep connection between the topological quantum field theories that provide the long 
distance description of fractional quantum Hall states and certain 1  +  1 dimensional 
conformal field theories (CFTs) [10]. The original works along these lines were by 
Moore and Read [6] and by Wen [11, 12], and it was later generalized to both abelian 
[13, 14] and non-abelian hierarchy states [15–17] (for a review, see [18]).

Since the hierarchy states constructed using composite fermions, or more generally 
by CFT based methods, do not come from a Hamiltonian, adiabatic arguments are not 
applicable, so other methods must be used to argue that they are relevant to phys-
ics. One approach is to show that they, in some approximation, follow from a sound 
effective field theory, but this has been achieved only in certain simple cases [19]. In 
most cases, the physical relevance of the hierarchy states has only been justified by 
numerical studies. Calculating overlaps with states obtained by direct numerical diago-
nalization of small systems has provided sanity checks for many of the representative 
wave functions, while the numerical calculation of Berry phases [20–26] and entangle-
ment entropies [27–29] and spectra [30] has allowed for deeper insights into the topo-
logical properties of these states.

https://doi.org/10.1088/1742-5468/aab679
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A limiting factor for extending these kind of studies is that in most cases it is com-
putationally very demanding to evaluate the wave functions, even though they are 
explicitly known in real space. There are several sources of difficulties, starting with 
the expansion of the wave functions in Slater determinants. The need to perform many 
derivatives and/or anti-symmetrize over a large number of variables is also numerically 
very costly. A lot of effort has been put into developing more efficient numerical meth-
ods, one of the latest being the adaption of the matrix product state (MPS) technique 
[31, 32] to quantum Hall problems [33, 34] (see [35] for a related spin chain model).

The MPS method has its origin in the density matrix renormalization group 
(DMRG), which has been very successful for simulating one-dimensional systems, in 
particular spin chains [36, 37]. To explain the basic idea, we consider a lattice model 
with N sites and attach a Hilbert space {|pl⟩} with dimension Dl to the site l. A general 
state can be written as

|Ψ⟩ =
∑

p1,p2...pN

Cp1,p2...pN

N⊗

l=1

|pl⟩, (1)

and an MPS representation amounts to expressing the coefficients C as a traces of 
matrices,

Cp1,p2...pN = Tr
[
B[ p1]B[ p2] . . .B[ pN ]

]
= B[ p1]

αβ B[ p2]
βγ . . . B[ pN ]

ξα , (2)
where the Greek variables refer to the auxiliary spaces which have dimensions χl at 
bond l (between site l and site l  +  1). The physical meaning of this space can be under-
stood as follows. Imagine dividing the system in two parts at the bond l and note 
that the only way the two parts depend on each other is via the matrix B[ pl]. If we 
now concentrate on, say, the left part, the presence of the right part is encoded in the 
entanglement data, such as the entanglement entropy and the entanglement spectrum, 
of the divided system. This information must be encoded in the matrices B[ pl], and one 
would thus think that starting from, say, the leftmost site, it would require more and 
more information to encode the entanglement between the parts, as the left part grows 
bigger. Consequently, one would expect the dimensions χl of the auxiliary space to 
grow very quickly. The reason for the success of the MPS method is that this does not 
happen for gapped states of a system described by a local Hamiltonian [38]. Instead, 
the entanglement grows only up to a limit, meaning that the state can be accurately 
described by a finite-dimensional matrix. The matrices are not uniquely defined, but 
there is a special representation where the eigenvalues are precisely the entanglement 
energies, thus providing a precise connection between the original renormalization 
group ideas of White [36] and the quantum information viewpoint just described. For 
a translation-invariant state, the matrices B[ pl] = B[ p] are independent of l, and finding 
a good approximation for the ground state amounts to finding the optimal matrix. For 
a pedagogical review of tensor network states, of which MPS state are a special case, 
see e.g. [39].

It is far from obvious that the MPS technique can be useful for two-dimensional 
systems, and in particular for quantum Hall liquids. As was noted in [33], this is nev-
ertheless the case, because these liquids only occupy a few Landau levels. Therefore, it 
is often sufficient to consider the dynamics in only one of them, the lower ones being 
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completely filled and thus inert. For this reason, we shall restrict ourselves to states in 
the LLL. For the purpose of calculations, we use periodic boundary conditions in one 
direction, corresponding to studying the quantum Hall liquid on a cylinder. Choosing 
the Landau gauge, the LLL problem is mapped onto a lattice model as illustrated in 
figure 1. Zaletel and Mong showed how the Laughlin and Moore-Read wave functions 
can be expressed as MPSs [34], which in turn allows for very efficient computations of 
topological and entanglement characteristics. This method has been applied to study 
the properties of model wave functions [25, 34, 40, 41], and adapted to study Coulomb 
systems [42–44].

The starting point is the Moore-Read representation of the QH state as a correla-
tion function in the appropriate CFT,

Ψ(z1, z2, . . . , zN) = ⟨ObgV (z1)V (z2) · · ·V (zN)⟩, (3)
where V(zi) is a primary field of a CFT as a function of the (complex) electron coor-
dinate zi, and Obg is a neutralizing background charge operator that depends on the 
magn etic length ℓ. In the Hamiltonian picture, the average ⟨. . .⟩ denotes the ground 
state expectation value of a time (or radial) ordered product of operators. The key step 
is to insert resolutions of identity, = |αi⟩⟨αi|, between the operators by which the 
product of operators is turned into a matrix product. The states |αi⟩ span the Hilbert 
space of the CFT, which thus constitutes the auxiliary space [33, 34].

By inserting ‘quasihole’ operators, H(η), into the correlator in equation (3), one 
obtains quasihole states. One can also obtain an MPS representations for these states 
by introducing extra matrices describing the quasiholes. One would think that the 
generalization to quasielectron states would be straightforward, but this has turned 
out not to be the case. The naive guess—inserting an inverse quasihole H−1 in the 
correlator (3)—does not produce a valid electronic wave function5. It also fails to give 
excitations with the correct topological properties when implemented as an MPS. The 
underlying reason for this is that while the electron and quasihole operators V and H 
are both local, the operator describing a quasielectron is quasi-local [46, 47].

The starting point of our MPS description of quasielectron excitations of Laughlin 
states is this quasi-local operator and we review its construction in section 2. Besides 
being intrinsically interesting, our results also point towards a way to construct MPS 
representations both of hierarchy states, and of quasielectron excitations in the Moore-
Read state. In section 3, we show in detail how to extend the MPS techniques to 
Laughlin states containing both quasielectrons and quasiholes. As in the original work 
by Zaletel and Mong [34], we use a cylinder geometry. As explained in earlier work 
(for a detailed review, see [18]), to construct the non-local quasielectron operator one 
must extend the CFT to contain an additional scalar field ϕ̃, which results in a more 
complicated matrix structure. We derive the form of the matrices necessary to obtain 
the quasielectrons in section 4 and provide some details on the numerical implementa-
tion and challenges in section 5. We have checked the validity of our construction by 
direct comparison with explicit expressions for quasielectron wave functions, which can 
be obtained for systems with a small number of particles. Going to large systems, we 
perform high precision calculations of density profiles and statistical phases for various 

5 It is interesting to note that the inverse quasihole does provide a valid description of quasielectrons for lattice 
Laughlin states, as shown in [45].
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configurations of quasielectrons and quasiholes. These results are presented in sec-
tion 6. In section 7, we discuss a known flaw of the CFT quasielectron wave functions, 
originally discovered in the composite fermion picture, which wave functions are topo-
logically equivalent to those we consider in this paper. We stress that this flaw is not 
a mere technical glitch but indicates that the wave functions do not encode the topo-
logical content of quasielectrons states in a faithful way. We find that the origin of the 
difficulties is that the plasma analogy can not be applied. In the CFT language, this is 
due to an incomplete screening of a charge associated with the quasielectron operator.

Using this knowledge, we show how one can modify the quasielectron and quasihole 
operators to obtain full screening when the separation between the excitations is large, 
and verify that in those cases the statistical phases come out as expected. We also sug-
gest an ad hoc modification that numerically appears to have the desired screening even 
when the separation between the excitations is small. We finally discuss an alternative 
version of the Laughlin wave functions where the quasiparticles are created by local 
operators and which might have good screening properties for arbitrary quasiparticle 
configurations. We close the paper with a short summary and outlook on future direc-
tions in section 8. Some technical background as well as more detailed arguments are 
given in the appendices. Appendix A deals with the chiral boson CFT. In appendices B 
and C, we provide a detailed derivation of the MPS matrices for the ‘polynomial part’ 
of the Laughlin state and the quasielectron, while appendix D deals with the quasielec-
trons on the cylinder. In appendix E, we discuss the quasielectron wave functions on the 
sphere. Finally, in appendix F we give a detailed derivation of the thin-cylinder limit 
of the quasielectron wave functions in the presence of other quasiholes in the system.
Notation. We set ! = c = 1, so the magnetic length is ℓ = 1/

√
eB . Operators have 

a hat only where it might otherwise lead to confusion. For instance, we use P̂  for the 
quasielectron operator to distinguish it from the quantum number P, but denote the 
electron and quasihole operators with V and H respectively. We use the word ‘quasi-
particle’ when the pertinent statement applies to quasielectrons and quasiholes alike.

τ

x

}

physical index
auxiliary

index

. . .. . .

2 2

L

Figure 1. The cylinder geometry, indicating the LLL single-particle orbitals and 
the corresponding MPS structure of the wave function. The physical index is the 
single-particle occupation number, while the auxiliary index corresponds to the 
CFT Hilbert space.
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Matrix product state representation of quasielectron wave functions

7https://doi.org/10.1088/1742-5468/aab679

J. S
tat. M

ech. (2018) 053101

2. Quasielectron wave functions from CFT

In this section, we review how the wave functions for states with quasielectrons can be 
obtained using CFT techniques. Details on the CFT associated with the compact chiral 
boson field ϕ(z) are provided in appendix A.

We start by recalling that the (unnormalized) Laughlin wave function for Ne elec-
trons and Nqh quasiholes on a plane can be written as a CFT correlator,

ΨL,qh(zi; ηα) =

Nqh∏

α<β

(ηα − ηβ)
1
q

∏

α,i

(ηα − zi)
Ne∏

i<j

(zi − zj)
qe−

1
4ℓ2

∑
j |zj |2e

− 1
4qℓ2

∑
α |ηα|2

= ⟨Obg

Ne∏

i=1

V (zi)

Nqh∏

α=1

H(ηα)⟩ ,

 

(4)

where the operators V (z) =: ei
√
qϕ(z) : and H(η) =: e(i/

√
q)ϕ(η) : create an electron at posi-

tion z = x+ iy, and a quasihole at position η = xη + iyη, respectively. The background 
charge operator Obg ensures that the correlator is charge neutral, so that it does not van-
ish. When constructing MPS expressions, we shall use two alternatives for the neutral-
izing background. To reproduce the polynomial part of the wave function (4), we take

Obg = e−i(qNe+Nqh)ϕ0/
√
q . (5)

Note that eiβϕ0, where ϕ0 is part of the zero mode of ϕ, simply creates a charge β
√
q , 

as explained in appendix A (see equation (A.6)). In the absence of quasiholes, the poly-
nomial can be expressed as

ΨL, Pol(zi) =
Ne∏

i<j

(zi − zj)
q = ⟨e−iNe

√
qϕ0V (zNe) · · ·V (z1)⟩ . (6)

Inserting instead a uniform background charge

Obg =: e
− i

√
q

2πqℓ2

∫
d2z ϕ(z)

:, (7)
as proposed by Moore and Read [6], gives an extra factor e−|z|2/4ℓ2 for each electron, up 
to a gauge transformation. Thus, equation (4) reproduces the Laughlin wave function 
(in the presence of quasiholes) in a radial gauge. A corresponding calculation on the cyl-
inder yields the wave function in Landau gauge, as shown in [26], up to a gauge factor6

ΨL,Landau(τi, xi) = e−i
∑

j τjxj/ℓ2⟨ObgV (τ1, x1) · · ·V (τNe , xNe)⟩ . (8)
We use the convention that the x-coordinate denotes the position around the circum-
ference of the cylinder and τ the position along the cylinder, in order to emphasize the 
interpretation of the latter direction as imaginary time (see figure 1).

At first sight, it looks simple to generalize equation (4) to also include quasielec-
trons. Since quasiholes are obtained by inserting H(η), one would think that inserting 
H−1(ξ) would give a quasielectron at position ξ = xξ + iyξ. This is correct from a topo-
logical point of view, since this operator has the charge and statistics of a quasielectron. 

6 We note the difference in the labeling of the coordinates here and in [26].

https://doi.org/10.1088/1742-5468/aab679
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However, it does not give an acceptable LLL wave function, as the correlators will have 
poles in the electron coordinates.

In [46] and [47], this problem was overcome as follows. Instead of inserting an oper-
ator that creates the quasielectron excitation at position ξ, one modifies the electrons 
nearby, by shrinking their correlation hole. This ‘fusion’, which technically amounts to 
a normal ordering prescription, effectively adds the charge of a quasielectron near the 
position ξ. To properly localize the charge at ξ, one weighs the contributions from the 
different electrons near ξ with an exponentially decaying factor. This procedure is not 
arbitrary, but is uniquely defined by requiring that the resulting wave function resides 
in the LLL; it in fact amounts to a projection on the LLL.

The operator that creates the ‘modified’ electron consists of the usual electron 
operator to which one ‘fuses’ an ‘inverse quasihole’. As explained in detail in [46, 
47] it is not possible to directly fuse H−1 with V, since the resulting modified electron 
operator P̂ (z) would be anyonic and not give acceptable fermionic wave functions for 
the electrons. The solution is to note, as was first done by Halperin [14], that there 
is a freedom in assigning statistics to the quasihole operators. Briefly, the statistics of 
the operator will determine the ‘monodromies’ of the wave function, but the statistics 
of the quasiparticles, or the ‘holonomies’, will also get a contribution from the Berry 
phase associated to exchange or braiding. The change in the monodromy is compen-
sated by a change in Berry phase, leaving the statistics of the quasiparticles unchanged.

We choose a fermionic representation of the quasihole operator (for reasons dis-
cussed in [47]), which comes at the expense of introducing an independent scalar field 
ϕ̃(z), with compactification radius R2  =  q(q  −  1). The resulting expression for the quasi-
hole operator is

H(η) =: ei/
√
qϕ(η) : : ei(q−1)/

√
q(q−1)ϕ̃(η) : , (9)

which has scaling dimension h  =  1/2, as appropriate for a fermion. The resulting 
modified quasielectron operator becomes

P̂ (z) = ∂zṼ (z) = ∂z : e
i(q−1)/

√
qϕ(z) : : e−i(q−1)/

√
q(q−1)ϕ̃(z) :, (10)

where Ṽ (z) is a primary field with integer scaling dimension h = (q − 1)/2 corre-
sponding to a boson, as must be since an electron was fused with a fermionic quasi-
hole. Consequently, we cannot just insert the ‘modified’ electron operators to get 
the quasielectron wave functions, but we have to anti-symmetrize both between the 
‘modified’ and the ‘original’ electrons and among the ‘modified’ electrons themselves. 
Recall that the correlator in equation (4) directly gives an anti-symmetric electronic 
wave function since the operators V (z) are fermionic.

Replacing one of the operators V(zi) in equation (4) with P̂ (zi) creates a quasielec-
tron at the origin, and by multiplying with a factor zki  we can put the quasielectron in 
a state with angular momentum k. Explicitly we have,

Ψ(k)
qe (zi) = A

[
zk1 ⟨ObgP̂ (z1)V (z2) · · ·V (zNe)⟩e

− 1
4qℓ2

|z1|2
]

=
∑

i

(−1)izki
∏

i ̸=j1<j2 ̸=i

(zj1 − zj2)
q∂zi

∏

j3 ̸=i

(zj3 − zi)
q−1e−

1
4ℓ2

∑
j |zj |2 , 

(11)

https://doi.org/10.1088/1742-5468/aab679
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where the operator Obg must be chosen as to neutralize the correlator with respect to 
both ϕ and ϕ̃. Here the exponential in the first line is introduced by hand, but has a 
natural interpretation, as explained below in the case of a localized quasielectron. A 
denotes anti-symmetrization, which is written out explicitly as a sum in the second 
line. As stressed in [47], this wave function is identical to the one obtained using com-
posite fermion techniques [8].

To describe a localized quasielectron at ξ, we multiply the correlator with the kernel

K(ξ, z1) =
1

2πqℓ2
e
− 1

4qℓ2
|z1−ξ|2

e
1

4qℓ2
(ξ̄z1−ξz̄1) =

1

2πqℓ2
e
− 1

4qℓ2
(|z1|2+|ξ|2−2ξ̄z1),

instead of multiplying it with zk1 . The first expression exhibits the exponential localiza-
tion around ξ (note that the second factor is only a phase), while the second expres-
sion highlights the analytic structure. Note that the Gaussian e

− 1
4qℓ2

|z1|2, introduced 
by hand in equation (11), follows naturally because of the localization. Furthermore, 
the coefficient 1/(4qℓ2) is necessary to obtain the correct Gaussian factor associated 
with a charge 1/q particle at position ξ in a magnetic field eB = ℓ−2. Also note that 

K(ξ, z1) = e
− 1

4qℓ2
|z1|2δh(ξ, z1), where δh is the holomorphic delta function, which is the 

self-reproducing kernel for LLL wave functions.
An alternative expression for the localizing kernel is obtained by writing the last 

exponential as a Taylor series in the angular momentum k, i.e.

K(ξ, z1) =
1

2πqℓ2
e
− 1

4qℓ2
(|z1|2+|ξ|2)∑

k

(ξ̄z1)k

(2qℓ2)kk!
=

∞∑

k=0

φ̄k(ξ)φk(z1) (12)

where the second identity follows from the explicit expressions for the normalized sin-
gle-particle LLL wave functions φk(z1) in radial gauge (with the modification ℓ2 → qℓ2). 
The second expression in equation (12) shows that the localizing kernel K(ξ, z1) is 
nothing but the projector on the LLL, while the first expression gives the localized 
quasielectron as a coherent sum of the angular momentum states in equation (11). This 
type of explicit form will be used later when we construct the MPS representation for 
localized quasielectrons on the cylinder.

Thus, the wave function for a quasielectron, expected to be localized at ξ, is given 
by

ΨL,qe(zi; ξ) = A
[
K(ξ, z1)⟨ObgP̂ (z1)V (z2) · · ·V (zNe)⟩

]
. (13)

The generalization to a system with several quasielectrons and quasiholes is straight-
forward. For each quasielectron, there is one (and only one) modified electron operator, 
and one should anti-symmetrize the result over the coordinates zi. In terms of a CFT 
correlator, this results in the following expression for the wave function with multiple 
localized quasiholes and quasielectrons:

ΨL,qp(zi; ηα; ξa) = A

⎡

⎣⟨Obg

Nqe∏

a=1

K(ξa, za)P̂ (za)
Ne∏

i=Nqe+1

V (zi)

Nqh∏

α=1

H(ηα)⟩

⎤

⎦ . (14)
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Note that, since the operators P̂ (za) are bosonic, the only terms in the sums over the 
ka’s in the localizing kernels that contribute to the wave function are the ones with all 
ka distinct. The main goal of this paper is to determine an MPS representation from a 
general correlator like equation (14).

3. MPS representation for the Laughlin wave functions

In their original paper, Zaletel and Mong [34] used an elegant field theoretic for-
mulation to find an MPS description of the Laughlin wave function in a coherent 
state representation. In this section we follow an alternative approach [26, 40, 41]. We 
directly manipulate the expression in equation (3) into an MPS form for the Laughlin 
wave function on the cylinder.

The Laughlin wave function includes (gauge dependent) Gaussian factors charac-
teristic of the Landau problem. The magnetic length, which is set by the size of the 
Landau orbits and breaks the conformal invariance, is introduced by the spread-out 
background charge in equation (7). Having an MPS description on the cylinder, it is a 
simple matter to find the MPS description for the polynomial part of the wave func-
tion, by taking the large circumference limit. This limit is useful, because it allows for 
an explicit check of the, in our case sometimes involved, expressions for the matrices. 
In this section, we put the emphasis on the conceptual structure and refer to original 
papers and Appendices for technical details. In particular, we present a direct deriva-
tion of the MPS for the polynomial part of the wave functions in appendices B and C.

As mentioned in the introduction, the basic insight that leads to an MPS expression 
for equation (4) is that the auxiliary space, in which the matrices act, is the Hilbert 
space of the CFT. This suggests that we should use a Hamiltonian formalism and view 
the correlator in equation (4) as a vacuum expectation value of a time ordered product. 
On the plane, the natural ordering is in the radial direction r = |z|, but to get a con-
venient Hamiltonian formalism it is better to use a cylinder geometry. The translation 
between the two is via the conformal transformation

z → ω = e−i 2πL z, (15)
where L is the circumference of the cylinder (see figure 1). The knowledgeable reader 
might observe that the operators in equation (4), with conformal dimension h, will pick 
up factors ωh under the transformation equation (15), but these can be ignored in the 
quantum Hall context, since they amount to an uninteresting overall shift of the coordi-
nate system. The quantization on a cylinder is a standard CFT procedure, but for refer-
ence, and to set the notation, we summarize some important formulas in appendix A.

As first shown by Zaletel and Mong [34], it is possible to construct an MPS repre-
sentation for model wave functions, such as the Laughlin and Moore-Read states, that 
directly incorporates the Gaussian factors appropriate for the Landau gauge in the 
cylinder geometry. On the cylinder, the single-particle wave functions are

φl(τ , x) =
1

N e−
i
ℓ2

τlxe−
1

2ℓ2
(τ−τl)2 =

1

N ωle−
1

2ℓ2
(τ2+τ2l ), (16)
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where N =
√

Lℓ
√
π is an l-independent normalization constant, and τl = lδτ  with 

δτ = 2πℓ2

L  the distance in τ between the centers of two nearest single-particle wave func-
tions. To derive the MPS description, we follow [41] and [26], and start with the formal 
expansion of ΨL,Landau in terms of Slater determinants

ΨL,Landau =
∑

λ

cλslλ, (17)

where the partitions λ = (lNe , . . . , l2, l1) encode the set of occupied single-particle 
orbitals for a given Slater determinant. Thus, the li are all distinct and ordered as 
0 ! l1 < l2 < · · · < lNe ! Nφ = q(Ne − 1), where Nφ is the highest power of any of the 
ωi in equation (8), or equivalently, the highest power of any of the zi in equation (6).

The idea now is to obtain an MPS description of the (Landau gauge) Slater 
coefficients cλ. This MPS expression can then be used to efficiently calculate physical 
observables, without having to compute all the Slater coefficients explicitly. Following 
the crucial observation due to Zaletel and Mong, one sees that equation (16) implies 
that the single-particle orbitals φl(τ , x) simplify if evaluated at the center of the orbital 

in the τ direction, φl(τl, x) =
1
N e−iτlx/ℓ2, and we can write the Slater coefficients cλ as

cλ =

(
Ne∏

j=1

∫ L
2

−L
2

dxj

L
eixjτlj /ℓ

2

)
ΨL,Landau(τj = τlj , xj) . (18)

The phase factors in this expression cancel against the phase factors in the relation 
between ΨL,Landau and the CFT correlator, equation (8), to give the final formula,

cλ =

(
Ne∏

j=1

∫ L
2

−L
2

dxj

L

)
⟨ObgV (τ1 = τl1 , x1) · · ·V (τNe = τlNe

, xNe)⟩ . (19)

The cancellation of the orbital dependent gauge factors is important: it implies that 
the matrices in the MPS will be orbital-independent, which is one of the reasons for the 
success of the MPS formalism. We should already note, however, that we are forced 
to deal with orbital dependent matrices when we construct wave functions for systems 
containing quasielectrons.

To derive the matrix elements, we assume that the Ne electron operators in the 
correlator in equation (19) are ordered in τ, with the free ‘time’ evolution given by 
U(τ ′ − τ) = e−(τ ′−τ)H = e−

2π
L (τ ′−τ)L0. The Hamiltonian of the the CFT is

H =
2π

L
L0, L0 =

1

2
π2
0 +

∑

j>0

a−jaj, (20)

where π0 is part of the zero mode of ϕ(w), and a−j with j  >  0 are the creation operators 
corresponding to the non-zero modes. We refer to appendix A for more details, but 
mention the commutation relation [ϕ0, π0] = i, while ϕ0 commutes with the other modes 
aj. We can write the correlator in equation (19) as

⟨ObgV (τ1 = τl1 , x1) · · ·V (τNe = τlNe
, xNe)⟩

= ⟨q − 1|U ′(τNφ+1 − τlNe
)V (0, xNe)U

′(τlNe
− τlNe−1) . . . U

′(τl2 − τl1)V (0, x1)U
′(τl1 − 0)|0⟩,

 (21)
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where the charge mismatch of q  −  1 between the in- and out-state comes about because 
we consider a finite system with qNe  −  (q  −  1) single-particle orbitals (i.e. the same 
number of orbitals as one would have on the sphere). The difference between the 
free CFT evolution operator U(τ − τ ′) and the operator U ′(τ − τ ′) used here is due 
to the spread-out background charge. We need to know the form of U ′(τ − τ ′) in the 
case where τ and τ ′ correspond to the center of two adjacent orbitals. The opera-
tor creating the background charge associated with one orbital is e−iϕ0/

√
q. Because 

the actual background charge is spread out homogeneously, we split the operator 
e−iϕ0/

√
q into n ‘slices’, and act with the time evolution U(δτ/n) in between these 

slices (recall that δτ is the distance between neighboring orbitals). Thus, we write 

U ′(δτ) = limn→∞ e−
2πδτ
nL L0e

− i
n
√
qϕ0 = e

− 2πδτ
L L0− i√

qϕ0. Using the Campbell-Baker-Hausdorff 

formula, the combined effect of the spread-out background charge and the time evo-

lution results in [41]

U ′(δτ) = e
− 2πδτ

L

(
L0+

1
2
√
qπ0+

1
6q

)
e−iϕ0/

√
q ≡ U ′′(δτ)e−iϕ0/

√
q . (22)

The operators can now be associated with the orbitals as follows. The operator 
U ′(δτ) takes care of the free time evolution from one orbital to the next in the presence 
of the homogeneous background charge, and corresponds to an empty orbital7. On an 
occupied orbital, the operator U ′(δτ) needs to be multiplied with V (τ = 0, x), which 
creates the electron.

We can now calculate the matrix elements associated with these operators in the 
auxiliary Hilbert space, which is the Hilbert space of the chiral boson CFT (see appendix 
A for details). We insert resolutions of identity =

∑
Q,P,µ |Q,P, µ⟩⟨Q,P, µ| between all 

the orbitals and use that the matrix elements of general vertex operators are given by

⟨Q′,P ′,µ′| : eiβϕ(w) : |Q,P ,µ⟩ = δQ′,Q+
√
qβ e

− 2πi
L (x+iτ)

(
βQ√

q+P ′−P
)
Aβ

µ′,µ , (23)

with Aβ
µ′,µ given by equation (A.10) in appendix A. Finally, the matrix elements needed 

for the MPS description equation (2) become

B[0] = ⟨Q′,P ′,µ′|Û ′′(δτ)e−iϕ0/
√
q|Q,P ,µ⟩ = e−

2πδτ
L

(
(Q′)2
2q +P ′+Q′

2q +
1
6q

)
δQ′,Q−1δP ′,P

∏

j

δm′
j ,mj ,

 (24)

B[1] =

∫ L
2

−L
2

dx

L
⟨Q′,P ′,µ′|Û ′′(δτ)e−iϕ0/

√
qV (τ = 0, x)|Q,P ,µ⟩

= e−
2πδτ
L

(
(Q′)2
2q +P ′+Q′

2q +
1
6q

)
δQ′,Q+q−1δP ′,P−QA

√
q

µ′,µ .

 

(25)
In the matrix elements of B[1], the δ-function relating P ′ to P comes from the integral 
over x, which is to be evaluated at τ = 0. For the electron matrix elements, the integral 

7 We note that the time evolution used in [34], which is simply U, differs from U ′′ used here by the last two terms 
in the exponential. However, by making use of the Campbell-Baker-Hausdorff formula, one finds that

U ′′(δτ)e−iϕ0/
√
q = e−

2πδτ
6qL e−iϕ0/(2

√
q)U(δτ)e−iϕ0/(2

√
q) .

Since the electron operator in [34] uses this symmetric expression, we see that both descriptions are equivalent  
(up to boundary terms and unimportant factors).
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becomes 
∫ L/2

−L/2
dx
L e−

2πix
L (Q+P ′−P ) = δP ′,P−Q, which is well defined (i.e. it does not depend 

on how we choose the limits on the integral) because Q+ P ′ − P  is always an integer. 
We again emphasize that these matrix elements do not depend on the partition labels l.

It is straightforward to get an MPS representation for the cylinder version of equa-
tion (4) for an arbitrary number of quasiholes Nqh, by inserting Nqh operators H(η). 
In order not to clutter the notation, we use η = (xη + iτη) for the complex coordinate 
on the cylinder and write ωη = e−i(2π/L)(xη+iτη) in the following. Note, the correlator in 
equation (4) is by definition radially ordered, so it does not matter in what order we 
choose to write the operators. In the MPS formulation, one can also choose the points 
at which to insert the quasihole matrices. Nevertheless, one should insert the operator 
between the matrices corresponding to the orbitals closest to the quasihole location, to 
ensure fast convergence as the size of the auxiliary Hilbert space is increased.

To obtain the MPS matrices for the quasiholes, we must take into account the 
anti-commutation of the electron V (ω) and the quasihole operator H(ωη), which is 
reflected in the anti-symmetric factor (ω − ωη) present in the wave function equation (4). 
Therefore, we must include an additional sign in the matrices for the quasiholes. This 
sign is (−1)#V  where #V  is the number of matrices B[1], corresponding to occupied 
orbitals that occur before the position of the quasihole operator. We denote this posi-
tion by l if the corresponding matrix is inserted in between the matrices corre sponding 
to the orbitals l  −  1 and l (where the first orbital has l  =  0). #V  can be written in terms 
of the quantum number Q at the location l, which is the number of orbitals that come 
before the quasihole matrix. For the αth quasihole (i.e. we already acted with α− 1 
quasihole matrices), Q is given by Q = −l + q(#V ) + (α− 1), where we assumed that 
the charge of the in-state is zero. The term  −l comes from the distributed background 
charge. This leads to the sign (−1)(Q+l−(α−1))/q, which needs to be taken into account in 
the matrix elements for the quasiholes.

Finally, one must be careful with the time evolution when dealing with the quasi-
holes. The τ coordinate of the quasihole is τη, and its matrix is inserted between orbitals 
l  −  1 and l. Since the matrix corresponding to orbital l  −  1 includes the time evo lution 
from orbital l  −  1 to orbital l, we must ‘evolve back’ by an amount lδτ − τη, then 
act with the quasihole operator (with its τ coordinate set to zero), and finally evolve 
forward again by lδτ − τη. In addition, because the correlator gives the Landau wave 

functions up to a gauge factor as explained above, there is an additional contribution 

of e−
2πixητ̃η

qL , where τ̃η = τη/(δτ) is the τ coordinate of the quasihole in units of the dis-
tance between neighboring orbitals (we note that this is a constant factor). Putting 
all the pieces together, the matrices B[ pl=0] and B[ pl=1] of the MPS on orbital l will be 

multiplied with a quasihole matrix B[ pl] → B̃[ pl] = B[ pl]Hl(ωηα) for the αth quasihole, 
with the following matrix elements,

Hl(ωηα) =(−1)(Q+l−(α−1))/qe+
2π
L (lδτ−τηα )

(
(Q)2

2q +P+ Q
2q+

1
6q

)
e−

2π
L (lδτ−τηα )

(
(Q′)2
2q +P ′+Q′

2q +
1
6q

)

× e−
2πixηα

L

(
P ′−P+Q/q+τ̃ηα/q

)
δQ′,Q+1A

(1/
√
q)

µ′,µ .

 

(26)
This concludes our review of the MPS description of the Laughlin states on the cylinder 
in the presence of quasiholes.
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4. MPS representation for the quasielectron states

In this section, we give an MPS representation for Laughlin states with quasielectrons 
on the cylinder. We consider localized quasielectron states, as well as angular momen-
tum quasielectrons, which are used to construct the localized ones, as explained in sec-
tion 2. Most of the discussion below applies to both types of quasielectrons and where 
we need to distinguish them we do so explicitly. The insertion of a quasielectron is a 
non-local procedure (see equation (11)), since the (single) quasielectron can be placed 
on any orbital l, although with a very small weight when the orbital center is far from 
the quasielectron position.

To explain precisely how all B[ p] → B̃[ pl] matrices need to be updated is the main 
goal of this section. Because the wave functions can be formulated as a CFT correlator 
(14), one can find an MPS representation of the Slater coefficients, just as in the previ-
ous section, except that the procedure becomes more complicated. We therefore only 
highlight the differences, and provide the details of the derivation as well as the explicit 
form of the matrix elements and the wave functions in appendices C and D.

The most obvious difference with the previous section is that the vertex operators 
for the electrons, the modified electrons and the quasiholes now depend on two chiral 
boson fields ϕ(ω) and ϕ̃(ω). In the case of an infinite system, they are given by

V (ω) =: ei
√
qϕ(ω) : (27)

Ṽ k(ω) = ωk∂ω
(
: ei(q−1)/

√
qϕ(ω) : : e−i(q−1)/

√
q(q−1)ϕ̃(ω) :

)
 (28)

H(ωη) =: ei/
√
qϕ(ωη) : : ei(q−1)/

√
q(q−1)ϕ̃(ωη) : . (29)

We now outline how to calculate the matrix elements of the matrices corresponding to 
the modified electrons Ṽ k(ω), focusing on the differences with the previous section. We 
start with the matrix elements of the empty orbitals, the ‘ordinary’ electrons, and the 
quasiholes. Then we provide some details for the ‘modified’ electrons necessary for the 
quasielectrons, but refer to appendix D for the actual derivations.

The presence of the additional field ϕ̃(ω) implies that the matrix elements corre-
sponding to empty orbitals and orbitals occupied by ‘ordinary’ electrons will have 
additional δ-functions for the quantum numbers associated with ϕ̃. The factor describ-
ing the free time evolution is modified as well. The explicit expressions are given in 
equations (D.2) and (D.3). The modifications to the matrices corresponding to the 
quasi holes are straightforward, and are given in equation (D.9).

In calculating the matrix elements associated with the modified electron operators, 
there are several differences compared to the previous section. First, a derivative ωk∂ω 
is present in Ṽ k(ω). The easiest way of taking this into account is by performing a 
partial integration in the expression for the Slater determinants (18), keeping in mind 
that the integral is performed at τl, where l is the orbital on which the modified electron 
resides. Thus, the derivative also acts on the factor eixτl/ℓ

2
 in equation (18). The second 

difference is that the charge (associated with ϕ(ω)) of the vertex operator in Ṽ k(ω) is 
q  −  1 instead of q. This means that the factor eixτl/ℓ

2
 present in equation (18) does not 

completely cancel the factor coming from the difference in phase between the Landau 

https://doi.org/10.1088/1742-5468/aab679


Matrix product state representation of quasielectron wave functions

15https://doi.org/10.1088/1742-5468/aab679

J. S
tat. M

ech. (2018) 053101

gauge wave functions, and the correlators in equation (8). Instead, we are left with an 
additional factor e−

2πix
L (−l/q), where l is the orbital on which the modified electron opera-

tor resides. This factor is important, because to calculate the matrix elements for the 

modified electron operators, we have to calculate the integral 
∫ L/2

−L/2
dx
L e−

2πix
L f , where f 

depends on the various quantum numbers (see the discussion below equation (25)). For 
this integral to be well defined, f has to be integer, and the additional factor (−l/q) 
precisely makes this happen. In the end, this factor shows up in the δ-function for the 
momenta.

The third difference concerns the contributions coming from the factors describing 
the free time evolution in the presence of the background charge. At the end of the day, 
these factors conspire to give the correct cylinder normalization of the wave functions. 
In the present case, they also give rise to factors that depend on both k, the angular 
momentum of the quasielectron, and l, the orbital associated which the modified elec-
tron operator. The easiest way to deal with such factors is to calculate them explicitly 
from the form of the time evolution, and compensate for them by hand. The details are 
presented in appendix D.

Finally, one has to properly anti-symmetrize the wave functions. This anti-sym-
metrization can be split in two parts. To begin with, the modified electron operators 
have to be anti-symmetrized with respect to the ordinary electrons, because V (ω) and 
Ṽ k(ω) are bosonic with respect to one another. The same is true for the Ṽ k(ω) amongst 
themselves.

The anti-symmetrization of the modified and ordinary electrons can be taken into 
account by inserting the factor (−1)#V  in the matrix elements for the modified electron 
operators. Here, #V  denotes the number of ordinary electrons present in the system 
when acting with the current operator. This number can be expressed in terms of the 
various quantum numbers. To perform the anti-symmetrization between the modified 
electrons, one can not simply change the factor (−1)#V  to (−1)#V+#Ṽ  where #Ṽ  is the 
number of modified electrons already in the system. Such a change only leads to an 
overall sign of the wave function, and not to an actual anti-symmetrization between 
the modified electron operators. We postpone the solution of this problem to the end 
of this section.

Putting together the results so far, we obtain the matrix elements of the modified 
electron operator on orbital l, which we denote by Eka,l (see equation (D.6)), for the ath 
angular momentum quasielectron, with angular momentum ka.

To obtain the matrix elements for a localized quasielectron on the cylinder, we need 

to use a localizing kernel on the cylinder, as discussed in section 2 in the case of the disk 

geometry. We denote the position of the quasielectron by ωξ = e−
2πi
L (xξ+iτξ) = e−

2πi
L ξ. The 

localizing kernel basically is the lowest Landau level projector, but with the substitution 
ℓ2 → qℓ2, because we are projecting a particle with charge 1/q. On the cylinder, we have

K(ωξ,ω) =
∑

k

φ̄(xξ, τξ)φ(x, τ) =
1√
πqℓ2L

e
−

(τ2+τ2ξ )

2qℓ2
∑

k

e−
(

2π
L

)2
qℓ2k2(ω̄ξ)

kωk .

 

(30)

To show that K(ωξ,ω) really is a localizing kernel, one can rewrite equation (30) by 
means of the Poisson summation formula as
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K(ωξ,ω) =
1

2πqℓ2

∑

n∈Z

e
− 1

4qℓ2
|ξ−z+Ln|2

e
1

8qℓ2

(
(ξ−z̄)2−(ξ̄−z)2+2Ln(ξ+z−ξ̄−z̄)

)
. (31)

The second exponential is a pure phase, while the first exponential is the appropriate 
localizing Gaussian on the cylinder. In the MPS description, we use the form of the 
localizing kernel as given in equation (30), noting that the factor ωk is already incorpo-
rated in the operator Ṽ k(ω) in equation (28). The background charge gives rise to an 

incomplete Gaussian factor e
− τ2

2ℓ2
+ τ2

2qℓ2, because Ṽ k(ω) has charge q  −  1, and the factor 

e
− τ2

2qℓ2 in the kernel precisely provides the missing factor.
To sum up, the matrix associated with the ath localized quasielectron El(ξa), is the 

weighted sum of the matrix elements for the angular momentum quasielectrons Eka,l,

El(ξa) = e
−

τ2ξ
2qℓ2
∑

ka

e−
(

2π
L

)2
qℓ2k2ae

2π
L ka(ixξ+τξ)Eka,l . (32)

So far, we have not ensured that for each quasielectron, one and only one electron is 
modified for each Slater determinant. Moreover, this modified electron should be able 
to occupy an arbitrary orbital. To ensure this, we introduce an additional ‘quantum 
number’ that keeps track of precisely which modified electron operators have already 
acted. This increases the Hilbert space dimension by a factor of 2Nqe, where Nqe is the 
total number of quasielectrons in the system. Thus, enforcing the right number of 
modified electron operators comes at a rather high price, which is why we only consider 
states with a few quasielectrons. However, using the enlarged Hilbert space it is easy to 
ensure that the modified electron operators anti-commute amongst themselves.

To explain the structure, we give the enlarged matrices corresponding to an orbital 
that is occupied by either an ordinary or a modified electron. For the case of a single 
quasielectron (where there is no explicit anti-symmetrization needed), localized at ξ1, 
the enlarged matrix reads

B̃[ pl=1] =

(
B[1] 0

El(ξ1) B[1]

)
. (33)

Angular momentum quasielectron are obtained by replacing El(ξ1) with Ek1,l. The 
first diagonal block in equation (33) corresponds to the operators for which we did not 
yet act with the modified electron operator. The in-state has non-zero elements only 
in the first block, while the out-state only has non-zero elements in the second block. 
This enforces that each Slater determinant is a sum of terms that contain precisely one 
El(ξ1). The matrix corresponding to the empty orbitals is simply block-diagonal,

B̃[ p=0] =

(
B[0] 0

0 B[0]

)
. (34)

On the orbitals with an inserted quasihole-operator, we need to multiply the B̃[ p=0] and 
B̃[ pl=1] matrices with a block-diagonal matrix with 2Nqe Hl(ηα) matrices on the diagonal.

For two quasielectrons, the enlarged matrix structure is given by

https://doi.org/10.1088/1742-5468/aab679


Matrix product state representation of quasielectron wave functions

17https://doi.org/10.1088/1742-5468/aab679

J. S
tat. M

ech. (2018) 053101

B̃[ pl=1] =

⎛

⎜⎜⎜⎝

B[1] 0 0 0

El(ξ1) B[1] 0 0

−El(ξ2) 0 B[1] 0

0 El(ξ2) El(ξ1) B[1]

⎞

⎟⎟⎟⎠
. (35)

We included an explicit sign for the case when El(ξ2) acts before El′(ξ1), (i.e. when 
l < l′), which takes care of the anti-symmetrization between the modified electron oper-
ators. The enlarged matrix structure for a system with three quasielectrons is shown in 
equation (D.7) and the generalization to the cases with more quasielectrons is straight-
forward. We note that the matrix elements B̃[ pl] for the modified electron operator are 
orbital dependent, due to the various factors described above. This is another reason 
why the MPS calculation of the quasielectron states is more costly compared to the 
states with quasiholes only.

5. Numerical implementation

All the matrices needed to numerically implement the MPS representation of the 
Laughlin state with an arbitrary number of quasiholes and quasielectrons were derived 
in the previous sections. However, there are some important technical issues that need 
to be dealt with to get an efficient numerical implementation. In this section we discuss 
the auxiliary Hilbert space and its truncation, and how to deal with both finite and 
infinite system sizes. We also introduce the observables we calculate within the MPS 
framework in our study of the Laughlin state with quasielectrons.

5.1. Auxiliary space cut-off

The auxiliary space required for the most general wave function equation (14) con-
taining quasielectron and quasihole excitations is |Q,P ,µ, Q̃, P̃ , µ̃,Γ⟩, where Γ labels 
the different blocks of the enlarged matrices, discussed in the previous sections. For 
pedagogical reasons, we first discuss the three quantum numbers Q,P ,µ associated 
with the ϕ-field. These are the only quantum numbers needed in a system without 
quasielectrons or if a single quasielectron is the only excitation in the system. On each 
orbital, the matrix elements B[0], equation (D.2) or B[1], equation (D.3), connect the left 
auxiliary space ⟨Q′,P ′,µ′| with the right auxiliary space |Q,P ,µ⟩. Most of the matrix 
elements are zero, but there are still in principle infinitely many non-zero elements, 
with Q ∈ Z, P ∈ N and µ an integer partition of P. However, the contribution to the 
wave function decreases exponentially with increasing |Q| and P, because of the expo-
nential factors originating from the free (imaginary) time evolution (see for instance 
equations (24) and (25)). One can therefore truncate the auxiliary Hilbert space by 
introducing a cut-off, P ! Pmax and |Q| ! Qmax(Pmax). The observables then converge 
to their thermodynamic values upon increasing Pmax and Qmax. We note that for larger 
circumference L, the convergence is slower, so that a larger cut-off is necessary.
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One can reduce the dimension of the auxiliary Hilbert space by noting that the 
matrix elements come in q independent sets which are called sectors. Each sector cor-
responds to one of the q degenerate ground states on an infinite cylinder. For a system 
without quasiparticle excitations, the quantum number Q changes by (q − 1) mod q 
when going from one auxiliary Hilbert space to the next, which is enforced by the 
Kronecker delta’s in the matrix elements. One can thus choose a sector by restricting 
the ‘incoming’ quantum numbers Q for the first orbital to have a definite value modulo 
q. We label the orbitals by l, with l ∈ Z. The sector is then determined by (Q− l) mod q, 
which is constant throughout the system if no quasiparticles are present. For physical 
observables, it is sufficient to analyze one sector, leading to a decrease in the dimen-
sions of the matrices by a factor of q. However, one does need q different versions of 
the matrices B[0] and B[1], dependent on l mod q. Insertion of a quasihole changes the 
sector by (plus) one. For the quasielectron, the situation is more complicated, because 
the quasielectron is non-local. The block structure in the Γ quantum number (see for 
example equation (35)) explicitly keeps track of which quasielectrons already have been 
inserted. From this, one can determine which sector the block belongs to, since that 
only depends on the number of quasielectrons (and quasiholes) that were previously 
inserted.

We now turn our attention to the quantum numbers associated with the field ϕ̃, i.e. 
Q̃, P̃  and µ̃. Because we only consider a limited number of quasiparticles in our system, 
we do not impose any additional cut-off on |Q̃|. We do impose a cut-off P̃max on P̃  in 
a similar way as for the field ϕ. In practice we often use a larger Pmax than P̃max, since 
the field ϕ̃ is only present in the operators for the quasiparticles, which are typically 
placed far apart from each other (in τ). Indeed, in the case of a single quasielectron, we 
can set P̃max = 0 without making any approximation.

5.2. Finite versus infinite cylinder

The differences between an MPS description for a finite and an infinite fractional 
quant um Hall system are small and the discussion up to this point applies to both 
cases. The main difference between the two is their respective boundary condition.

To simulate a finite cylinder, one can simply start with an in-state that has a 
specified value of Qin (we often take Qin = 0) and Pin = 0. From this, we can construct 
the possible Q and P quantum numbers (subjected to the cut-off) on the neighboring 
orbitals using the Kronecker delta’s present in the matrix elements of the matrices B[p] 
(and the matrices corresponding to the quasiholes and quasielectrons, if present). In 
this way, we can construct the full auxiliary Hilbert space for the sectors we need. For 
a finite system, we label the orbitals as l = 0, 1, . . . ,Nφ, and use the same number of 
orbitals as on a sphere, namely Nφ + 1, where Nφ = q(Ne − 1) +Nqh −Nqe.

To avoid edge effects that are necessarily present for a finite system, we can take 
advantage of the translational invariance of the ground state along the cylinder, which 
allows us to effectively simulate an infinite cylinder. In calculating observables, we still 
consider a finite number of orbitals (the simulation area), but one chooses the in and 
out states corresponding to an infinite system without quasiparticles. These can be 
obtained from the translational invariant matrices describing the ground state (equa-
tions (D.2) and (D.3)). To obtain the correct in-state for a given sector, we take the 
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product of q transfer matrices of neighboring orbitals corresponding to the sector we 
are interested in and compute the eigenvector corresponding to the largest eigenvalue 
[37, 39]. Finally, for computational reasons, it is advantageous to bring the MPS of the 
simulation region to canonical form [37].

5.3. Observables

The density profiles of Laughlin quasiholes, and their braiding statistics was first cal-
culated by Zaletel and Mong [34]. Here, we generalize their approach to also include 
quasielectrons. The real space density is given by

ρ(r⃗) =

∫
dr⃗2dr⃗3...dr⃗Ne⟨Ψ|r⃗, r⃗2, ..., r⃗Ne⟩⟨r⃗, r⃗2, ..., r⃗N |Ψ⟩

=
∑

n,m

eix(n−m) 2πL e−(( 2πn
L −τ)2+( 2πm

L −τ)2) ⟨Ψ|c†ncm|Ψ⟩
Lℓ

√
π

,
 

(36)

where the position ⃗r = (x, τ), and the sum runs over the orbitals in the simulation region. 
The correlation matrix ⟨Ψ|c†ncm|Ψ⟩ is easy to calculate in the MPS for mulation, espe-
cially if it is brought to canonical form. Then we only need to contract 2(|n−m|+ 1) 
B[ pl]-tensors and the left and right environment [37, 39]. The correlation matrix is 
Hermitian and its elements fall off exponentially away from the diagonal, so that ele-
ments corresponding to large values of |n−m| can be neglected. Examples of different 
density profiles for various quasiparticle constellations are shown and investigated in 
the next two sections.

The braid statistics of quasiparticles is evaluated by calculating the Berry phases 
associated with various exchange paths. A quasiparticle tracing out a closed path 
parametrized by ζ acquires a phase given by the Berry connection

θ =

∮
dA =

∮
dζ⟨ζ|(−∂ζ)|ζ⟩. (37)

There are two contributions to this phase: the Aharonov–Bohm phase (the charged 
quasiparticle is moved in a magnetic field) and the statistical phase that depends on the 
quasiparticles that are enclosed by the paths. To obtain the statistical phase associated 
with the process of moving one quasiparticle around another, we take the difference 
∆θ of two Berry phases. The first is associated with the process of moving one quasi-
particle around the other along some path C, while the second amounts to follow the 
same path, albeit without the other quasiparticle present. The path C we use in actual 
calculations is depicted in figure 2.

To obtain the correct statistical phase, the quasiparticles must be separated 
sufficiently far from one another.

In the limit of large separation τC → ∞ (see figure 2 for the definition of τC) it is 
easy to argue which statistical phases are possible by using the structure of the MPS 
description and assuming that the system is in a screening phase. In this limit, the 
quasiparticles have no overlap and the only impact they can have on each another 
(assuming screening) is to shift the sector the other is in. That is, the circular path at 
−τC  gives the same phase contribution regardless of whether there is a quasiparticle at 
τ = 0 or not. For the path at τC, the sector differs by ±1 depending on whether there 
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is a quasihole or quasielectron at τ = 0 or not. We know from general arguments that 
encircling q quasiparticles of the same kind (this amounts to a difference of q sectors) 
has a trivial statistical phase, i.e. ∆θC(τC → ∞) = 2πn, with n an integer. As the quasi-
particles are indistinguishable, all sectors must be equivalent and give the same phase 
contribution. Hence, the possible values for the statistical phase when encircling a 
single quasiparticle are ∆θC(τC → ∞) = 2πn/q. For q  =  3, this includes the analytically 
known statistical phases ∆θ = 2π/3 for braiding quasiholes in a Laughlin system. In the 
next two sections we calculate ∆θC(τC) numerically along the path C as a function of 
τC for various combinations of quasiparticles.

6. Properties of the quasielectron

In this section, we study the properties of the quasielectrons in the Laughlin state 
using the MPS formulation we developed in the last section. We first check the MPS 
description by comparing the Slater determinant coefficients it generates with those 
of the exact quasielectron wave functions. We then plot the density profiles of various 
states with quasielectrons. Here, we observe that in some cases, the quasielectrons are 
not localized at the expected position (τξ, xξ), but are shifted in the τ direction if other 
quasiparticles are present at smaller τ values. Evidence for this effect has previously 
been seen in the numerical studies of [22, 23], but has not been investigated in detail. 
We show that this shift is a fundamental problem of the quasielectron wave functions, 
which is also present in the angular momentum quasielectron states, and hence not 
caused by the projector that localizes the quasielectrons, nor by the MPS description 
we use to investigate these states. Because of this shift, the statistical phase associated 
with the exchange of quasiparticles is incorrect, if computed by moving a quasielectron.

6.1. Validating the MPS description

Before using the MPS description of the quasielectron for calculating observables, it 
is good to explicitly verify that the wave functions are indeed correctly represented. 
To do this we generated all the Slater coefficients of the polynomial part of the wave 
functions from the MPS formulation, for small system sizes (up to six electrons), and 

−τC τC

Figure 2. A sketch of the exchange path used in the calculation of the statistical 
phase. The stationary quasiparticle is located at (τ1, x1) = (0, 0) (×marks the spot). 
For the path depicted in the left panel, it is clear that the quasiparticle marked by 
the dot moves around the stationary quasi-particle. This path is equivalent to the 
path depicted on the right. The latter was used for the actual calculations, because 
it is convenient to move the quasiparticles at constant τ = ±τC .
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checked those against the ones obtained by explicitly expanding the polynomials in 
equation (C.2). For the cases with up to one quasihole, and an arbitrary number of 
angular momentum quasielectrons, we find exact agreement (including the overall fac-
tor) between the two formulations, provided that the cutoff in P and P̃  is large enough.

When more than one quasihole is present, the coefficients are not identical, which 
is due to the cutoff in P and P̃ . The difference disappears in the limit of large Pmax 
and P̃max. We note that the original formulation of quasiholes, as given by Zaletel and 
Mong, has the same issue. In their case, one needs to go to large Pmax to faithfully 
represent factors of the type (η1 − η2)1/q. Thus, we conclude that the MPS representa-
tion of the angular momentum quasielectrons wave functions given in equation (C.2) 
is indeed correct.

In the same way, we explicitly verified the MPS description of these wave functions 
on the cylinder. Again, the Slater coefficients obtained from the MPS description are 
in exact agreement (for small system sizes and large enough cutoff Pmax and P̃max) with 
the coefficients one obtains by explicitly expanding the cylinder wave functions.

6.2. Density profiles

We start our investigation of the properties of the quasielectron by considering the 
density profile of a single quasielectron in a q  =  3 Laughlin state (see the left panel of 

figure 3). For comparison, the right panel depicts the density profile for a single quasi-

hole. The ground state density is given by ρ = 1
q

1
δτL = 1/(2πℓ2q) = 0.053ℓ−2, where 

δτ = 2πℓ2/L is the distance between orbitals. Both the quasielectron and the quasihole 
are cylindrically symmetric around their center at (τ , x) = (0, 0). The density at the 
center of the quasihole approaches zero with increasing Pmax, and is ρ = 3.6× 10−6ℓ−2 
for Pmax = 10. Although the charges of the quasiparticles are fixed by the charge Q of 
the vertex operators creating them, we have checked explicitly that they are given by 
qqh = e/3 and qqe = −e/3.

We have studied the convergence of the density as a function of Pmax. In figure 4, 
we plot the cross section of the charge density of the quasielectron as a function of τ 
through its center. For comparison we also include the corresponding cross section of 
a quasihole. For Pmax = 6 the profile (and other data) is well converged. In later more 
complex simulations with multiple quasiparticles (requiring the ϕ̃-field) Pmax = 6 will 
be used, unless otherwise stated. The data is also well converged in the circumference L 
(not shown) and we conclude that a single localized quasielectron excitation in a ther-
modynamic Laughlin ground state can be well described by the MPS.

We next consider systems with several quasiparticles, both quasiholes and quasielec-
trons. As long as the quasiparticles are well separated in τ, the shape of both the 
quasielectrons and quasiholes are identical to those plotted in figure 3. However, the 
position of a quasielectron is shifted from (τξ, xξ) to (τξ +∆τξ, xξ), where

∆τξ = 2(q − 1)(nqe − nqh)δτ , (38)
and nqh/nqe is the number of quasiholes/quasielectrons that is located at smaller τ 
coordinates. That is, each quasielectron is shifted −2(q − 1) orbitals in the τ direction 
for each quasihole at smaller τ coordinate, and shifted by +2(q − 1) orbitals in the τ 
direction for each quasielectron at smaller τ coordinate. This shift persists even when 
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all other quasiparticles are well separated in the τ-direction. In contrast, the position 
of a quasielectron is not influenced by either quasielectrons or quasiholes at larger τ 
coordinates. In addition, the τ coordinates of the quasiholes is not influenced at all by 
the presence of other quasiparticles.

The result that only quasiparticles at smaller τ influence the position of a quasielec-
tron is not an inherent asymmetry in the setup, but rather a choice. It can be changed 
by an overall shift of all the quasielectron coordinates by changing the in quantum 
number Q̃in. For example, on an infinite cylinder it is natural to choose a symmetric 

Figure 3. The density profile of the q  =  3 Laughlin state with a quasielectron (left 
panel) and a quasihole (right panel) on an infinite cylinder with circumference 
L = 18ℓ and cut-off Pmax = 10.

Figure 4. The density cross section, through the center of a quasielectron for 
different values of Pmax (colored solid lines), through the center of a quasihole 
(black solid line) with Pmax = 9 and for the q  =  3 Laughlin ground state (black 
dashed line) as a reference, all on an infinite cylinder with circumference L = 20ℓ. 
The inset is a magnification of the left peak.
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prescription where the τ position of the quasielectrons is shifted q  −  1 orbitals towards 
every quasihole and q  −  1 orbitals away from every other quasielectron.

It is important to emphasize that the shift in the quasielectron coordinate is an addi-
tive effect, and not a small, i.e. modulo q, effect due to the different sectors. Introducing 
for instance more and more quasiholes at smaller τ coordinates of a quasielectron, will 
cause a shift proportional to the number of such quasiholes. In figure 5 we show an 
example of a system with two quasielectrons and one quasihole. The intended loca-
tion (i.e. the parameters used in the matrices associated with these quasiparticles) is 
(τη, xη) = (−12ℓ, 0) for the quasihole and (τξ1 , xξ1) = (0, 0) and (τξ2 , xξ2) = (12ℓ, 0) for 
the quasielectrons. The blue line shows the density of this system as a function of 
τ, for x  =  0. As a reference, the three dashed lines show the density as a function of 
τ for x  =  0, for systems with one quasihole at (τη, xη) = (−12ℓ, 0), one quasielectron 
at (τξ, xξ) = (0, 0) or one quasielectron at (τξ, xξ) = (12ℓ, 0), indicating the expected 
positions of the quasiparticles. The quasielectron with coordinate τξ2 = 12ℓ is indeed 
located at the intended position, because there is both a quasielectron and a quasihole 
at smaller τ, and the shifts caused by them cancel. The quasielectron with intended 
coordinate τξ1 = 0 is shifted by ∆τξ = −2(q − 1)δτ = −4δτ  in the τ direction, because 
only the quasihole has a smaller τ coordinate.

We should stress that the observed shift in the location of the quasielectrons is not 
due to an error in our MPS representation of the quasielectron states. As we reported 
above, we thoroughly checked our MPS representation. Indeed, this shift was first 
observed in [22] (see also [23] and [48]), where the electron density for composite 
fermion quasielectrons was calculated in the disk geometry by means of Monte Carlo 
(these composite fermion quasielectrons are the disk versions of the cylinder quasielec-
tron states we consider). Later the same shift was seen in [49] by an analytical calcul-
ation relying on a random phase approximation. We thus conclude that the observed 

Figure 5. The cross-section of the density for the q  =  3 Laughlin state with 
quasiparticles on an infinite cylinder with circumference L = 20ℓ. Blue solid line: 
two quasielectrons and a quasihole, where one of the quasielectrons is shifted 4 
orbitals compared to its coordinate position (P̃max = 1). The black dashed lines are 
plotted as references to show the density profile when only the quasihole or one of 
the quasielectrons is present.

https://doi.org/10.1088/1742-5468/aab679


Matrix product state representation of quasielectron wave functions

24https://doi.org/10.1088/1742-5468/aab679

J. S
tat. M

ech. (2018) 053101

shift is an actual feature of the states we study in terms of an MPS description. In 
section 7 below, we study this shift in more detail, and propose a way to correct it.

6.3. Statistical phases

With the shift detected in the quasielectron position, we expect some errors in the 
calculations of the statistical phases. If we move a quasielectron around another quasi-
particle, the location of the quasielectron will be shifted from the intended location. 
However, when we calculate the contribution of the Aharonov–Bohm phase, the 
quasielectron will be at the intended location, because no other quasiparticles are 
present. Thus, in the first step, one does not pick up the correct Aharonov–Bohm 
contribution, leading to an error in the statistical phase. We nevertheless proceed and 
plot the statistical phases ∆θC(τC) along the path C, defined in figure 2, for the four 
different ways of braiding q  =  3 Laughlin quasiholes and quasielectrons (see figure 6). 
The black (red) curve shows the result if a quasihole is moved around another quasi-
hole (quasielectron) at a distance τC, whereas for the blue (green) curve a quasielectron 
is braided around a quasihole (quasielectron), instead. These results agree for large τC 
with previous numerical studies of [22, 23, 50], but not with what is expected from ana-
lytical arguments. If a quasihole is moved around another quasihole, or a quasielectron 
around another quasielectron, the statistical phase is given by e2πi/q, while if a quasi-
hole is moved around a quasielectron, or the other way around, the statistical phase 

is given by e−2πi/q for a ν = 1
q  Laughlin state. The results we obtained are correct if a 

quasihole is moved around a quasiparticle, but we obtain the wrong sign for the phase 
if a quasielectron is moved around a quasiparticle. This is consistent with the observa-
tion that the location of the quasielectrons is shifted if another quasiparticle is present 
at smaller τ. For the incorrect cases, i.e. when a quasielectron is moved, we also observe 

Figure 6. The statistical phases ∆θC/(2π) for the four ways q  =  3 Laughlin 
quasielectrons and quasiholes can be braided around each other as a function of τC. 
The calculations are performed on an infinite cylinder with circumference L = 16ℓ. 
The data is converged in Pmax and P̃max for all data points, except those with 
quasielectron(s) and τC ! 4ℓ, where P̃max = 5 is used (P̃max = 3 for the qe-qe case).
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some small deviations from ∆θC/2π = ±1/3 at large τC, which we suspect originates 
from the numerical calculation not being fully converged.

6.4. Angular momentum states

The shift in the position of the quasielectrons is at first glance quite surprising, given 
that the exponential factor in equation (12) should localize the surplus charge related to 
the modified electron operator equation (10) at position ξ. Let us however stress again 
that the MPS representation faithfully reproduces the CFT wave functions, which are 
equivalent to the composite fermion construction, and the problem is inherent already 
in the wave function. In order to get a better understanding of the origin of this shift, 
we have calculated the density profiles for various constellations of quasiparticles in 
angular momentum states. We use a finite system, and only present the numerical 
results. The necessary formalism is given in appendix D.

In figure 7 we show two examples of density profiles as a function of τ for angular 
momentum quasielectrons on a finite cylinder. A single angular momentum quasielec-
tron appears in the expected location and is included as a reference. We observe that 
the density profiles of the angular momentum quasielectrons are shifted q  −  1 orbitals 
towards the quasihole, if there is a quasihole at smaller τ (i.e. the shift is in the negative 
τ direction) and q  −  1 orbitals away from the quasielectron if there is a quasielectron at 
smaller τ (i.e. in the positive τ direction). Thus, the shift in the location of the angular 
momentum quasielectrons is half of the shift for the localized quasielectrons in sec-
tion 6.2. As before, the shift is proportional to the difference in the number of quasiholes 
and quasielectrons that are located at smaller τ values, ∆τξ = (q − 1)(nqe − nqh)δτ  and 

Figure 7. Cross section of the density profile for a q  =  3 Laughlin state with 
quasiparticles on a finite cylinder, Ne  =  40, L = 16ℓ and P̃max = 3. Left panel: a 
quasihole at τ = 29δτ and an angular momentum quasielectron with k  =  20 (solid 
blue line). The density profile of an angular momentum quasielectron with k  =  20 
without quasihole is shown as reference (dashed black line). Right panel: two 
angular momentum quasielectrons with k = 13, 26 (solid blue line). The density 
profile of a single angular momentum quasielectron is shown as reference (k  =  13 
dashed black, k  =  26 dotted black line). Note that adding or subtracting a flux 
quantum changes the size of the droplet, which is the origin of the deviation 
between the dashed and solid curves at large τ.
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the position of the angular momentum quasielectrons is not affected by quasiparticles 
that are located at larger τ values.

These results hold as long as the separation between the quasiparticles is sufficiently 
large. They show that already the angular momentum quasielectron wave functions, 
which are used to construct the localized quasielectron states, are ‘deficient’ in the 
sense that the angular-momentum quasielectrons are influenced by the other quasipar-
ticles, even if they are far away. In the next section, we will argue that this is due to 
the quasielectrons not being properly screened.

7. Screening the quasielectrons

In the previous section, we learned that the problem of the shift in the position of 
the quasielectrons is neither due to the MPS implementation, nor to the particular 
projection that construct localized states from the angular momentum states, but is a 
deficiency in the original wave functions.

In this section we show that the problem can be traced back to the improper 
screening of the modified electron operators. We start by briefly recalling the meaning 
and significance of the plasma analogy, then use results in the so called thin-cylinder 
(or Tao–Thouless) limit (see for instance [51]) to highlight the shift problem in an 
analytically accessible setting and show how it can be cured in the case of widely 
separated quasielectrons. Next we verify the conclusions from the Tao–Thouless limit 
in a full MPS calculation, and present a modification of the quasiparticle operators 
which do localize the quasielectrons at the expected positions regardless of quasiparticle 
configuration. This also results in the correct statistical phase for all ways of braid-
ing quasiparticles around one another, showing that the topological properties are as 
expected. The modification of the quasiparticle operator has a minor drawback, namely 
that the density profile of a quasielectron is distorted, when other quasiparticles are 
located at similar values of τ (but arbitrary separation in x). This distortion can be 
cured by an additional, ad-hoc modification of the quasiparticle matrices in the MPS 
formulation, as discussed below. Finally, we discuss the theoretical significance of the 
failure of the screening and suggest an alternative CFT construction that is likely to 
localize the quasielectrons at their correct positions.

7.1. The plasma analogy—a primer

Laughlin’s plasma analogy is based on the observation that the modulus squared of the 
wave function in equation (4), can be written as

|ΨL,qh(z1 . . . zNe ; η1 . . . ηNqh
)|2 =

Nqh∏

α<β

|ηα − ηβ|
2
q

∏

α,i

|ηα − zi|2
Ne∏

i<j

|zi − zj|2qe−
1

2ℓ2

∑
j |zj |2 = e−βH ,

with β = 2/q and

H = −q2
Ne∑

i<j

ln |zi − zj|− q
∑

α,i

ln |ηα − zi|−
Nqh∑

α<β

ln |ηα − ηβ|+
q

2ℓ2

∑

j

|zj|2 .

 

(39)
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This is the Hamiltonian of a two dimensional Coulomb plasma with unit charges at the 
positions ηα and charge q particles at the positions zi in a homogeneous neutralizing 
background charge density ρ = 1/(2πℓ2). The normalization factor N  of the wave func-
tion is given by

N 2 =

∫ N∏

i<j

d2z e−βH = e−βF , (40)

where F is the free energy of the plasma with unit charge impurities at the positions 
ηα. For q ! 70, the plasma is in a screening phase [52, 53], and we can conclude that 
N  is independent of the quasihole positions ηα, as long as they are sufficiently sepa-
rated. From this it is fairly easy to show that there are no Berry phases associated 
with quasi particle braidings, so that the statistical phases can be directly read from the 
wave functions in equation (4) [20]. The quasiholes have charge e/q, since putting q of 
them at the same position corresponds to one missing electron. Using the plasma anal-
ogy, one can also show that the charges of widely separated (compared to the magnetic 
length) quasiholes are quantum mechanically sharp [50]. From this it should be clear 
that the plasma analogy is at the heart of the successful phenomenology of the Laughlin 
wave functions. For the following discussion it is important to keep in mind the physi-
cal reason for why a plasma screens: it is due to the combination of an energy cost for 
deviations from charge neutrality, and the presence of itinerant charges, or in a field 
theory language, a fluctuating charge density. Thus, for the plasma to be in a screen-
ing phase even in the more complicated cases where there are several components, it is 
important to have fluctuating charges for all components.

Turning to the realization of QH wave functions in terms of CFT correlators, we first 
notice that for the Laughlin states the electric charge of the quasiholes is directly given 
by the U(1) charge current J = i∂zϕ(z)/

√
q . This charge is indeed fluctuating (with 

respect to the constant background charge density), because the electrons are itinerant. 
The situation is different for the field ϕ̃ that is needed for the modified electron opera-
tors, which build up the quasielectrons. The field ϕ̃ does not carry electric charge, but 
nevertheless has an associated U(1) charge, as encoded by the quantum number Q̃. The 
problem lies in that this Q̃ charge does not fluctuate, while the Q charge does. In more 
technical terms, when inserting a Ṽ  operator, the incoming Q̃ charge is fixed by the 
charge of the quasiparticles that are located at smaller τ, when they are sufficiently far 
apart. Thus, the ϕ̃ field is not screened, and consequently, the quasielectron positions 
are shifted depending on the positions of the other quasiparticles.

Note, however, that while the shift in the positions of the quasielectrons indicates 
that at least one of the fields is not screened, the reverse conclusion does not hold. In 
particular, the quasiholes are located at the correct positions, even though they also 
have a component in the (unscreened) ϕ̃ field. One can understand this by noting that 
the quasihole operator is localized at η and enforces a vanishing density at this posi-
tion, at least in the limit where all the quasielectron excitations are very far from the 
quasihole. The quasielectron, on the other hand, is build from the itinerant, modified 
electrons around ξ, which are not properly screened.

One may wonder what this implies for the hierarchical states, where one inserts 
O(Ne) quasiparticles and integrates over their positions [13, 14, 54]. In this case, we 
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would expect also the ϕ̃ field to screen, as the corresponding charges have become itin-
erant in the daughter state. Indeed, while there is no rigorous proof of this, there are 
several compelling heuristic arguments for why the plasma analogy should hold for the 
hierarchical/composite fermion states, as reviewed in [18].

7.2. Screening in the Tao–Thouless limit

We believe that the shift observed in the quasielectron positions is due to the absence 
of local charge fluctuations related to the field ϕ̃. To substantiate this claim, we con-
sider the thin cylinder limit where the shift observed in the numerical calculations 
can be reproduced using analytical methods. We note that in the thin cylinder limit, 
the wave function reduces to a single Slater determinant. Consequently, in this limit 
screening, if present, is classical screening that occurs for configurations that minimize 
the Coulomb energy.

In the Tao–Thouless (TT)-limit of a thin cylinder [55], a QH wave function simply 
becomes a charge density wave that minimizes the repulsive static Coulomb energy 
(see for instance [51]). For the simple example of the q  =  3 Laughlin state with filling 
ν = 1/3, the occupation pattern of the ground state (often referred to as the TT pattern) 
is ...1001001001... , i.e. there are q  −  1 empty orbitals in between the occupied orbit-
als. A quasihole amounts to adding an extra zero to get a pattern like ...10010001001... 
while a quasielectron amounts to removing one zero ...100101001... . The horizontal line 
indicates the position of the quasihole/quasielectron.

These patterns are reproduced by taking the TT-limit of the CFT wave func-
tions, but (as shown below) the quasielectron ‘motif’ 101 is displaced by a distance 
2(q − 1)(nqe − nqh) precisely as seen in the full MPS calculation. By introducing screened 
operators (or rather, operators that do not carry Q̃ charge) this shift goes away and 
the quasielectrons appear at their expected positions. We now illustrate this with the 
simplest example of a single quasielectron and a number of quasiholes (all placed at the 
same position at a smaller τ value), first for the original (unscreened) operators, and 
afterwards for the screened versions.

Usually, one derives the TT-limit by identifying the dominant component of the 
wave function when the circumference L → 0. For the sake of completeness, such a 
calculation is presented in appendix F. Here, we use an alternative approach that is 
both simpler and more closely related to the MPS representation—the TT-limit wave 
function is reproduced by considering only the zero modes of the chiral fields. At least 
for the ground state, it is straightforward to see this from the form of the matrices in 
equations (B.5) and (B.6), as the L dependent exponential becomes maximal (in the 
L → 0 limit) when choosing the charge Q cyclically in 0, . . . , q − 1 and the momentum 
P  =  0 and P̃ = 0 throughout. As the momentum originates solely from the non-zero 
modes, we can ignore these in the TT-limit.

Taking into account only the zero modes and putting the quasielectron at position 
ωξ ∼ (τξ, xξ) and the nqh quasiholes at ω0 ∼ (τ0, x0), with τ0 ≪ τξ, we have to evaluate 
the correlator

Ψqe =
∑

α

K(ωξ,wα)⟨ObgV (ωNe) . . . V (ωα+1)Ṽ (ωα)V (ωα−1) . . . V (ω1)H(ω0)
nqh⟩ ,

 

(41)
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where the kernel K is defined in equation (12), and where only the zero modes are kept 

in the vertex operators, e.g. V (ωj) =: ei
√
q(ϕ0+iπ0

2π
L (ixj−τj)) :. To evaluate equation (41), 

we assume that all coordinates are ordered such that τ0 < τ1 < . . . < τN  and use the 
following formula to normal order two vertex operators containing only the zero modes

: eiγ1(ϕ0+iπ0
2π
L (izj)) : : eiγ2(ϕ0+iπ0

2π
L (izk)) := ωγ1γ2

j : ei(γ1+γ2)ϕ0+iπ0
2π
L (γ1izj+γ2izk) : .

 (42)
Normal ordering with respect to the background charge reproduces the Gaussian factor 
needed for a LLL wave function.

Up to unimportant phases and overall factors that we ignore, the wave function 
becomes

Ψqe ∼
∑

α,s

ω̄s
ξe

− 1
2qℓ2

[τ2ξ+2(δτqs)2]
Ne∏

j=1

e
1

2ℓ2
(δτµα

j )
2

︸ ︷︷ ︸
≡W (α,s)

×
Ne∏

j=1

e−iδτxje−
1

2ℓ2
(τj−δτµα

j )
2

,
 (43)

with

µα
j =

⎧
⎨

⎩

q( j − 1) + nqh for j < α
(q − 1)( j − 1) + s− 1 for j = α
q( j − 1) + nqh − 1 for j > α,

 (44)

where δτ = 2πℓ2

L  again denotes the separation of two single-particle orbitals on the 
cylinder. The extra contribution of s  −  1 for µα

α originates from the kernel and the 
derivative. We can interpret the summands of equation (43) as a product state of 
single-particle orbitals, where the µα

j  are nothing but the momentum labels of the occu-
pied orbitals. In the thin cylinder limit, only the product state with the maximal weight 

exp[− 1
2qℓ2 (τ

2
ξ + 2(δτ qs)2)]W (α, s) survives.

In order to maximize the sum over α (for any given s), we note that W (α, s) can be 
written as (up to overall factors that are independent of α and s and that are ignored 
in the following)

W (α, s) ∼ exp

[
−(q − 1)

δτ 2

2ℓ2

{
α2 − 2α(s− nqh +

1

2
)

}]
exp

[
δτ 2

2ℓ2
(s2 − 2qs)

]
,

 

(45)

which becomes maximal at α0 = s− nqh or α0 = s− nqh + 1 (both choices lead to the 
same thin cylinder pattern—in fact, they will yield the position of the right/left ‘1’ of 
the ‘101’ quasielectron motif respectively). Reinserting α0 in W (α, s) yields

W (α0, s) ∼ exp

[
δτ 2

2ℓ2
{
qs2 − s(2nqh(q − 1) + q + 1)

}]
, (46)

independent of which of the two possibilities for α0 we choose. Now we need to maxi-
mize over s, i.e. maximize

ω̄s
ξ exp

[
−(δτqs)2

qℓ2

]
W (α0, s) ∼ exp

[
−qδτ 2

2ℓ2

{
s2 − 2s

(
τξ
qδτ

− 2nqh(q − 1) + q + 1

2q

)}]
,

 (47)
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which happens for s0 =
τξ
qδτ − 2nqh(q−1)+q+1

2q . In order to find the approximate quasielec-

tron position we reinsert s0 and both choices of α0 into µα
α and take their mean to get

δτµα
α = τξ − 2δτ(q − 1)nqh − (q + 1)δτ . (48)

Thus, the position of the quasielectron is shifted by 2(q − 1)nqh orbitals (up to the con-
stant shift of (q + 1)δτ) towards the quasiholes at position ω0.

We now redo the calculation using screened quasiparticle operators. Since we have 
already removed the non-zero modes, screening the quasielectron operators amounts 

to removing the ϕ̃ field, so that e.g. H(ω0) = e
i 1√

q (ϕ0+iπ0
2π
L (ix0−τ0)), and similarly for the 

quasielectron. Since the operators no longer carry any Q̃ charge, they are trivially 
screened. Here, however, we face a complication. The original operators were constructed 
so that the wave function was analytic in all the electron coordinates, corresponding 
to a LLL wave function. This was actually the original rationale for introducing the ϕ̃ 
field. Removing ϕ̃ unavoidably introduces non-analytic factors ωn/q, thus making the 
integrals equation (18) ill-defined. Note that this difficulty only appears for the coordi-
nates related to a quasielectron operator. The wave functions are also non-analytic in 
the quasihole coordinates, η, but this poses no problem since η is not integrated over. 
The minimal way out of this conundrum is to enlarge the integration range as follows

∫ L

0

dx

L
→
∫ qL

0

dx

qL
 (49)

which does not effect the integrals over integer powers of ω, but makes integrals over 
ωn/q well defined. To be consistent, we should also modify the projection kernel,

K(ω1,ω2) →
q−1∑

r=0

∑

s∈Z

(ω̄1ω2)
s+r/qe

− 1
2qℓ2

(τ21+τ22+2δτ2(qs+r)2)
. (50)

Taking this into account, we get the following expression for the quasielectron wave 
function

Ψqe =
∑

α,s,r

(ω̄ξwα)
s+r/qe

− 1
2qℓ2

(τ2ξ+τ2α+2δτ2(qs+r)2)

× ⟨ObgV (ωNe) . . . V (ωα+1)Ṽ (ωα)V (ωα−1) . . . V (ω1)H(ω0)
nqh⟩ .

 

(51)
Again, this is nothing but a product of Gaussians with weights that depend on α and 
s, except that the µα

j  are now given by

µα
j =

⎧
⎪⎨

⎪⎩

q( j − 1) + nqh for j < α

(q − 1)( j − 1) + (q−1)
q nqh + s+ r

q − 1 for j = α

q( j − 1) + nqh − 1 for j > α

. (52)

The constant r is chosen such that µα
α is an integer, i.e. r ≡ nqh − qn0, where n0 is the 

appropriate integer such that r ∈ [0, q − 1]. We proceed in the same way as above, by 
first maximizing over α for any given s (again, overall factors that do not depend on α 
or s are ignored in the following):
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W (α, s) ∼ exp

[
−(q − 1)

δτ 2

2ℓ2

{
α2 − 2α(s− n0 +

1

2
)

}]
exp

[
δτ 2

2ℓ2
{
s2 + 2s(nqh − n0 − q)

}]
.

 (53)
The maximum occurs at α0 = s− n0 or α0 = s− n0 + 1, and the corresponding weight 
is given by

W (α0, s) ∼ exp

[
δτ 2

2ℓ2
{qs2 + s(2r − q − 1)}

]
. (54)

We now proceed to maximize the sum over s, i.e. the expression

ω̄s+r/q
ξ e

− δτ2(qs+r)2

qℓ2 W (α0, s) ∼ exp

[
−qδτ 2

2ℓ2

{
s2 − 2s(

τξ
qδτ

− 2r + q + 1

2q
)

}]
.

 (55)
This is maximized by s0 =

τξ
qδτ − 2r+q+1

2q , which fixes the approximate quasielectron posi-
tion to

δτµα
α = τξ − δτ(q + 1). (56)

The shift in the quasielectron position is a constant that is independent on the number 
of quasiholes. Such a shift can easily be compensated for by changing the details of how 
the screening charges are introduced.

7.3. Properties of screened quasielectrons

Above we discussed the role of fluctuating charges for the localization of the quasielec-
trons in their desired positions. In the TT limit the ϕ̃-field can be completely removed 
and therefore the lack of fluctuations does no longer pose a problem for the positions 
of the quasielectrons. Below we use these insights and investigate ways to improve the 
quasielectron wave functions. These changes can easily be implemented in the MPS 
description from section 4, which describes the states with the shifted quasielectrons.

The ϕ̃ field only enters the wave functions through the quasiparticle operators, so 
any fluctuations would have to come from an added background field. There is no obvi-
ous recipe on how to create this fluctuating background field. One constraint is that the 
Q̃ quantum number only can take integer values on the bonds. With opposite ϕ̃-charge 
on the quasihole and quasielectron, the background field needs to accommodate both 
signs of the charges. Numerically we have tried several different versions where the 
neutralizing charge is allowed to fluctuate on every orbital. However, we could not find 
any background prescription with promising behavior.

Having had no success with introducing a fluctuating background field, we next 
consider another way of ‘screening’ the operators, inspired by our screening prescrip-
tion in the TT-limit, which is by removing the part of the quasiparticle operators that 
creates the Q̃ charge, namely e±i(q−1)ϕ̃0/

√
q(q−1). For quasiparticles on a cylinder far 

apart in τ, only the ϕ̃0 component of the ϕ̃ field contributes to the wave function and 
it is indeed this contribution that gives rise to the observed shift.

Numerically, we observe that the non-zero modes of the ϕ̃-field are irrelevant for 
quasiparticles that are separated by ∆τ ! 15ℓ, meaning that P̃max = 0 can be used 
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in those situations. The only part left of the ϕ̃-field is the zero mode, which can be 
screened. Updated quasiparticle operators on a cylinder with a finite circumference L, 
that give the correct asymptotic behavior, can be written as the screened (or neutral-
ized) operators

Hl(ηα) → e−i(q−1)/
√

q(q−1)ϕ̃0/2Hl(ηα)e
−i(q−1)/

√
q(q−1)ϕ̃0/2

El(ξa) → ei(q−1)/
√

q(q−1)ϕ̃0/2El(ξa)e
i(q−1)/

√
q(q−1)ϕ̃0/2,

 (57)

with Hl(η) given in equation (D.9) and El(ξ) in equation (32). This screening pre-
scription essentially amounts to having a screening charge smeared evenly around the 
circumference of the cylinder. The choice of putting half of the screening charge on 
each side of the operator rather than dividing it in some other way only amounts to a 
microscopic change of the quasielectron position. However, we note that the shift of all 
quasielectrons when putting the full screening operator on one side can be canceled by 
a corresponding shift in the in and out charge of the ϕ̃-field.

An example showing that the screened operators give the desired result is presented 
in the upper left panel of figure 8. The density profile as a function of τ at x  =  0 is 
shown for two quasielectrons with coordinates (τξ1 , xξ1) = (0, 0) and (τξ2 , xξ2) = (12ℓ, 0) 
and a quasihole at (τη, xη) = (−12ℓ, 0) for the q  =  3 Laughlin state. All three quasiparti-
cles are located at the expected positions. In fact, we confirmed that with this prescrip-
tion, when the τ separations between the quasiparticles are large, the quasielectrons 
are always at the expected positions, regardless of how many other quasielectrons or 
quasiholes are present. In addition, the density profiles are also as expected (that is, 
equal to the density in the absence of other quasiparticles) as long as they are all widely 
separated in the τ direction.

However, when quasiparticles are close in τ, even if they are well separated in x, 
they do not have the expected density profile for some configurations. In fact, in some 
cases they are not even cylindrically symmetric, because the screening is only in the 
τ-direction and the quasielectrons are non-local in the description we use. A surpris-
ing observation is that the unscreened operators, equations (D.9) and (32), give rise 
to quasiparticles with reasonably symmetric density profiles, localized at the expected 
positions, provided that their relative coordinates fulfill ∆τ ≈ 0.

We use this observation to make an ad hoc modification of the screened quasi-
particle operators, so that the resulting operators give rise to quasielectrons with the 
expected density profile, localized at the expected position, independent of the position 
of the other quasiparticles. The original, unscreened quasiparticle operators give rise to 
the phases

Hl(η) ∝ e−i
(q−1)(nqe−nqh)

q
2πxη
L

El(ξ) ∝ ei
(q−1)(nqe−nqh)

q

2πxξ
L ,

 
(58)

where nqh and nqe are the number of quasihole and quasielectron operators at smaller 
τ. These phases are necessary for giving the quasiparticles the expected shape, when 
other quasiparticles are close by in τ, but their contribution for quasiparticles well sepa-
rated in τ amounts to an overall phase of the wave function. Note that these phases 
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are absent in the screened quasiparticle operators. An ad hoc addition of them to equa-
tion (57) localizes the quasielectrons at the expected positions for all configurations we 
could test, even when ∆τ ≈ 0. It is interesting to note that the only difference between 
the original, unscreened quasiparticle operators and the screened operators with the ad-
hoc phases added, lies in the τ dependence. The dependence on x, via the phases that 
localize the quasielectrons, is the same.

To summarize, our prescription for a general Laughlin state, containing quasielec-
tron excitations, requires screening of the quasiparticle operators and an ad hoc addi-
tion of phase factors. We argue that this prescription gives the correct result for well 
separated quasiparticles, i.e. ∆τ ! 15ℓ, because the results are converged already for 
P̃max = 0, such that the quasiparticles behave as they do in the TT-limit. For reason-
ably short τ separations, 4ℓ ! ∆τ ! 15ℓ, we can numerically reach convergence in 
P̃max and find that the quasiparticles have the desired asymptotic shape if they are 
also well separated in x. If they overlap, their shape is, as expected, distorted due to 
finite distance effects. For small τ separations, ∆τ ! 4ℓ, we are not able to fully reach 
convergence in all of our simulation parameters simultaneously, because one needs 
rather large circumferences, which require large cut-offs Pmax and P̃max. However, for 
all configurations we simulated, the (non-converged) results were consistent with the 
expected density profiles.

The simplest such configuration we simulate consists of two quasielectrons, one 
located at (0, 0) and the other at (0, L2 ). A contour plot of the density is shown in the 
lower middle panel of figure 8, together with a cut along the x direction in the upper 
right panel (solid blue line). To verify that the obtained density is reasonable, we 
compare it with the density profile of an equivalent configuration that is easy to simu-
late. Because of rotational invariance of the underlying quantum Hall liquid and the 
periodicity along the x direction, this configuration should most closely resemble an 
(infinite) chain of quasielectrons located at the same x and separated in the τ direction 
by ∆τ = L

2 . Since we can not simulate an infinite chain of quasielectrons, we instead 
simulate a chain of three quasielectrons at xξa = 0 and τξ1 , τξ2 , τξ3 = −L/2, 0,L/2, focus-
ing our analysis on the quasielectron in the middle, i.e. at (0, 0). The later configuration 
is comparably simple to simulate and the data converges for the Pmax and P̃max that we 
can reach. The corresponding density profile is plotted in the lower left panel of figure 8 
and a cut along the τ direction (from τ = −L/2 to τ = +L/2) in the upper right panel 
(dashed black line). For sake of completeness, we also show the density profile for two 
unscreened quasielectrons, located at (0, 0) and (0,L/2) respectively, in the lower right 
panel of figure 8, together with a cut along the x direction in the upper right panel 
(dashed red line). As can be seen, the density profile for all three simulations compare 
reasonably well around (τ , x) = (0, 0) but it is hard to draw strong conclusions (since it 
is hard to obtain convergence for larger values of L). Although the ad-hoc addition of 
the phases is not satisfactory from a theoretical point of view, we note that it turned 
out to be hard to find a description of the quasielectrons with both the correct topologi-
cal properties, and the expected density profile in the case of quasiparticles with similar 
τ coordinates.

We conclude this subsection by calculating the statistical phases for the quasipar-
ticles with the operators equation (57) and the ad hoc phases equation (58) added. 
In figure 9 we show the statistical phase as a function of τC, along the closed curve 
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discussed in section 5, for the four different ways quasiparticles can be braided around 
each other. As for the density profiles, we have been able to reach convergence in Pmax 
and P̃max for all data points, except for the cases with quasielectron(s) at τC ! 4ℓ. All 
curves are smooth and for sufficiently large τC, all four braiding phases converge to the 
expected statistical phases, obtained from analytical arguments.

7.4. Discussion and a proposal

The reason for spending so much time on the problem related to the shift in the quasielec-
tron positions is it actually pinpoints a conceptual problem with the proposed compos-
ite fermion/CFT fermion quasielectron wave functions. In the CFT incarnation, the 
clearest way to state the problem is that the naive notion of localization implied by the 
exponential function in the kernel equation (31), or equivalently, the projection with the 
holomorphic delta function centered around ξ, is simply not correct. In the composite 

Figure 8. Cross-section of the q  =  3 Laughlin state on an infinite cylinder with 
the quasiparticles at the expected positions. Upper left panel: two quasielectrons 
and one quasihole, all at their expected position (blue solid line). Single unshifted 
quasiparticles are shown as a reference (black dashed lines). The parameters used 
are L = 20ℓ and P̃max = 1. Upper right and lower panels: two quasielectrons at 
τ = 0 and xξ1,ξ2 = 0,L/2 using the screened operators with added phases (blue solid 
line in the upper right panel and lower middle panel) and using the unscreened 
operators (red dotted line in the upper right panel and lower right panel). As a 
comparison (see the main text), we plot the profile of three quasielectrons at x  =  0 
and τξ1,ξ2,ξ3 = −L/2, 0,L/2 (black dashed line in the upper right panel and left 
lower panel). The parameters used are L = 16ℓ and P̃max = 3.
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fermion picture, it means that one can not think of the composite fermions as weakly 
interacting particles8.

As we saw in the previous section, we can solve the problem by using screened 
operators, which yield quasiparticles with the correct topological properties, and the 
expected density profiles when they are far apart. We did not find a CFT description 
that also gives ‘good’ density profiles for the quasiparticles when they are close. Having 
said that, we should also stress that as long as we consider only ground states and 
quasi hole states, the CFT description is fully consistent for the chiral hierarchy.

Given this shortcoming of the composite fermion/CFT quasielectrons, it is worth-
while to try to find other approaches to the wave functions with few quasielectrons. 
For this, we propose a variation of the quasielectron wave functions originally proposed 
by Laughlin [5]. His suggestion was to create a quasielectron at position ξ in a ν = 1/q 
Laughlin state by inserting the factor

∏

i

(2∂zi − ξ̄) .
 (59)

For ξ = 0, i.e. for a quasielectron at the origin, it is easy to see that this amounts to 
moving all electrons one orbital towards the center, thus creating an excess charge 
of e/q. If boundary effects can be ignored, the same is true for a quasielectron at an 
arbitrary position. The Laughlin quasielectron wave functions have been studied both 
analytically [21] and numerically [22, 23, 50, 56], and show two important features that 
differ from the composite fermion/CFT wave functions. First, the Laughlin quasielec-
tron is localized at the correct position independent of the presence of other quasipar-
ticles, i.e. there is no spurious shift of the position. Secondly, care has to be taken when 
calculating the statistics, in that the braiding phases are well defined only for paths 
that encircle an area that is small in the sense of enclosing O(1) of the Ne particles in 
the system [56]. Thus, this version of the quasielectron also does not have the right 
topological properties. The braiding phases of the properly screened composite fermion/
CFT quasielectrons, on the other hand, converge to the expected value for any path 
that keeps the particles sufficiently far apart, as we showed in the previous section.

We now consider the methods developed in [57, 58] to find a CFT version of the 
Laughlin quasielectron wave functions. To do so, we use the following modified wave 
function for the ν = 1/q Laughlin state9:

ΨL,qh(z1 . . . zN) = PLLL

N∏

i<j

|zi − zj|2(zi − zj)
qe−

1
4ℓ2

q+2
q

∑
j |zj |2

= PLLL⟨Obg

N∏

i=1

V (zi, z̄i)⟩ ,
 

(60)

where PLLL projects on the lowest Landau level, and the modified vertex operator 
describing the electrons is given by,

8 There are other, more well-known difficulties with interpreting composite fermions in the QH states as quasipar-
ticles; superficially they are, in accordance with their name, fermions, but the long range statistical interactions in 
fact makes them into anyons.
9 On the disk, the modified Gaussian factor amounts to a choice, but it corresponds to the natural form for the 
wave functions on the sphere and the torus.
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V (z, z̄) =: ei
√
q+1ϕ(z) :: eiχ̄(z̄) :, (61)

with χ̄ an anti-holomorphic scalar field. States of this type were originally proposed 
by Girvin and Jach [59]. Note that the only difference between equation (60) and the 
original Laughlin state is that the electrons are pushed further away from each other 
while all phases remain the same. Wave functions constructed from correlators of ver-
tex operators with both holomorphic and anti-holomorphic components were discussed 
in some detail in [18, 57, 58] where it was proposed that they have good topological 
properties in the sense that braiding phases can be read directly from the monodromies 
just as for fully chiral states. The present case is the simplest example of such a wave 
function.

It is easy to construct a CFT version of a Laughlin quasielectron by inserting the 
local operator

Ploc(ξ) =: eiχ̄(ξ̄) :

in the correlator in (60). After projection it will yield the Jastrow-type factor (59). Note 
that the field χ̄ is not properly screened. Even though the charge associated with χ̄ 
does fluctuate, these fluctuations are not independent of the charge fluctuations of the 
field ϕ: they are coupled via the electron operator (61). Nevertheless, we still expect 
the density profile of the quasielectron created by Ploc(ξ) to be centered around ξ. 
The argument is the same as the one used in section 7.1 to explain why the quasihole 
operator creates a quasihole that is located at the expected position, despite the fact 
that it involves the unscreened field ϕ̃. Namely, the operator is both local, and does 
not involve operators describing the itinerant electrons. Thus, it seems likely that the 
corre sponding quasielectron shows the expected braiding phase for any braiding path 

Figure 9. The statistical phases ∆θC/(2π) for the four ways q  =  3 Laughlin 
quasielectrons and quasiholes can be braided around each other as a function 
of τC, for the screened quasiparticle operators with the additional phase. The 
calculations are performed on an infinite cylinder with circumference L = 16ℓ. 
The data is converged in Pmax and P̃max for all data points, except those with 
quasielectron(s) and τC ! 4ℓ, where P̃max = 5 is used (P̃max = 3 for the qe–qe case).
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that keeps the quasiparticles sufficiently far apart. In other words, it should not show 
the O(1/Ne) contributions to the braiding phase that plague Laughlin’s original con-
struction [50].

Note that we pay a rather high price for being able to write a local operator for 
the quasielectron. We had to introduce a new independent field χ̄. One should also 
be aware that it is highly nontrivial to carry out the LLL projection required in equa-
tion (60), although some promising methods have been developed recently by Fremling 
et al [60].

8. Summary and outlook

In this article we derived and implemented quasielectron excitations of the Laughlin 
state in the MPS formalism [34]. The presence of quasielectrons leads to several compli-
cations compared to the case with quasiholes only. First, due to the non-local nature of 
the quasielectron operator, the MPS description of quasielectrons cannot be made site-
independent. Since the quasielectrons are obtained by a modification of the electron 
operators, even the matrices corresponding to the electrons become site-dependent. The 
additional chiral boson field ϕ̃ that is needed to describe systems with multiple quasi-
particles substantially increases the matrix size, in particular when quasiparticles are 
in close proximity. In addition, for several technical reasons such as the need to anti-
symmetrize the quasielectrons, the bond dimension has to be increased even further. 
Regardless of all these complications, the MPS formalism is still the best numerical 
method available for systems with quasielectrons, both in terms of accuracy and acces-
sible system sizes.

When studying the properties of the quasielectrons we observe shifts in their position 
depending on whether other quasiparticles are present or not, even when these quasi-
particles are far from the quasielectrons. These shifts are due to a fundamental problem 
in the construction of the quasielectron, that is, the lack of screening of the charge of 
the additional field. Due to these shifts, the calculated statistical phases are incorrect. 
With insights from the thin-cylinder limit, we found a screening prescription for the 
quasihole and quasielectron operators that works for quasiparticles that are well sepa-
rated in the direction along the cylinder. With this modification, the correct statistical 
phases are obtained. However, with the screening in place, the quasielectrons do not 
have the right shape in the presence of other quasiparticles that are separated only in 
the direction around the cylinder. This problem can be cured by an ad-hoc modification 
that numerically works well for all configurations we could test. This modification does 
not affect the states with quasiparticles that have a large separation along the cylinder, 
so also the modified quasielectron has the correct topological properties.

Our MPS description for states with quasielectrons in the Laughlin state opens 
up various possibilities for future studies. First of all, it stresses the importance of 
having a full analytic understanding of how to screen the quasiparticles in arbitrary 
configurations. It would be interesting to try to extend the MPS formalism to describe 
the Girvin-Jach modification of the Laughlin state, since we argued that quasielectrons 

https://doi.org/10.1088/1742-5468/aab679


Matrix product state representation of quasielectron wave functions

38https://doi.org/10.1088/1742-5468/aab679

J. S
tat. M

ech. (2018) 053101

in this state should have the correct topological properties. This can be properly tested 
with an MPS description at hand, and it would also be very interesting to investigate 
and compare the entanglement spectra of both formulations in detail. The quasielec-
tron states also form a stepping stone towards the description of the hierarchical/Jain 
composite fermion states. Since in this case, the charge associated with the additional 
field is properly fluctuating, the quasiholes over these state will be located at the cor-
rect position. This will make it possible to check the statistical properties of quasipar-
ticles over the ν = 2/5 composite fermion state with high numerical accuracy.
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Appendix A. The chiral boson CFT

We collect the properties of the chiral boson CFT that we use in the paper. We refer 
to [61, 62] for more information about CFT. The Laughlin wave function can be writ-
ten as a correlator of the chiral part, ϕ(z), of a massless bosonic field ϕ, defined by the 
action

S =
1

8π

∫
d2x∂µϕ∂

µϕ . (A.1)

The two-point function is given by

⟨ϕ(z1)ϕ(z2)⟩ = − log(z1 − z2) . (A.2)
The chiral boson can be expanded in modes as

ϕ(z) = ϕ0 − iπ0 ln(z) + i
∑

n ̸=0

an
n
z−n,

 (A.3)

with the non-trivial commutators

[ϕ0, π0] = i [an, am] = nδn+m,0, (A.4)
while all the other commutators vanish. The modes fulfill a−n = a†n, and we define a−n 
with n  >  0 as the creation operators of the non-zero modes.

For a compactified boson with radius R =
√
q, we define charge states as

π0|Q⟩ = Q
√
q
|Q⟩ an|Q⟩ = 0 (n > 0) . (A.5)
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The operator eiβϕ0 adds a charge β
√
q ,

eiβϕ0 |Q⟩ = |Q+ β
√
q⟩, (A.6)

so in particular |Q⟩ = e
i Q√

qϕ0 |0⟩, where Q is an integer and |0⟩ denotes the vacuum, i.e. 

π0|0⟩ = an|0⟩ = 0 for n  >  0.
General states are obtained by acting with the non-zero modes on the states |Q⟩. 

These states are labeled by the integer charge Q and the occupation numbers of the 
non-zero modes mj, with j  >  0. Alternatively, the occupation numbers can be com-
bined into a partition. A partition µ of a positive integer P = |µ| =

∑
j>0 jmj is a set 

of weakly decreasing integers, µ = (µ1,µ2, . . . ,µl), such that 
∑l

i=1 µi = |µ|. The µi are 
called the parts of the partition, and the orbital occupation number mj is the number 
of parts of µ that are equal to j. Because the momentum P plays an important role, we 
label the states as |Q,P ,µ⟩, even though P is fixed by µ, and write

|Q,P ,µ⟩ = 1
√
zµ

∞∏

j=1

a
mj

−j |Q⟩ . (A.7)

The normalization, zµ =
∏∞

j=1( j)
mj(mj!), can be computed straightforwardly 

using the commutators (A.4). In the MPS matrices, we often need to evaluate 
L0 =

1
2π

2
0 +

∑
j>0 a−jaj, whose action on the states only depends on Q and P, namely 

L0|Q,P ,µ⟩ = (Q
2

2q + P )|Q,P ,µ⟩.
Finally, we state the matrix elements of the normal ordered vertex operators 

: eiβϕ(z) :. We define the normal ordering as

: eiβϕ(z) := e−β
∑

n<0
an
n z−n

eiβϕ0eβπ0 ln(z)e−β
∑

n>0
an
n z−n

. (A.8)
Again using (A.4), it is straightforward to evaluate the matrix elements 
M = ⟨Q′,P ′,µ′| : eiβϕ(z) : |Q,P ,µ⟩,

M = ⟨Q′,P ′,µ′| : eiβϕ(z) : |Q,P ,µ⟩ = δQ′,Q+
√
qβz

βQ√
q+P ′−P

Aβ
µ′,µ, (A.9)

where

Aβ
µ′,µ =

∞∏

j=1

m′
j∑

s=0

mj∑

r=0

δmj−r,m′
j−s

(−1)r√
r!s!

( β√
j

)r+s

√(
m′

j

s

)(
mj

r

)
. (A.10)

Appendix B. The matrices for the ‘polynomial’ version of the states

It is useful to have an MPS representation of the polynomial part of the Laughlin 
state, in particular to check the MPS description against the explicit Slater coefficients, 
which can be obtained by expanding the wave function for a small number of electrons. 
The matrix elements can be obtained from those for the cylinder by taking the limit 
L → ∞, but it is instructive to derive the MPS description of the polynomial part of 
the Laughlin state directly. In this appendix, we follow [41].

Our starting point is the observation that the polynomial part of the Laughlin wave 
function can be written as the CFT correlator
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ΨL,pol =
∏

i<j

(zi − zj)
q = ⟨0|e−iNe

√
qϕ0V (zNe) · · ·V (z1)|0⟩, (B.1)

where the operator V (z) =: ei
√
qϕ(z) : creates an electron at position z. The operator 

e−iNe
√
qϕ0 ensures that the correlator is charge neutral. In appendix A, we provide the 

details of the CFT associated with the chiral boson field ϕ(z).
The MPS technique provides an expression for the expansion coefficients cλ of 

the Laughlin wave function in terms of Slater determinants, ΨL,pol =
∑

λ cλ,pol slλ, 
where the partitions λ = (lNe , . . . , l2, l1) encode which single-particle orbitals are occu-
pied for a given Slater determinant. Thus, the li are all distinct, and are ordered as 
0 ! l1 < l2 < · · · < lNe ! Nφ = q(Ne − 1), where Nφ is the highest power of any of the 
zi in equation (B.1). In the MPS formulation, there is a matrix associated with each 
orbital. One therefore needs to express the correlator in equation (B.1) in terms of 
orbitals, rather than the positions of the electrons. This can be achieved by (Fourier) 
expanding the operators V (z) in modes,

V (z) =
∑

l∈Z

zlV−h−l V−h−l =
1

2πi

∮
dz

z
z−lV (z), (B.2)

where h is the scaling dimension of V (z), namely h = q
2 and the contour is around z  =  0. 

This results in the following expression for the cλ,pol

cλ,pol =

∮ Ne∏

j=1

dzj
(2πi)zj

z
−lj
j ΨL,pol =

∮ Ne∏

j=1

dzj
(2πi)zj

z
−lj
j ⟨0|e−iNe

√
qϕ0V−h−lNe

· · ·V−h−l1 |0⟩.

 (B.3)
By inserting a complete set of states between the modes, one obtains an MPS expres-
sion for the coefficients cλ,pol. This complete set of states forms a basis for the Hilbert 
space associated with the chiral boson CFT (see appendix A).

In the present form, the matrices one would obtain for the electrons depend on the 
orbital the electron in question occupies. As was observed by Zaletel and Mong [34] 
(see also Estienne et al [41]), it is however possible to obtain a site-independent MPS. 
We start by noting that V−h−l = eil/

√
qϕ0V−he−il/

√
qϕ0, which follows from the commuta-

tion relation eiβϕ0 : eiαϕ(z): = z−αβ : eiαϕ(z): eiβϕ0 and the definition of the mode expansion 
equation (B.2). The resulting expression for the cλ,pol is

cλ,pol = ⟨q − 1|e−i(Nφ+1−lNe )ϕ0/
√
qV−he

−i(lNe−lNe−1)ϕ0/
√
q · · · e−i(l2−l1)ϕ0/

√
qV−he

−il1ϕ0/
√
q|0⟩,

 (B.4)where ⟨q − 1| = ⟨0|e−i(q−1)ϕ0/
√
q. We can now ‘spread out’ the operators of the form 

e−i(Nφ+1−lNe )ϕ0/
√
q in such a way that we associate the operator e−iϕ0/

√
q with each empty 

orbital and the operators e−iϕ0/
√
qV−h with each filled orbital. The charge quantum 

number of the out state ensures that there are exactly Ne occupied orbitals. What 
remains to be done is to calculate the matrix elements of the operators associated with 
empty and occupied orbitals.

By using the relations stated in appendix A, we find the matrix elements for an 
empty orbital

B[0]
pol = ⟨Q′,P ′,µ′|e−iϕ0/

√
q|Q,P ,µ⟩ = δQ′,Q−1δP ′,P δµ′,µ . (B.5)
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The matrix elements for an occupied orbital are obtained as follows

B[1]
pol = ⟨Q′,P ′,µ′|e−iϕ0/

√
qV−h|Q,P ,µ⟩

=
1

2πi

∮
dz

z
⟨Q′,P ′,µ′|e−iϕ0/

√
qV (z)|Q,P ,µ⟩

=
1

2πi

∮
dz

z
δQ′+1,Q+q z

Q+P ′−PA
√
q

µ′,µ = δQ′,Q+q−1δP ′,P−QA
√
q

µ′,µ,
 

(B.6)

with A
√
q

µ′,µ given by equation (A.10). We can now calculate the Slater coefficients cλ,pol 

for the polynomial part of the Laughlin state in the MPS formulation, for instance10

c(Nφ,...,3,0),pol = ⟨q − 1|B[1]
pol · · ·B

[1]
polB

[0]
polB

[0]
polB

[1]
pol|0⟩ = 1 . (B.7)

Before discussing quasiholes, we first comment on the connection between the MPS 
for the polynomial and cylinder wave functions. From the single-particle wave func-
tions on the cylinder, we find that the Slater coefficients cλ of the cylinder wave func-
tions are related to the ones for the polynomial part of the wave functions, cλ,pol as

cλ = cλ,pol
∏

j

Nlj , (B.8)

where Nl =
√

Lℓ
√
πe+

1
2ℓ2

τ2l , with τl =
2πℓ2l
L  being the location of the center of the lth 

orbital.
By comparing the matrix elements for the polynomial part of the wave function, 

equations (B.5) and (B.6) with the ones relevant for the cylinder, equations (24) and 
(25), one observes that the only difference lies in the exponential factors present in the 
cylinder matrices, which take into account the background charge. It is a useful exercise 

to explicitly calculate the total effect of these exponential factors e
− 2π

L δτ
(
L0+

1
2
√
qπ0+

1
6q

)
, 

which are present at each orbital. One finds that

−
Nφ+1∑

j=1

(
L0,j +

1

2
√
q
π0,j +

1

6q

)
= −n3

6q
+

n

2
(n− q)

Nφ∑

l=0

pl −
1

2
(2n− q)

Nφ∑

l=0

lpl +
1

2

Nφ∑

l=0

l2pl .

 (B.9)
Here, the pi’s are the fermion occupation numbers of the orbitals and n = Nφ + 1 denotes 

the number of orbitals. We have 
∑Nφ

l=0 pl = Ne, as well as 
∑Nφ

l=0 lpl =
q
2Ne(Ne − 1), which 

is the total angular momentum of the droplet (which is constant, because we do not 
consider quasiholes). Apart from constant factors and terms that only depend on the 
number of electrons, we indeed find that the effect of the exponential factors in the 

cylinder matrices gives the right contribution, namely e
1

2ℓ2
(2πℓ/L)2

∑
l l

2pl. This factor 
comes solely from the L0 part of the exponential in the evolution operator U ′′, see 
equation (22).

As already pointed out by Zaletel and Mong, states with quasiholes can also be 
written as a matrix product state. For completeness, we give the form of the Laughlin 
wave function in the presence of Nqh quasiholes,

10 We remark that finding explicit expressions for cλ,pol with general λ is a hard problem!
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ΨL,qh,pol =
∏

α<β

(ηα − ηβ)
1
q

∏

α,i

(ηα − zi)
∏

i<j

(zi − zj)
q .

 (B.10)

To obtain the CFT correlator that describes a state with quasiholes, one inserts the 
quasihole operators, H(η) =:ei/

√
qϕ(η):, where η is the location of the quasihole, into the 

correlator. The radial ordering of the correlator fixes the effective position of the quasi-
hole operator. At the level of the MPS, one can actually choose the points at which 
one inserts the matrix corresponding to the quasihole and as we see below, the matrix 
elements depend on this choice.

The matrix elements of the quasihole operators are easily obtained. The labels of 
the orbitals are 0, 1, . . . ,Nφ, and we denote the position of the quasihole operator by l 
if it is inserted between the operators corresponding to orbitals l  −  1 and l. Because of 
the spread-out back-ground charge, we find that we actually need to calculate the fol-
lowing matrix elements

⟨Q′,P ′,µ′|e−il/
√
qϕ0 : ei/

√
qϕ(η): eil/

√
qϕ0 |Q,P ,µ⟩ = ηl/q⟨Q′,P ′,µ′| : ei/

√
qϕ(η): |Q,P ,µ⟩

= η(Q+l)/q+P ′−P δQ′,Q+1A
(1/

√
q)

µ′,µ .

 

(B.11)

We note that there is no δ-function relating P ′ and P, which for the electron operators 
arises from the contour integration that picks up the appropriate mode.

The electron operator V (z) and the quasihole operator H(η) anti-commute, which is 
reflected in the anti-symmetric factor (z − η) that is present in the wave function, see 
equation (B.10). Therefore, we have to introduce an additional sign in the matrices for 
the quasiholes. This sign keeps track of how many matrices corresponding to occupied 
orbitals already acted at the point where one acts with the matrix corresponding to the 
quasihole. We denote this sign by (−1)#V . This information can be obtained from the 
quantum number Q and the position of the quasihole operator. The quantum number 
Q, at the position of the matrix for quasihole with number α (i.e. α− 1 quasiholes 
are already inserted) is given by Q = −l + q(#V ) + (α− 1), where we assumed that 
the charge of the in-state is zero. The term  −l comes from the spread-out background 
charge. This leads to the sign (−1)(Q+l−(α−1))/q. Putting everything together, the ele-
ments of the matrix describing the αth quasihole, inserted at position l, read

Hl,α,pol(ηα) = (−1)(Q+l−(α−1))/qη(Q+l)/q+P ′−P
α δQ′,Q+1A

(1/
√
q)

µ′,µ . (B.12)

Appendix C. MPS for the polynomial part of the angular momentum 
quasielectrons

In this appendix, we show how to obtain the matrix elements appearing in the MPS 
expression for the polynomial version of the angular momentum quasielectron states. 
We start by considering the wave functions for an arbitrary number of quasiholes and 
angular momentum quasielectrons. In the case of finite systems, which we also consider, 
it is important to use states that are valid on the sphere (up to the single-particle nor-
malization factors). These states can be obtained from the techniques presented in [63], 
which we review in appendix E.
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We assume that there are Ne electrons, Nqh quasiholes, and Nqe quasielectrons. We 
see below that the number of quasielectrons that is possible depends on both Ne and 
Nqh. The number of modified electron operators is Nqe, which already implies that 
Nqe ! Ne, but there are more constraints. We start by defining the ‘relative’ part of 
the wave function, that one obtains by simply using the primary vertex operators i.e. 
without taking the derivatives into account (see below)

ψrel =
∏

α<β

(ηα − ηβ)
∏

i<j

(zi − zj)
q
∏

a<b

(za − zb)
q−1
∏

i,a

(zi − za)
q−1
∏

i,α

(zi − ηα),

 (C.1)
where the coordinates of the ‘modified’ electron operators are z1, . . . , zNqe, while the 
remaining coordinates zNqe+1, . . . , zNe correspond to ‘normal’ electron operators. The 
locations of the quasiholes are η1, . . . , ηNqh. For the electron coordinates z, the indices 
a, b run over 1, . . . ,Nqe, while i, j run over Nqe + 1, . . . ,Ne. For quasiholes, the indices 
α, β run over 1, . . . ,Nqh.

The wave function for the angular momentum quasielectrons depends on the Nqe 
distinct angular momenta ka, which satisfy ka ! Ne + 1 +Nqh −Nqe = kmax. In terms 
of these, the polynomial part of the wave function is given by

ψ(ka)
qh,qe,pol(z; η) = A

[
∏

a

(
zkaa ∂za −

ka
kmax

(q − 1)(Ne − 1)zka−1
a

)
ψrel

]
, (C.2)

where the anti-symmetrization is over all electron coordinates.

The wave functions ψ(ka)
qh,qe,pol(z; η) were in fact obtained from a CFT correlator, 

just as in the case for the Laughlin states without quasielectrons. The operators corre-
sponding to the electrons, modified electrons and quasiholes are, using the notation 
fk =

k
kmax

(q − 1)(Ne − 1),

V (z) =: ei
√
qϕ(z) : (C.3)

Ṽ k(z) = (zk∂z − fkz
k−1)Ṽ (z), Ṽ (z) =: ei(q−1)/

√
qϕ(z) : : e−i(q−1)/

√
q(q−1)ϕ̃(z) :

 (C.4)
H(η) =: ei/

√
qϕ(η) : : ei(q−1)/

√
q(q−1)ϕ̃(η) : . (C.5)

Because of the field ϕ̃(z), the matrix elements of the matrices corresponding to empty 
orbitals, and orbitals occupied by ‘normal’ electrons, have to be modified slightly in 
comparison to the ones given in appendix B. We allow for arbitrary ‘in’ charges Q0 and 
Q̃0 of the ‘in state’, but note that the matrix elements considered here do not depend 
on the latter. The matrix elements read

B[0]
pol = δQ′,Q−1δQ̃′,Q̃δP ′,P δP̃ ′,P̃ δµ′,µδµ̃′,µ̃ (C.6)

B[1]
pol = δQ′,Q+q−1δQ̃′,Q̃δP ′,P−(Q−Q0)δP̃ ′,P̃A

√
q

µ′,µδµ̃′,µ̃ . (C.7)
To calculate the matrix corresponding to the modified electron operator, we proceed 

in the same way as for the Laughlin state discussed in appendix B, but we have to 
take into account a few differences. First of all, in calculating the matrix elements, we 
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need to consider the mode expansions of the operators. From the definition of the mode 
expansion, we find that the relation between the modes of Ṽ k(z) and Ṽ (z) is given by 
Ṽ k
−h−l = (l + 1− k − fk)Ṽh−l+k−1, where in both cases h refers to the scaling dimension 

of the corresponding operator. Thus, in calculating the matrix elements of the modified 
electron operator, we can replace the modes of the operator Ṽ k(z), which includes the 
derivative, by the modes of Ṽ (z) without the derivative, provided we include the factor 
(l  +  1  −  k  −  fk), where l is the mode index (i.e. the orbital associated with the operator).

Secondly, we need to consider the effect of spreading out the background charge, 
which for the Laughlin state led to site independent matrices. This followed from the 
relation V−h−l = eil/

√
qϕ0V−he−il/

√
qϕ0 for the modes of V (z). In the case at hand, we con-

sider the modes of Ṽ k(z), which read Ṽ k
−h−l = (l + 1− k − fk)Ṽh−l+k−1. Because of the 

difference between the vertex operator for ϕ(z) in V (z) and Ṽ (z), we now obtain the 
following relation instead

Ṽ k
−h−l = eil/

√
qϕ0Ṽ k

−h−l/qe
−il/

√
qϕ0 = (l + 1− k − fk)e

il/
√
qϕ0Ṽ−h−l/q+k−1e

−il/
√
qϕ0 .

 

(C.8)
This means that in order to calculate the matrix elements, we should not use the int-
egral 1

2πi

∮
dz
z  (see equation (B.6)), but 1

2πi

∮
dz
z z

−l/q+k−1 in order to pick up the mode of 
the modified electron at orbital l. The additional factor z−l/q+k−1 will change the delta 
function for the total momentum. Although the exponent of z−l/q+k−1 is in general 
fractional, combining it with the factors we obtain from calculating the expectation 
values of the vertex operators, we find that the total exponent of z in the integrand is 
an integer. The (putative) matrix elements of the modified electron operator at orbital 
l, and for a momentum k state, become

1

2πi

∮
dz

z
(l + 1− k − fk)z

−l/q+k−1⟨Q′,P ′,µ′, Q̃′, P̃ ′, µ̃′|e−iϕ0/
√
qṼ (z)|Q,P ,µ, Q̃′, P̃ ′, µ̃′⟩

= (l + 1− k − fk)δQ′+1,Q+(q−1)δQ̃′,Q̃−(q−1)A
q−1√

q

µ′,µA
− q−1√

q(q−1)

µ̃′,µ̃

× 1

2πi

∮
dz

z
zP

′+P̃ ′−P−P̃+Q−Q0+k−1− 1
q (Q−Q0+Q̃−Q̃0+l)

= (l + 1− k − fk)δQ′,Q+(q−2)δQ̃′,Q̃−(q−1)δP ′+P̃ ′,P+P̃−Q+Q0−k+1+ 1
q (Q−Q0+Q̃−Q̃0+l)A

q−1√
q

µ′,µA
− q−1√

q(q−1)

µ̃′,µ̃ .

 (C.9)
So far, we have not yet taken into account that we need to anti-symmetrize the 

modified electrons, both with respect to the ordinary electrons and amongst them-
selves. In addition, as explained in section 4, we need to make sure that in the MPS 
expansion, each term contains one and only one matrix corresponding to each modified 
electron operator. These problems were solved together in section 4 by enlarging the 
auxiliary Hilbert space (including signs for the anti-symmetrization). Here, we only dis-
cuss the signs that are necessary to take the anti-symmetrization between the normal 
and modified electron operators into account.

This can be done by introducing the factor (−1)#V . Here, #V  denotes the number 
of ordinary electrons that were inserted before the modified electron. Alternatively, one 
can also use the factor (−1)#V+#Ṽ , where #Ṽ  denotes the number of modified electrons 
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that were already inserted. The difference between these two prescriptions is merely an 
overall sign.

To calculate the factors (−1)#V  and (−1)#V+#Ṽ  at orbital l, we consider the quant um 
numbers Q and Q̃ at that point. They are given by

Q−Q0 = −l + q#V + (q − 1)#Ṽ +#qh, (C.10)

Q̃− Q̃0 = −(q − 1)#Ṽ + (q − 1)#qh, (C.11)
where #qh is the number of quasiholes matrices that acted before orbital l. This leads 
to

#V =
1

q

(
Q−Q0 + Q̃− Q̃0 + l

)
−#qh, (C.12)

#V +#Ṽ =
1

q

(
Q−Q0 + l − Q̃− Q̃0

q − 1

)
. (C.13)

We see that it is slightly easier to use (−1)#V+#Ṽ  to perform the anti-symmetrization 
of the modified electrons with respect to the ordinary electrons, because this expres-
sion does not depend on the number of quasihole matrices that already acted. Putting 
the results together, we find the following form of the matrix elements Ek,l,pol for the 
modified electron operators at orbital l and angular momentum k, that appear in the 
enlarged structure for the total electron operators (compare equations (33) and (35))

Ek,l,pol = (−1)
1
q

(
Q−Q0+l−(Q̃−Q̃0)/(q−1)

)
(l + 1− k − fk)δQ′,Q+(q−2)δQ̃′,Q̃−(q−1)

× δP ′+P̃ ′,P+P̃−Q+Q0−k+1+ 1
q (Q−Q0+Q̃−Q̃0+l)A

q−1√
q

µ′,µA
− q−1√

q(q−1)

µ̃′,µ̃ .
 

(C.14)
We end this appendix by giving the matrix elements for the quasiholes in the 

form ulation that uses the field ϕ̃. The changes in comparison to equation (B.12) are 
as follows: the exponent of the quasihole position η changes, and the sign necessary to 
anti-symmetrize the quasiholes with respect to the ‘ordinary’ electrons is now given by 

(−1)
1
q

(
Q−Q0+Q̃−Q̃0+l

)
−(α−1), for quasihole number α. The matrix elements for the αth 

quasihole, with coordinate η, inserted at position l (i.e. in between orbitals l  −  1 and l  ) 
are given by

Hl,α,pol(ηα) = (−1)
1
q

(
Q−Q0+Q̃−Q̃0+l

)
−(α−1)η

P ′+P̃ ′−P−P̃+ 1
q

(
Q−Q0+Q̃−Q̃0+l

)
α

× δQ′,Q+1δQ̃′,Q̃+(q−1)A
1√
q

µ′,µA
q−1√
q(q−1)

µ̃′,µ̃ .
 

(C.15)

This concludes the description of the matrix elements for the polynomial part of the 
wave functions.
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Appendix D. The matrices for the full cylinder states

In this appendix, we discuss the matrix elements for the quasielectron states on the cyl-
inder. In the main text, we gave the matrix elements for the operators corresponding to 
empty and occupied orbitals, in the case where the operators only depended on the field 
ϕ. Because of the presence of ϕ̃, the matrix elements B[0] and B[1] have to be modified. 
In particular, the δ-functions should be modified, as well as the time evolution matrix 
elements, which now depend not only on Q′ and P ′, but also on the quantum numbers 
associated with ϕ̃, i.e. Q̃′ and P̃ ′, though we note that there is no smeared out back-
ground charge associated with ϕ̃. The matrix elements of the time evolution become

U ′′ = e−
2πδτ
L

(
1
2qQ

′2+P ′+ 1
2qQ

′+ 1
6q

)
e−

2πδτ
L

(
1

2q(q−1) Q̃
′2+P̃ ′

)
. (D.1)

For the matrix elements corresponding to the empty orbitals and orbitals occupied by 
the unmodified electrons, these are the only differences, so that we obtain

B[0] = e−
2πδτ
L

(
(Q′)2
2q +P ′+Q′

2q +
1
6q+

(Q̃′)2
2q(q−1)+P̃ ′

)
δQ′,Q−1δP ′,P δµ′,µδQ̃′,Q̃δP̃ ′,P̃ δµ̃′,µ̃ (D.2)

B[1] = e−
2πδτ
L

(
(Q′)2
2q +P ′+Q′

2q +
1
6q+

(Q̃′)2
2q(q−1)+P̃ ′

)
δQ′,Q+q−1δP ′,P−(Q−Q0)A

√
q

µ′,µδQ̃′,Q̃δP̃ ′,P̃ δµ̃′,µ̃ .

 
(D.3)

Here, we allowed for arbitrary ‘in’ charges Q0 and Q̃0, though the latter does not 
appear in these matrix elements.

To derive the matrix elements for the modified electron operators, a few issues 
need to be taken care of. We consider a quasielectron with angular momentum k, 
and assume that the associated matrix acts at orbital l. The associated operator is (
ωk∂ω − fkωk−1

)
Ṽ (ω). To deal with the term with the derivative, it is easiest to consider 

the expressions for the Slater coefficient equations (18) and (19). Because the ϕ charge 
of the operator Ṽ  is q  −  1 instead of q, we find that we have to evaluate an expression 
of the form (we concentrate on the modified electron here, and recall that the integral 
is to be performed at fixed τ)
∫ L/2

−L/2

dx

L
eix

2π
L l(ωk∂ω − fkω

k−1)e−ix 2π
L l(1− 1

q )⟨Obg · · · Ṽ (ω) · · · ⟩

=

∫ L/2

−L/2

dx

L
eix

2π
L

l
q (l + 1− k − fk)ω

k−1⟨Obg · · · Ṽ (ω) · · · ⟩,
 

(D.4)

where we have integrated the first term by parts. In comparison to the case without 
quasielectrons, we find that there is an exponent eix

2π
L

l
q left in the integral. This expo-

nent is necessary, because when combined with the factors coming from the matrix 
elements of the operator Ṽ (ω), it ensures that the integral over x is well defined. It 
is interesting to see that a similar factor appeared in the calculation of the matrix 
elements for the polynomial part of the wave function, though there it had a rather 
different origin. We note that in the expression above, we dropped a Gaussian factor 
e−τ2l /(2qℓ

2), which is associated with the normalization of the single-particle orbitals. 
This factor naturally arises as part of the localizing kernel when we consider localized 
quasielectrons, as discussed in section 2.
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We now turn our attention to the change in the factors coming from the free 
time evolution U ′′. In appendix B, we showed explicitly that the contribution from 
U ′′ precisely gave rise to the exponential factors that are needed for the cylinder wave 
functions. Here, we are dealing with the matrix elements for the modified electron 
operators, which depend both on the orbital l and the angular momentum k. We should 
thus check if the free time evolution gives rise to l and k dependent factors, apart from 
the necessary Gaussian factors for the cylinder normalization. In the case of the local-
ized quasielectrons, we need to perform a sum over the angular momenta k, so we must 
make sure that we do not introduce any spurious k (and l ) dependent normalization 
factors. If such factors are present, they should be corrected for.

For ease of calculation, we consider the case without quasiholes, and find that the 
time-evolution does indeed give rise to the Gaussian factors that are necessary for the 
cylinder normalization. There are, however, additional contributions and we drop an 
unimportant factor that only depends on q and the number of electrons Ne. In case the 
modified electron operator acts at orbital l and describes a quasielectron with angular 
momentum k, the additional l and k dependent factor is given by

e
2πδτ
L

(
l2

2q+
l
q (

q
2−Q0−Q̃0)−k

(
l− q

2−Q0)
)
. (D.5)

In the matrix elements for the modified electron operators, we need to correct for this 
factor. Putting all the pieces together, we obtain the following matrix elements for the 
modified electron operators at orbital l and with angular momentum k

Ek,l = (l + 1− k − fk)(−1)
1
q

(
Q−Q0+l−(Q̃−Q̃0)/(q−1)

)

× e−
2πδτ
L

(
(Q′)2
2q +P ′+Q′

2q +
1
6q+

(Q̃′)2
2q(q−1)+P̃ ′

)
e−

2πδτ
L

(
l2

2q+
l
q (

q
2−Q0−Q̃0)−k(l− q

2−Q0)
)

× δQ′,Q+(q−2)δQ̃′,Q̃−(q−1)δP ′+P̃ ′,P+P̃−Q+Q0−k+1+ 1
q (Q−Q0+Q̃−Q̃0+l)A

q−1√
q

µ′,µA
− q−1√

q(q−1)

µ̃′,µ̃ .
 

(D.6)

These are the matrix elements appearing in the enlarged structure for the matrices 
describing all total electron operators B̃[ pl], which for a system with three quasielec-
trons takes the form

B̃[ pl=1] =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B[1] 0 0 0 0 0 0 0

Ek1,l B[1] 0 0 0 0 0 0

−Ek2,l 0 B[1] 0 0 0 0 0

0 Ek2,l Ek1,l B[1] 0 0 0 0

Ek3,l 0 0 0 B[1] 0 0 0

0 −Ek3,l 0 0 Ek1,l B[1] 0 0

0 0 −Ek3,l 0 −Ek2,l 0 B[1] 0

0 0 0 Ek3,l 0 Ek2,l Ek1,l B[1]

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D.7)

This form, as discussed in section 4, ensures that there is a contribution from each 
modified electron operator once and only once in the MPS, and the explicit minus signs 
take care of the anti-symmetrization between the quasielectrons. The structure for sys-
tems with one or two quasielectrons were presented in the main text and addition of 
more quasielectrons is straightforward. The corresponding matrices necessary for the 
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localized quasielectron can be obtained as described in section 4 in the main text, and 
are given by

El(ξa) = e
−

τ2ξ
2qℓ2
∑

ka

e−
(

2π
L

)2
qℓ2k2ae

2π
L ka(ixξ+τξ)Eka,l, (D.8)

with El(ξa) replacing Eka,l in equation (D.7).
Finally, we discuss the matrix elements for the quasihole operators. The differences 

with the corresponding expression in the case where one only uses the field ϕ(ωη) are 
straightforward, and one obtains, for the αth quasihole inserted between orbitals l  −  1 
and l

Hl(ηα) = (−1)(Q−Q0+Q̃−Q̃0+l−(α−1))/qe+
2π
L (lδτ−τηα )

(
(Q)2

2q +P+ Q
2q+

1
6q+

(Q̃)2

2q(q−1)+P̃
)

× e−
2π
L (lδτ−τηα )

(
(Q′)2
2q +P ′+Q′

2q +
1
6q+

(Q̃′)2
2q(q−1)+P̃ ′

)
e−

2π
L (ixηα )

(
P ′−P+P̃ ′−P̃+(Q−Q0+Q̃−Q̃0)/q+τ̃ηα/q

)

× δQ′,Q+1A
(1/

√
q)

µ′,µ δQ̃′,Q+(q−1)A
(1/
√

q(q−1))

µ̃′,µ̃ ,

 

(D.9)

where we recall that τ̃ηα = τηα/(δτ), i.e. the τ coordinate of the quasihole, in terms of 
the distance between two orbitals.

We explicitly checked the contribution from the time evolution to the wave func-
tion in the case of a single quasihole. In this case, the free-evolution should provide the 
correct normalization of the single-particle orbitals, in addition to the ‘τη part’ of the 
quasihole coordinate that is explicitly present in the wave function, through the prod-
uct 

∏
i(ωi − ωη). Namely, in the wave function, the quasihole position comes in through 

factors ωs
η = e−

(
2πi
L (xη+iτη)

)
s, where s is an integer, that depends on which orbitals are 

occupied. In addition, there is the dependence through the overall Gaussian factor 
e
− 1

2qℓ2
τ2η. The dependence on xη is taken into account explicitly in the MPS formulation, 

while the τη dependence comes from the free time evolution. An explicit calculation of 

the free evolution results in the Gaussian factor e
− 1

2qℓ2
(τη−δτ( q2+Q0+Q̃0))2 and the τη part 

of the ωs
η dependence is e

2π
L

(
τη−δτ( q2+Q0)

)
s. We find that there is a shift of q/2 orbitals 

in the position of the quasihole. This shift is because we are working on the cylinder, 
and therefore should have picked up a factor coming from the conformal transforma-
tion from the plane to the cylinder. We did not do this explicitly, because it merely 
leads to a shift in the position of the droplet on the cylinder. This position can further 
be influenced by choosing a different value of Q0, the charge of the in-state associated 
with ϕ(ω), as can be seen explicitly in the two contributions above. Finally, we see that 
there is a dependence on the charge Q̃0 in the Gaussian factor, but not in the other 
contribution from the free evolution. Because there is no spread out background charge 
associated with ϕ̃(ω), it is not expected that changing the value Q̃0 will change the posi-
tion of the quasihole. Indeed, a change in Q̃0 only changes is the overall normalization 
of the wave function.
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Appendix E. The quasielectron wave functions on the sphere.

We here give the recipe for obtaining the angular momentum quasielectron wave func-
tions equation (C.2), using the coherent state approach developed in [59] (see also [57]) 
and the techniques for calculating correlators on the sphere as presented in [63]. For 
general information about quantum Hall state on the sphere, we refer the reader to 
[13]. We discuss the case of one quasielectron without any quasiholes, the general case 
can be obtained in a similar way. The vertex operators for the electron and modified 
electron are give in equations (C.3) and (C.4). The strategy is to first obtain a localized 
quasielectron on the sphere, from which the angular momentum quasielectron states 
are obtained by expanding the result in angular momentum states.

For a fixed number of flux quanta Nφ, there are Nφ + 1 lowest Landau level single-
particle states on the sphere, given by zm(1 + |z|2/(4R2))−Nφ/2. In the following, we set 
the radius R of the sphere to R = ℓ/2. The magnetic length ℓ is set to 1 in the remain-
der of this appendix. The factor (1 + |z|2)−Nφ/2 is the analog of the Gaussian factor 
e−|z|2/4 on the disk.

The sphere, in contrast to the disc and cylinder, has non-zero curvature, which 
affects the two-point function of the chiral boson field, which becomes

⟨ϕ(z1)ϕ(z2)⟩ = − log(z1 − z2)−
1

2
Ω(z1, z̄1)−

1

2
Ω(z2, z̄2), (E.1)

where Ω = − log(1 + z̄z) + log(2R) and z = x+ iy is related to the more familiar spheri-
cal coordinates by z = eiφ tan

(
θ
2

)
. To get a quasielectron operator with the correct geo-

metric properties we have to also change the derivatives to [63]
∂n

∂zn
→ enΩ

(
e−2Ω ∂

∂z

)n

. (E.2)

We take the operator for the first electron to be the modified electron operator (C.4), 
while the remaining ones are ordinary electron operators (C.3). Thus the starting cor-
relator, to be calculated on the sphere, is given by

Ψ = ⟨ObgṼ (ζ1)V (ζ2) · · ·V (ζNe)⟩

= e−Ω(ζ1,ζ̄1)∂ζ1
∏

j

′(ζ1 − ζj)
q−1e

q−1
2 (Ω(ζ1,ζ̄1)+Ω(ζj ,ζ̄j))

∏

j<k

′(ζj − ζk)
qe

q
2(Ω(ζj ,ζ̄j)+Ω(ζk,ζ̄k)) .

 (E.3)
Commuting the derivative through the factors eΩ, we arrive at

Ψ = (1 + |ζ1|2)−(q−1)(Ne−1)/2
∏

j

′(1 + |ζj|2)(−q(Ne−1)+1)/2
[
(1 + |ζ1|2)∂ζ1 + C ζ̄1

]
Ψrel

 (E.4)
where C  =  −(q  −  1)(Ne  −  1)/2, Ψrel is defined as

Ψrel =
∏

j<k

′(ζj − ζk)
q
∏

j

′(ζ1 − ζj)
q−1

 (E.5)

and the prime indicates that the indices run only over 2, 3, . . . ,Ne. In the following, we 
denote the power of (1 + |ζ1|2) by B  =  −(q  −  1)(Ne  −  1)/2.
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Before projecting to the lowest Landau level, we need to insert a coherent state 
factor that localizes the quasielectron at position ξ and ensures the homogeneity of the 
quantum Hall droplet. In the case of one quasielectron, this factor is

(1 + ζ1ξ̄)
Ne(1 + |ζ1|2)−Ne/2 .

For completeness, we also state the coherent state factor for the case of Nqh quasiholes 
and Nqe quasielectrons, localized at positions ξa

∏

a

(1 + ζaξ̄a)
Ne+1+Nqh−Nqe(1 + |ζa|2)−(Ne+1+Nqh−Nqe)/2 .

Finally, to obtain the quasielectron wave function on the sphere, we need to project 
onto the lowest Landau level, by means of the operator

PLLL =

∫ ∏

j

d2ζj
(1 + |ζj|2)2

(1 + ζ̄jzj)Nφ

(1 + |ζj|2)Nφ/2(1 + |zj|2)Nφ/2
. (E.6)

The factor (1 + |ζj|2)−2 is the integration measure on the sphere. In general, 
Nφ = q(Ne − 1) +Nqh −Nqe, so Nφ = q(Ne − 1)− 1 in the present case. In the follow-
ing, we drop the ‘Gaussian’ factor (1 + |zj|2)−(Nφ/2) associated with the single-particle 
orbitals. To obtain the wave function of a localized quasielectron on the sphere, we 
need to calculate

ψqe(zj; ξ) = A
[
PLLL(1 + ζ1ξ̄)

Ne(1 + |ζ1|2)−Ne/2
∏

j

′(1 + |ζj|2)(−q(Ne−1)+1)/2

×
(
(1 + |ζ1|2)∂ζ1 + C ζ̄1

)
(1 + |ζ1|2)BΨrel

]
,

 (E.7)
where A denotes anti-symmetrization over the electron coordinates. It turns out that 
one can explicitly evaluate the integrals, because the various contributions of the inte-
grand combine to delta functions on the sphere

δ2(ζ − z) =
1

4π(Nφ + 1)

(1 + ζ̄z)Nφ

(1 + |ζ|2)Nφ
,

which includes the ‘Gaussian’ part (1 + |ζ|2)−Nφ/2 of the wave function one acts on, 
but not the measure. We start by collecting the weight factors (1 + |ζj|2) in ψqe(zj; ξ) 
in equation (E.7). For j = 2, . . . ,Ne, the total factor indeed becomes (1 + |ζj|2)−(Nφ+2). 
After evaluating ∂ζ1 on the factor (1 + |ζ1|2)B the integrand becomes
∏

j

(1 + ζ̄jzj)
Nφ
∏

j

′(1 + |ζj|2)−Nφ−2(1 + ζ1ξ̄)
Ne(1 + |ζ1|2)−Ne/2+B

(
(1 + |ζ1|2)∂ζ1 + (B + C)ζ̄1

)
Ψrel .

The factor containing the derivative ∂ζ1 is proportional to (1 + |ζ1|2)−Ne/2+B+1 = 
(1 + |ζ1|2)−(Nφ+2), which is the desired result. The other factor is proportional to 
ζ̄1(1 + |ζ1|2)−(Nφ+3), which we write as −1/(Nφ + 2)

(
∂ζ1(1 + |ζ1|2)−(Nφ+2)

)
. Integrating 

this last term by parts, the total integrand becomes
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∏

j

(1 + ζ̄jzj)Nφ

(1 + |ζj|2)Nφ+2

[
(1 + ζ1ξ̄)

Ne∂ζ1Ψrel +
B + C

Nφ + 2
∂ζ1
(
(1 + ζ1ξ̄)

NeΨrel

)]
.

The second factor is holomorphic in the ζj, while the first factor is the holomorphic 
delta function, including the measure. Therefore, we can perform the integrals over the 
ζj, to obtain

ψqe(zj; ξ) = 4π(Nφ + 1)A
[
(1 + z1ξ̄)

Ne∂z1Ψrel +
B + C

Nφ + 2
∂z1
(
(1 + z1ξ̄)

NeΨrel

)]
,

where from now on Ψrel is in terms of the variables zj instead of ζj. After evaluating 
the derivative in the second term, grouping terms and ignoring an unimportant overall 
factor, one obtains the wave function for a quasielectron localized at ξ on the sphere as

ψqe(zj; ξ) = A
[(
(1 + z1ξ̄)

Ne∂z1 − ξ̄(q − 1)(Ne − 1)(1 + z1ξ̄)
Ne−1

)
Ψrel

]
. (E.8)

The angular momentum quasielectron wave functions on the sphere are obtained 
by expanding the factors (1 + z1ξ̄)Ne and (1 + z1ξ̄)Ne−1 in powers of z1. This gives the 
following result for the quasielectron with angular momentum k (after dropping a 
k-dependent overall factor)

ψk
qe(zj) = A

[(
zk1∂z1 − k(q − 1)

(Ne − 1)

Ne
zk−1
1

)
Ψrel

]
. (E.9)

We note that we dropped the sphere normalization factors (1 + |zj|2)−Nφ/2 present in 
PLLL, equation (E.6), which means that equation (E.9) is really the ‘polynomial part’ 
of the wave function. One can check that the states ψk

qe(zj) with k = 0, 1, . . . ,Ne form 
an angular momentum multiplet with k  =  0 for the lowest weight state, and k  =  Ne for 
the highest.

The generalization of this example to the general case with several quasielectrons 
and quasiholes is now straightforward. The correlator one starts with changes in the 
expected way, namely, one uses Nqe operators Ṽ  and one inserts Nqh operators H. The 
other changes are described above. In the end, one obtains the expression given in 
equation (C.2).

We used the results of this appendix to study quasielectron states (both localized 
and angular momentum) on the sphere with MPS, by taking the sphere normaliza-
tion factors into account ‘by hand’ when calculating observables (for systems up to 40 
electrons). We note that the observed ‘shift’ in the position of the quasielectron (see 
section 6) is also present on the sphere.

Appendix F. Details of the Tao–Thouless limit

In this appendix, we analyze the trial wave functions studied in this article in the 
Tao–Thouless (TT) limit. This corresponds to defining the wave functions on a cylin-
der with circumference L → 0. Starting from the wave function for the Laughlin state 
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with quasiparticle excitations, we seek to analytically compute the orbitals that are 
occupied, and hence infer the ‘position’ of the excitation.

A generic trial wave function consists of a totally anti-symmetric polynomial in 
ωj = e−2πi zj/L (with zj = xj + iτj) times an exponential factor which restricts the wave 
function to the lowest Landau level. Schematically,

Ψ(ω) ∼
∑

µ

(
Ne∏

i=1

ωµi
i

)
e−

∑Ne
i=1

τ2i
2ℓ2 =

∑

µ

(
Ne∏

i=1

ωµi
i e−τ2i /2ℓ

2

)
, (F.1)

where ω = (ω1, . . .ωNe) ∈ CNe denotes the coordinates of the Ne electrons and 
µ = (µ1, . . . µNe) ∈ ZNe denotes the set of occupied orbitals. Further analysis hinges on 
the observation that

ωµie−µ2
i /2ℓ

2
= exp

{
−2πiµi x

L
− (τ − δτµi)2

2ℓ2
+

2π2ℓ2

L2
µ2
i

}
= e

2π2ℓ2

L2 µ2
iφµi(z),

 (F.2)
where δτ = 2πℓ2

L  is the separation of the single-particle orbitals and φµ(z) denotes the 
single electron lowest Landau level wave function on a cylinder with ‘momentum’ k, 
which is exponentially localized at the µth orbital, i.e. around τ = δτµ. Thus,

Ψ(ω) ∼
∑

µ

(
N∏

i=1

e
2π2ℓ2

L2 µ2
iφµi(zi)

)
=
∑

µ

e
2π2ℓ2

L2 ∥µ∥22Φµ(ω), (F.3)

where ∥µ∥2 is the L2 norm of µ. Recall that the Lp norms are defined as

∥ξ∥p =
[

n∑

i=1

|ξi| p
]1/p

; ξ = (ξ1, ξ2, . . . ξn) ∈ Cn.

Furthermore, we have defined a set of many-body wave functions (indexed by µ) as 
Φµ(ω) =

∏
i φµi(zi), which is simply a product of single-electron wave functions local-

ized along τ at τ = δτµi and delocalized along x. In the TT limit, this wave function is 
exponentially dominated by terms which maximize ∥µ∥2, i.e.

Ψ(ω) = e
2π2ℓ2

L2 M
∑

∥µ∥2=M

Φµ(ω) +O
(
e−1/L2

)
, (F.4)

where M = max ∥µ∥22, and the remaining sum is over the ‘degenerate’ configurations, 
i.e. µ such that ∥µ∥22 = M , which includes all permutations of µi’s. We shall term 
this dominant contribution µmax (up to permutations) the orbital configuration corre-
sponding to the given wave function.

The exact form of the wave function imposes constraints on µ’s, thereby allowing 
only certain occupation patterns. Thus, to find the orbital configuration, we seek to 
find µmax that maximizes ∥µ∥2 subject to all the constrains imposed by the form of the 
wave function. We shall derive this maximal configuration µmax iteratively, following a 
greedy algorithm. Denoting the step count by s, this algorithm can be stated as follows:

https://doi.org/10.1088/1742-5468/aab679


Matrix product state representation of quasielectron wave functions

53https://doi.org/10.1088/1742-5468/aab679

J. S
tat. M

ech. (2018) 053101

 1. Start with s  =  1.

 2. Set µs to the value that locally maximizes F [µ] = ∥µ∥22, subject to the constraints.

 3. Update the constraint for remaining µi, i > s.

 4. s → s+ 1, go to step 2 if s ! Ne.

The constraints on µ as well as the update of step 3 will be obtained from a given wave 
function by inspection. In the following, we analytically compute this configuration for 
the Laughlin wave function for the ground state as well as the states with a few quasi-
particle excitations.

F.1. TT limit for Laughlin wave function

The Laughlin wave function for Ne electrons on a cylinder with filling fraction ν = 1/q 
is

ΨL(ω) =
∏

i<j

(ωi − ωj)
q exp

{
−

Ne∑

i=1

τ 2i
2ℓ2

}
=
∑

µ

(
Ne∏

i=1

ωµi
i e−τ2i /2ℓ

2

)
, (F.5)

where in the second step, we have expanded out the polynomial part of the wave func-
tion as a sum over monomials indexed by µ. From the form of the polynomial part ∏

(ωi − ωj) q, we deduce that the exponent µi of each ωi is bounded from below by 0 
and from above by q(Ne  −  1). Furthermore, since the polynomial is homogeneous, the 
sum of all exponents is the same for all monomials. Thus, µ is subject to the constraints

∥µ∥1 =
1

2
qNe(Ne − 1), 0 ! µi ! q(Ne − 1). (F.6)

Physically, these express the fact that the many-body wave function has a fixed orbital 
angular momentum distributed among the single electron orbitals, and furthermore, 
each of those states has an upper bound on the angular momentum, corresponding to 
the size of the quantum Hall droplet.

We next maximize ∥µ∥2 subject to these constraints, using the algorithm outlined 
earlier. At the first iteration,

s = 1: 0 ! µi ! q(Ne − 1),

and since we seek to maximize 
∑

i µ
2
i , we set µ1 = q(Ne − 1). This reduces by q the 

maximum exponent that can be attained by any other ωj. Thus, the constraint for the 
remaining orbitals is modified to 0 ! µi ! q(Ne − 2). Iterating this procedure N times, 
we get

µ1 = q(Ne − 1), µ2 = q(Ne − 2), . . . µs = q(Ne − s), . . . , µNe = 0 =⇒ µmax = {nq}n=1,...Ne−1 .

This is the well known orbital configuration for the Laughlin state in the TT limit [51], 
as depicted in figure F1. Note that any other permutation of this set {µi} would lead 
to the same value of ∥µ∥2, and these constitute the set of ‘degenerate’ configurations 
referred to in equation (F.4).
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F.2. Excitations

The derivation of the orbital configuration in the presence of excitations follows a 
similar strategy, although the iterations become more complicated. In the following, 
we discuss a few analytically tractable cases for Laughlin wave functions in presence of 
excitations.

F.2.1. Quasiholes. The Laughlin wave function for Nqh quasiholes at positions 
ωηα = e−2πi ηα/L is given by

ΨL,qh (ωj;ωηk) =
∏

i<j

(ωi − ωj)
q
∏

j,k

(ωj − ωηk) exp

{
−

Ne∑

i=1

τ 2i
2ℓ2

}
. (F.7)

Expanding into monomials and using equation (F.2), we get

ΨL,qh (ωj;ωηk) =
∑

µ

exp

⎧
⎨

⎩
2π2ℓ2

L2

⎛

⎝∥µ∥22 +
L

πℓ2

Nqh∑

k=1

µ̃kτηk

⎞

⎠

⎫
⎬

⎭ e−i 2πL
∑Nqh

k=1 µ̃kxηkΦµ(ω).

 (F.8)
We can again derive the constraints on µ by inspection, as

∥µ∥1 + ∥µ̃∥1 =
1

2
qNe(Ne − 1) +NqhNe ≡ K, 0 ! µi ! q(Ne − 1) +Nqh,

 

(F.9)

where the increase in the upper bound on µi’s can be physically interpreted as expan-
sion of the (finite) quantum Hall droplet on addition of Nqh quasiholes. To find the TT 

configuration, we seek to maximize ∥µ∥22 + L
πℓ2

∑Nqh

k=1 µ̃kτηk subject to these constraints. 

This could be accomplished numerically following the greedy algorithm outlined earlier, 
but there is no direct analytical solution in general.

We thus restrict ourselves to an analytically tractable special case, when all quasi-
holes lie at the same position xηk = 0 and τηk = τ̃ . We can then use the first constraint 
of equation (F.9) to get

∥µ∥22 +
L

πℓ2

Nqh∑

k=1

µ̃kτηk =
Ne∑

i=1

(µi − ∆̃)2 + (2K − ∆̃)∆̃ (F.10)

with ∆̃ = τ̃
δτ . Thus, the quasihole is expected to be localized around ∆̃. The last term in 

equation (F.10) can be ignored since it is independent of µ, so we are left to to maximize ∥∥∥µ− ∆̃1
∥∥∥
2
, 1 = (1, . . . 1) ∈ ZNe, subject to only the second constraint of equation (F.9).

For ∆̃ ! 0, i.e, a quasihole at the left end, we need to choose the largest possible 
µi at each step in order to maximize (µi − ∆̃)2. Thus, this case is almost identical to 

...
0 3 6 3N − 33N − 6

Figure F1. Orbital configuration for the ground state of ν = 1/3 Laughlin state 
for Ne electrons. The blue dots represent the occupied orbitals, whose number 
(counting the leftmost as zero) is shown underneath.
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the case without a quasihole, except for a rightward shift by Nqh, i.e, µs = Nqh + qs, as 
depicted in figure F2.

For ∆̃ ! q(Ne + 1) +Nqh, i.e, a quasihole at the right end, we need to choose the 
smallest possible µi at each step, in order to maximize (µi − ∆̃)2. The iteration proceeds 
in a fashion analogous to the case without a quasihole, except that we now update only 
the lower bound. To wit, after s steps, we have

µs = qs, q(s+ 1) ! µi ! q(Ne − 1) +Nqh,

for the remaining orbitals i  >  s. Thus, the resulting occupation pattern is identical to 
that for the ground state.

For 0 < ∆̃ < q(Ne − 1) +Nqh, the iteration is more complicated now, since at each 
step, we must decide whether to pick the lowest or highest possible value. We omit 
the details of this iteration since they are not very illuminating, but the result is as 
expected, i.e. the quasihole is localized at the position ∆̃.

F.2.2. Quasielectrons. The most general expression for a multiple-quasielectron 
Laughlin wave function can be rather complicated, so we shall instead start with the 
case of a single quasielectron wave function, which can be written as

ΨL, qe (ω,ωξ) =
∑

a

⎡

⎢⎣K(ωξ,ωa)
∏

i<j
i ̸=j ̸=a

(ωi − ωj)
q ∂a

(
∏

i ̸=a

(ωi − ωa)
q−1

)
exp

{
−

Ne∑

i=1

τ 2i
2ℓ2

+
τ 2a
2qℓ2

}⎤

⎥⎦ ,

 (F.11)

where K(ωξ,ωa) is the kernel equation (30). We rewrite the two single-particle wave 
functions in the kernel as

φk(ωa) =ω
k
a exp

{
− τ 2a
2qℓ2

− 2π2ℓ2

L2
qk2

}

φ̄k(ωξ) =exp

{
2πikxξ

L
− 2π2ℓ2

L2
q

(
k − τξ

q δτ

)2
}
,

 

(F.12)

and then expand the wave function (F.11) into monomials to get

ΨL, qe (ω, η) =
∑

k

exp

{
−2π2ℓ2

L2
q

[
k2 +

(
k − τξ

q δτ

)2
]}

ei
2πkxξ

L

[
∑

µ

e
2π2ℓ2

L2 ∥µ∥22Φµ(ω)

]
.

 (F.13)

...
1 4 7 3N − 23N − 5

...
0 3 6 3N − 33N − 6

Figure F2. Orbital configuration for the ν = 1/3 Laughlin state for Ne electrons, 
with a single quasihole to the left (top) and the right (bottom). The orbital shaded 
in blue denotes the expected position of the quasihole, and the blue arrow denotes 
the actual position. Clearly, the quasihole is localized at the expected position.
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In order to obtain the occupation pattern of the orbitals for this wave function, we first 
determine µmax(k) that maximizes the sum over µ for a given value of k following our 
iteration, and then choose the k that maximizes the overall coefficient of the monomials.

For a given k, we need to derive the constraints on µ. Without loss of generality, 
we choose the term a  =  Ne in (F.11), which leads to:

k ! µNe ! k + (q − 1)(Ne − 1)− 1, 0 ! µi ! q(Ne − 1)− 1, i = 1, . . . Ne − 1.
 (F.14)

The pre-factor ωk
Ne

 in the first line of (F.12) leads to a nonzero lower bound for µNe, 
while the derivative reduces the upper bound from what one would expect from the 
Jastrow factor involving ωNe. The derivative should also affect the upper bound for one 
of the ωi’s, but that turns out to be unimportant for the rest of this calculation. Thus, 
we seek to maximize ∥µ∥2 subject to these constraints.

At each step of the iteration, we have a choice between µNe and µi, i ̸= Ne, depend-
ing on the highest allowed value for them at each stage. If we choose µNe, the upper 
bound on µi’s decreases by q  −  1. On the other hand, if we choose µi, the upper bound 
on µj, j ̸= i,Ne decreases by q and on µNe by q  −  1. It is precisely this interplay of 
updates that leads to interesting shifts in the quasielectron positions.

Explicitly, let µi be chosen for the first s steps, so that µs = q(Ne − s)− 1, and the 
constraint on µ becomes

k ! µNe ! k + (q − 1)(Ne − s− 1)− 1, 0 ! µi ! q(Ne − s− 1)− 1, s < i < Ne.

Thus, we must choose µNe when

k + (q − 1)(Ne − s− 1)− 1 > q(Ne − s− 1)− 1 =⇒ s > Ne − k − 1.

Define s0 = Ne − k, which is the smallest integer to satisfy the above condition. Then, 
at the (s0 + 1)th step we must set µNe = q(k − 1), and the condition on the remaining 
µ’s is simply 0 ! µi ! q(k − 2), s0 < i < Ne. The rest of the iteration proceeds as in the 
case of the ground state wave function, and the set of occupied orbitals becomes

µmax(k) = {0, q, . . . q(k − 2), q(k − 1), qk − 1, q(k + 1)− 1, . . . q(Ne − 1)− 1} .

This is the occupation pattern for an angular momentum quasielectron, which is expected 
to be localized at the qkth orbital. However, from the occupation pattern, we compute 
its position as

1

2
[qk − 1 + q(k − 1)] = q(k − 1) +

q − 1

2
= qk − q + 1

2
. (F.15)

Thus, for delocalized quasielectrons, we see a shift to the left by 12(q + 1) orbitals, inher-
ent in the construction of the wave functions.

Finally, we can compute the occupation pattern for the localized quasielectron, 
whose wave function can be written, using equation (F.13), as

ΨL, qe (ω, η) =
∑

k

exp

{
2π2ℓ2

L2
q

[
1

q
M(k)− k2 −

(
k − τξ

q δτ

)2
]}

ei
2πkxξ

L

∑

∥µ∥2=M(k)

Φµ(ω) +O
(
e−1/L2

)
,

 (F.16)
where
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M(k) ≡ ∥µmax(k)∥
2
2 =

k−1∑

n=0

(qn)2 +
Ne−1∑

n=k

(qn− 1)2 = F (N) + qk2 − (q + 1)k,

 

(F.17)

with F(Ne) is a (unimportant) constant independent of k. Thus, we need to maximize

1

q

[
qk2 − (1 + q)k

]
− k2 −

(
k − τξ

q δτ

)2

= −
[
k −

(
τξ
q δτ

− q + 1

2q

)]2
+ constants,

over k, so that we choose k as the nearest integer to τξ
q δτ − q+1

2q . Using equation (F.15), we 
compute the position of the quasielectron as 

τξ
δτ − (q + 1), with an error of up to ±q/2. 

Thus, the localized quasielectron is shifted to the left by (q + 1) orbitals. In figure F3, 
we depict both the expected and actual position of the quasielectron, showing the shift 
of (q+1) orbitals to the left.

Let us now consider a single localized quasielectron in the presence of Nqh quasi-
holes. In order to make this problem tractable, we assume that the quasiholes are again 
localized at the same point ωη with xηk = 0 and τηk = τ̃ , and that the quasielectron at 
τξ ≫ τ̃  is far away from the quasiholes. The wave function for this setup is

ΨL,qe+qh (ω,ωξ) =
∑

a

⎡

⎢⎣K(ωξ,ωa)
∏

j ̸=a

(ωj − ωη)
Nqh

∏

i<j
i̸=j ̸=a

(ωi − ωj)
q

×∂a

(
∏

i ̸=a

(ωi − ωa)
q−1

)
exp

{
−

Ne∑

i=1

τ 2i
2ℓ2

+
τ 2a
2qℓ2

}]
.

The extra factor enlarges the quantum Hall droplet, and the constraints in equa-
tion (F.14) change to become

k ! µNe ! k + (q − 1)(Ne − 1)− 1, 0 ! µi ! q(Ne − 1)− 1 + δex, i = 1, . . . Ne − 1
 (F.18)

with δex ≡ Nqh. We now proceed along the same lines as earlier: we pick µi for the first 
s step, and choose µNe when

k + (q − 1)(Ne − s− 1)− 1 > q(Ne − s− 1)− 1 + δex =⇒ s > Ne − k − 1 + δex.

Thus, µNe = q(k − 1)− (q − 1)δex, and the occupation pattern is

µmax = {. . . q(k − 1)− (q − 1)δex, qk0 − (q − 1)δex − 2, . . . q(Ne − 1)− 1 + δex} .
 (F.19)

The delocalized quasielectron is localized at the orbital

...
0 3 3N − 43N − 73k − 3 3k − 1 3k + 23k − 6

...

Figure F3. Orbital configuration for the ν = 1/3 Laughlin state for Ne electrons, 
with a quasielectron in the middle. The orbital shaded in green (corresponding to 
τ = (3k + 2) δτ) denotes the expected position of the quasielectron, and the green 
arrow denotes the actual position. We clearly notice a shift to the left by q  +  1  =  4 
orbitals.
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qk − q + 1

2
− (q − 1)δex,

and experiences a charge-dependent shift to the left by q+1
2 − (q − 1)δex orbitals.

Finally, for a localized quasielectron,

M(k) = F (Ne, δex) + qk2 − [(q + 1) + 2δex(q − 1)] k, (F.20)
so that we need to maximize

1

q
M(k)− k2 −

(
k − τξ

q δτ

)2

= −
[
k −

(
τξ
q δτ

− (q + 1) + 2δex(q − 1)

2q

)]2
+ constants.

 (F.21)
We need to choose k as the integer nearest to

τξ
q δτ

− (q + 1) + 2δex(q − 1)

2q
= δex +

τξ
q δτ

− q + 1− 2δex
2q

,

so that the quasielectron is localized near 
τξ
δτ − (q + 1)− 2(q − 1)δex. Thus, in the pres-

ence of additional excitations, the quasielectron is shifted to the left by an additional 
2(q − 1)δex orbitals, where δex = Nqh corresponds to the number of quasihole to the left 
of the quasielectron in question as shown in figure F4 in the cases with one and two 
quasiholes.

For more general setups—i.e. multiple quasiparticles at arbitrary positions—this 
calculation is no longer analytically tractable. However, as long as the quasiparticles 
are far apart, one can verify numerically that the quasielectron positions are shifted 
to the left by (q + 1) + 2(q − 1)δex orbitals, where δex = nqh − nqe is the total charge to 
the left of the quasielectron, i.e. nqh/nqe is the number of quasiholes/quasielectrons at 
a smaller τ.
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