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Abstract
Wepresent an analytical solution for the full spectrumofKitaevʼs one-dimensional p-wave
superconductor with arbitrary hopping, pairing amplitude and chemical potential in the case of an
open chain.We also discuss the structure of the zero-modes in the presence of both phase gradients
and next nearest neighbor hopping and pairing terms. As observed by Sticlet et al, one feature of such
models is that in a part of the phase diagram, zero-modes are present at one end of the system,while
there are none on the other side.We explain the presence of this feature analytically, and show that it
requires some fine-tuning of the parameters in themodel. Thus as expected, these ‘one-sided’ zero-
modes are neither protected by topology, nor by symmetry.

1. Introduction

One of the characteristic features ofmany topological phases is the presence of gapless boundarymodes. The
(fractional) quantumHall states are a prime example [1–3], and their boundarymodes provide strong evidence
of the topological nature of these states. Another prime example is the Kitaev chain, whose topological p-wave
superconducting phase features so-called ‘Majorana zeromodes’ at its edges [4]. Trying to establish the existence
of the topological phase is often done by trying to establish the presence of the boundarymodes. This has led to
strong evidence for the topological phase in for instance strongly spin-orbit coupled nano-wires that are
proximity coupled to an s-wave superconductor in the presence of amagneticfield [5–9], or in chains of
magnetic ad-atoms[10–13]. It has been proposed that the zero energyMajorana bound states can be used as
topologically protected q-bits, for quantum information processing purposes [14, 15]. By now, there exist
various proposals tomanipulate these q-bits, either in T-junction systems, inwhich theMajorana bound states
can be braided explicitly [16], or in Josephson coupledKitaev chains, inwhich the coupling of the various chains
allows operation on the q-bits [17].

Despite the intense research on theKitaev chainmodels, there are still interesting features that deserve
attention. In this paper, we look into one of them. It was observed by Sticlet et al [18], that the zero-modes of
Kitaev chains carrying a current, i.e., in the presence of a gradient in the phase of the order parameter, have
interesting properties. Themost striking feature is that is it possible that at one edge of the chain, there is pair of
Majorana bound states (or better, one ‘ordinary’Dirac zeromode), while there is no zeromode at the other end
of the chain. Clearly, from a topological point of view, thismeans that the chain is in a trivial phase, but it is
nevertheless worthwhile to investigate these zero-modes further. In this paper, we explain the presence of these
zero-modes, via an exact solution of the zeromodes of an extendedKitaev chain, i.e., in the presence of both
complex and next nearest-neighbor hopping an pairing terms.We show that it is necessary tofine tune the
couplings in order that these ‘one-sidedDiracmodes’ to exist, but under these fine-tuned conditions, they can
only disappear if the bulk gap closes signaling a phase transition or a crossover. Dropping thefine-tuningwill gap
out these zeromodes immediately, leaving behind low-energy subgapmodes. Apart from the analytical solution
of the zeromodes, we also present the solution of the full spectrumof the openKitaev chain, for real, but
otherwise arbitrary parameters, which does not seem to have appeared in the literature before.
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The outline of the paper is as follows.We start in section 2 by a brief review of the Lieb-Schultz-Mattis
method to solve open quadratic fermionic systems, and focus on the case of complex couplings, which is
essential for our purposes. In section 3, we provide the full solution of the openKitaev chain, with real, but
otherwise arbitrary couplings. In section 4, we study the effect of next nearest-neighbor and complex couplings.
Here, we focus entirely on the exact solutions for the zero-modes, and start by considering the effects of next
nearest-neighbor couplings and complex pairings separately, before coming to themost interesting case, when
both are present. In section 5, we discuss the results of the paper. Some details are delegated to the appendices.

2. The Lieb-Schultz-Mattismethod

In this paper, we study the zeromodes of Kitaev-like chains in the presence of longer range hopping and pairing
terms, specifically next nearest neighbor (NNN) ones. In particular, we are interested in the case where these
couplings are complex. To study these systems, we use themethod has been introduced by Lieb, Schultz and
Mattis (LSM) [19]whoused it to solve the XY chain, for various types of boundary conditions. For a quadratic
fermionicHamiltonianwith periodic boundary conditions (PBC), one diagonalizes theHamiltonian by using a
Fourier transformation, followed by a Bogoliubov transformation in the case of superconductingmodel.
Without translational invariance one can still perform aBogoliubov like transformation directly in real space. It
was thismethod that LSMused tofind the spectrumof the openXY chain (after using a Jordan-Wigner
transformation to transform the spin degrees of freedom to polarized fermions).

In this sectionwe review the LSMmethod and follow their notation for convenience.We consider two
different cases. First, we look at theHamiltonianwith real couplings and recall how one can derive the spectrum
of themodel analytically. Second, for a general quadraticHamiltonianwith complex couplings we present the
equations governing the zeromode solutions, whichwe use throughout the paper.

Following LSM [19], we consider the general quadraticHamiltonian of polarized fermions as follows,

�� � �
�

( ) ( )† † †H c A c c B c h c
1

2
. . , 1

i j

N

i ij j i ij j
, 1

inwhich ci is a fermion annihilation operator on site i,A is a hermitianmatrix,B is an antisymmetricmatrix and
N is the number of sites. Using a Bogoliubov like transformation, one can define new fermion operators, and
diagonalize theHamiltonian:

�I � �B B B
�

( ) ( )†g c h c , 2
i

N

i i i i
1

, ,

� I I� -
B

B B B
�

( )†H , 3
N

1

inwhichα labels the states and gα,i and hα,i are two functions, which are to be determined. This transformation is
canonical, in the sense that new operators obey the fermionic anti-commutation relations, i.e. I I E�B C BC{ }†, .

Using the equation ofmotion, [H, ηα]=−Λ αηα, one finds the equations for gα,i and hα,i:

* � � �-B B B B ( )h B g A g , 4i ij i ij j, , ,

* � � �-B B B B ( )h A g B h . 5i ij i ij j, , ,

In order tofind the full spectrumof theHamiltonian, we now consider the case forwhichA andB have real
elements. In this case, one defines new variables as

G � �B B B ( )g h , 6i i i, , ,

Z � �B B B ( )g h , 7i i i, , ,

whichwe combine into row vectors,fα=(fα,1,K,fα,N) and Z Z Z� yB B B( ), , N,1 , . Summing and subtracting
equations (4) and (5) gives two coupled equations forfα andψα,

G Z� � -B B B( ) ( )A B , 8

Z G� � -B B B( ) ( )A B . 9

Wenote that thematrices act from the right side on the vectors. By actingwithA+B on equation (8) andA−B
on equation (9) from the right, the equations decouple

G G� � � -B B B( )( ) ( )A B A B , 102

Z Z� � � -B B B( )( ) ( )A B A B . 112
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Tofind all the eigenvalues -B and states ηα, one solves these two decoupled equations forfα andψα.We explain
how to do this inmore detail in the next section for the openKitaev chain [4]with real, but otherwise generic
parameters.

It is well-known that fermionic systems can hostMajorana zeromodes on the edges of the system, which
signals that the system is in a topological phase. In this paper, we study the zeromodes ofHamiltonianswith
complex parameters, sowe now allow thematricesA andB to be complex again. To distinguish aMajorana
mode from the ordinarymodes, we use stared labels, such asα*. TheMajoranamodes satisfy * *I I�B B

† . For a
finite system, the energy of aMajoranamode is exponentially small in the system size; for instance in the case
wherewe have a systemwithN sites the energy scales as *- _B

L�e N withκ>0 [4, 19]. Hencewe are interested
infinding general equationswhich allows one tofind the corresponding states with zero energy, i.e. *- �B 0, in
the thermodynamic limit.

We thus search for aMajorana solution of equations (4) and (5)with zero energy. Setting ** *�B Bh gi i, ,
in

equations (4) and (5) gives:

* *
* *�B B ( )g B g A , 12i ij i ij, ,

* *
* *�B B ( )g A g B , 13i ij i ij, ,

By summing and subtracting these equationswe get,

� �[ ( )] ( )g A BRe 0, 14

� �[ ( )] ( )g A BIm 0. 15

Weuse these equations to explore thewave functions ( *Bg i, ) of the zeromodes in different cases in the following
sections.

Before closing this section, wewrite the η operators in terms ofMajorana operators for future reference.
Usingf andψ as defined above and definingMajorana operators as H � �†c cA j j j, and H � �( )†i c cB j j j, , we
write the fermion annihilation operator as follows

�I
G

H
Z

H� �B
B B

�

⎡
⎣⎢

⎤
⎦⎥ ( )i

2 2
. 16

j

N
j
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j

B j
1

,
,

,
,

The algebra ofMajorana operators can be calculated from the canonical anti-commutation relations of the c
operators,

H H E E�a a{ } ( ), 2 . 17r i r j rr ij, ,

Specifically, for the zeromode solutionwe canwrite the corresponding fermionic operator as follows:

* * *�I H H� �B B B
�

( [ ] [ ] ) ( )g gRe Im . 18
j

N

i A j i B j
1

, , , ,

3. The spectrumof the openKitaev chain

In this section, we use themethod of LSM tofind the full spectrumof theKitaev chain [4], for an open chain,
with real parameters, in particular we consider

� �N� � % � � �
�

�

� �
�

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )† † † †H c c c c h c c c

1

2
. .

1

2
. 19

j

N

j j j j
j

N

j j
1

1

1 1
1

Here,μ denotes the chemical potential,Δ the strength of the pairing term, andwe chose the hopping
parameter t=−11.

Despite the fact that thismodel has been studied thoroughly, these results do not seem to have appeared in
the literature, andwewill use it to set the notation. Becausewe are interested in the zero-modes ofmore generic
situations in the remainder of the paper, we also quickly review the nature of the zero-modes. These latter results
are not new, but appeared in [19–21] and for generic parameters recently in [22, 23].

It is well known [4] that the Kitaev chain is in a topological phase for N �∣ ∣ ∣ ∣t and% v 0. A profound
feature of topological phase is the presence of aMajorana zeromodes, that are exponentially localized near the
edges of the system. In addition, the energy associatedwith this zeromode is exponentially small in the
system size.

1
The sign of t is irrelevant for the spectrum, butwe set t=−1, because of the simpler relationwith the associatedXYmodel as studied

in [19].
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To set the scene, we followKitaev to show the presence ofMajorana zeromodes, by considering the special
case ofΔ=1 andμ=0. In this case, theHamiltonian in terms ofMajorana operators becomes,

� H H� �
�

�

� ( )H
i

2
. 20

j

N

B j A j
1

1

, , 1

In thisHamiltonian, γA,1 and γB,N are absent and therefore commutewith it. So one can form anon-local
fermionic state, H H� �( )f iA B N0

1

2 ,1 , . The presence of this non-local fermionicmode is the characteristic
feature of the topological phase of theKitaev chain. ForΔ=−1, the unpairedMajorana operators would be
γB,1 and γA,N, owing to the p-wave nature of pairing.

We leave thisfine tuned point and consider arbitraryΔ, but keepμ=0 for themoment. This corresponds
to theXYmodel, whichwas solved exactly by LSM for % �∣ ∣ 1, that is, the full spectrum including thewave
functionswere found [19]. For an open chain, there is a state with an exponentially small energy as a function of

the system size. Thewavefunction of this state is exponentially localized on the edges, namely G _ � %
� %( )∣ ∣

∣ ∣n

n1

1

where n denotes the position of the sitemeasured from the left side of the chain. The associated Zn is localized on
the right edge. Another fine tuned point that was studied previously corresponds to the transverse field Ising
model(TFIM), that is t=−1,Δ=±1 but arbitraryμ. Pfeuty showed that thismodel has aMajorana zero
mode if N �∣ ∣ 1. The associatedwave function takes the form G N_ ∣ ∣n

n and is localized on the left edge of the
system [20, 21].

Tofind theMajorana zeromodes for the general case, it is advantageous tofirst consider themodel with
periodic boundary conditions. That is, we need to consider the hopping and pairing terms for the last site as well.
We denoted the periodicHamiltonian byHPBC=H+HNwhere:

� � % �( ) ( )† † †H c c c c h c
1

2
. . , 21N N N1 1

The solution of the periodicmodel is well known, and obtained by using a plane-wave ansatz for thewave
functions (i.e., by Fourier-transforming themodel). Using themethod outlined in the previous section, we start
by solving equations (10) and (11) tofind the spectrum. Sincef andψ are related via equations (8) and (9), we
focus onf.Writing equation (10) gives us one recursion relation:

G NG N G G NG G� % � � � � % � � % � � -B B B B B B B� � � �( ) [ ( )] ( ) ( )1 4 4 2 1 1 4 4 , 22n n n n n n
2

, 2 , 1
2 2

,
2

, 2 , 1
2

,

where n denotes the sites and runs from1 toN. Upon setting G _ ek n
ikn

, , wherewe use themomentum k as a
label, onefinds the eigenvalues:

N
Q

- � � � % �( ) ( )k k k
m

N
cos sin ,

2
, 23k

2 2 2 2

wherem runs over 0 toN−1. If one considers anti-periodic boundary conditions, the dispersion is the same
though the allowed values of k change to � �Q ( )k m

N

2 1

2
. To study open chains, wemake use the functional

formof the dispersion. In addition, by using the LSMmethod for open chains, we naturally have to consider
both the sectors with even and odd number of particles.

We now consider the full spectrumof the open chain.Here, wemerely give the results, and refer to
appendix A, where the details of calculation are presented.

For the open chainwefind the same recursion relation in the bulkwhich is valid for - - �n N3 2.
However, we also have four boundary equations which should be treated separately (see appendix A).We start
by dealingwith the bulk equations, using themethod of LSM. That is, we use the same ‘function’ for the
eigenvalues, thoughwith a generic parameterα instead of themomentum k. Tofind the allowed values for the
parameterα, one uses the ‘boundary equations’. Hencewe parametrize the eigenvalues as:

N B B- � � � %B ( ) ( )cos sin , 242 2 2 2

andα is the label for the state. For the states, we use a power law ansatz, G _B Bxn
n

, , andwefind four solutions,
�B

Box e i and �B
Cox e i where

B C
N

� �
� %

( )cos cos
2

1
. 25

2

Note thatα andβ are not necessarily real, but thewaywe parametrize xα turns out to be convenient. As described
in the appendix A, the relevant linear combination that one uses tofind a solution for the boundary equations is:
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G C B
B C

C B
B C

� �
� �
� � � �
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B { [( ) ] ( )
[( ) ] ( )}
{ [( ) ] [( ) ]
[( ) ] [( ) ]} ( )

A N n

N n
A N N n

N N n

sin 1 sin

sin 1 sin
sin 1 sin 1

sin 1 sin 1 . 26

n, 1

2

inwhichA1 andA2 are constants that are related via equation (A24). The boundary equations give rise to another
constraint onα andβ. This constraint can be shown to take the following form

B C C B
B C
B C

B C

� �
%

� �
� �

q � � � �

( )
[( ) ] [( ) ]

{ [( ) ] [( ) ]} ( )
N N

N N

sin sin
1

cos cos 2
sin sin

sin 1 sin 1
1 cos 1 cos 1 0. 27

2 2
2

2

To obtain the full solution of themodel, one needs to solve equations (25) and (27) simultaneously. Though this
can not be done analytically, it is straightforward to obtain the solutions numerically. Thus, we have
characterized all the eigenvalues and eigenvectors GB n, and by using equation (10), onefinds ZB n, .

Nowwewant to study these solutions and seewhen thismodel has aMajorana solution andwhat the
correspondingwavefunction is. Tofind such solutions, we consider thermodynamic limit, i.e. l dN , which
makes the calculations easier.

Wefirstmention thatΔ can always set to be positive. Oneway to see this is by considering the
transformation underwhich cjmaps to

Q
e ci

j2 . This transformation changes neither the hopping nor chemical
potential term, butΔ changes to−Δ. In addition solutions forμ<0 can be constructed from the solutions for
μ>0.One can take the solution forμ>0, say (α,β)=(r, s). Now consider (α,β)=(r+π, s+π). This
change gives aminus sign for the LHS of equation (25) as required, however it leaves equation (27) unchanged.
Therefore, we restrict ourselves toΔ,μ>0.

First we look at the solutions for large values ofμ. In this case one can see that equations (25) and (27) haveN
distinct real solutions forα, wherewe restrictα to lie in the range 0<α�π (α=0 givesfn=0; formore
details, see appendix A). However by decreasing chemical potential solutionwith the smallest value ofαwill
‘disappear’. It is well known that forμ<1 one real solution is lost in the thermodynamic limit. For afinite chain

this happens for N � � ( )O1
N

1 where ( )O
N

1 is afinite size correction. Thus, forμ<1 onemust find an

additional, complex solution. Tofind this solution, we consider three different cases.
(1)Δ<1 and N� % � �1 12 : In the thermodynamic limit one can check that the following solution

satisfies equations (25) and (27),

* *B
Y Y

C
Y Y

� � � �
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )i i

1 1
,

1 1
, 28

1 2 1 2

Y Y
N

�
� %

�
� %

( )cosh
1 1

1
, cosh

1

1
. 29

1
2

2
2

Furthermore it is straightforward to check that equation (24) gives *- �B 0, hence the solution is indeed a zero
mode. Thewave function *GB n, for this zeromode is

*G
Y

�B
Y

� ⎛
⎝⎜

⎞
⎠⎟ ( )Ce

n
sinh , 30n

n

,
2

1

whereC is a normalization constant.Moreover, it can be shown that based on structure ofA−B andA+B
matrices, one has * *Z G�B B � �n N n, , 1 . From the fact that Y Y�1 2, it follows that *GB is localized on the left edge
while *ZB is localized on right edge of the system.Hencewe found twoMajorana operators, that are located on
the edges of the system, and the associatedwavefunctions decay exponentially.

(2)Δ<1 andN � � %1 2 : in this range, one needs to use a different parametrization if onewants to use
real parameters, as is evident from equation (29). This parametrization reads

* *B
Y

C
Y

� � � � ( )q i q i
1

,
1

, 31

N
Y

�
� %

�
� %

( )qcos
1

, cosh
1 1

1
. 32

2 2

Basically we changed one of the characteristic length scales to become awave vector. As in the previous case, this
solution is indeed a zeromode, i.e. *- �B 0, whosewavefunction is given by:

*G �B Y
� ( ) ( )Ce nqsin . 33n

n

,

This result indicates thatf (ψ) is localized on the left (right) edgewith an oscillatory decayingwave function.We
should point out that this result was obtained earlier by [22]. In addition, it was observed that the correlation
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functions in themodel with PBC are oscillatory in the same regime, i.e., for N � � %1 2 withΔ<1, see for
instance [24–26].

(3)Δ>1: for this regime � %1 2 is imaginary, hence the previous solutions are not applicable. The new
root can bewritten as

* *B
Y Y

C Q
Y Y

� � � � �
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )i i

1 1
,

1 1
, 34

1 2 1 2

Y Y
N

�
% �

�
% �

( )sinh
1 1

1
, sinh

1

1
. 35

1
2

2
2

One can check that this solution represents a zeromodewith thewave function:

*G
Y

Y

� qB
Y

�

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )Ce

n
n

n
n

cosh if is odd,

sinh if is even.

36n

n

,
2

2

1

For this solution Y Y�1 2 sinceμ<1 and this guarantees thatf (ψ) is localized on the left (right) edge.

4. Zero-modes for next nearest-neighbour and complex couplings

In this sectionwe study the zeromodes in the presence complex hopping and pairing terms, both in the casewith
nearest neighbor hopping and pairing terms, as well as next-nearest neighbor (NNN) hopping and paring terms
The complex amplitudesmodel the presence of a phase gradient in the system.

In their fermionic incarnation, these generalized Kitaevmodels were studied in [18, 27–29]. In the language
of spinmodels, addingNNN terms gives rise to so-called (one-dimensional) clustermodels [27, 30–33], but we
concentrate on the fermionic version of thesemodels.

An important feature of thesemodels is the possibility of havingmore than one zeromodes at each end,
which is possible due to the presence of longer range terms. This can also be understood in terms of the
classification of topological insulators and superconductors [34, 35]. TheKitaev chainwith real coupling
constants belongs to class BDI forwhich the different topological phases can be labeled by the elements of ', in
the absence of interactions. Adding interaction changes this picture such that new classification is given by '8

instead [36]. In the case with only nearest neighbor hopping and pairing terms, themodel describes phases with
atmost oneMajoranamode at each end of the system.However by addingNNN terms onefinds phases with two
Majoranamodes at each end. Thismeans that therewould be two distinct topological phases with one and two
zeromodes solutions (in addition to the trivial phase, which does not have a zeromode).

Proposals for using the non-local fermionic state as a qubit, requires the ability tomoveMajorana edge states
and even to do braiding. One proposal to achieve this is by inducing a phase gradient in the superconductor
order parameter, i.e% � % Rej

i j, with non-uniform θj [37]. Having a complex superconductor order parameter
breaks the time reversal symmetry inwhich case themodel belongs to class D. For class D, we have the '2

classificationwhichmeans that the system could be either in the topological phasewith atmost oneMajorana
zeromode at each end, or in the trivial phase. Surprisingly, Sticlet et al showed thatNNN termswith a phase
gradient can exhibit an exponentially localized fermionic zeromode on just one edge [18]. Such a phase, though
it is not topologically protected, has local zeromodes. In [18] thesemodels were investigated numerically. Here
we present an analytical solution and study the zero-modes in detail.Wefirst review theKitaev chainwithNNN
terms. After that, we study the effect of a constant phase gradient in theKitaev chain. Finally, we combine the two
complications and considerNNN terms and a phase gradient simultaneously.

4.1. Next nearest-neighbor couplings
In this sectionwe consider theKitaev chain and addNNNhopping and pairing terms.We start with the case for
which all the parameters are real, hence theHamiltonian belongs to class BDI. Settingμ=1, the problemhas
four energy scales, corresponding to the two hopping and two pairing amplitudes. To simplify the calculationwe
set theNNhopping and pairing terms equal to each other andwe do the same for theNNN terms. Sticlet et al
studied thismodel under the same assumptions [18].We consider themodel with arbitrary complex parameters
in section 4.4.
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Thus, theHamiltonian reads,

� � �N
M

� � � � � � � �
�

�

� �
� �

�

� �⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )† † † † † † †H

t
c c c c h c c c c c c c h c

2
. .

1

2 2
. . 37

j

N

j j j j
j

N

j j
j

N

j j j j
1

1

1 1
1 1

2

2 2

whereλ is theNNNhopping and pairing amplitude. To obtain the phase diagram,we first consider themodel
with periodic boundary conditions [18, 27].We do a Fourier transformation, � �c e cj N k

ikj
k

1 , and define

: � �( )†c c,k k k
T towrite the hamiltonian as

 

 

�
M U M N U

� : :

� � � � � �[ ( ) ( )] [ ( ) ( ) ] ( )

†H

t k k t k k

1

2
,

sin sin 2 cos cos 2 , 38
k

k k k

k
y z

where the τα are Paulimatrices that act in theNambu space :k. TheHamiltonian can bewritten as
 U� ( ) ·khk . One canfind the phase diagramby calculating thewinding number forh (k) [18, 35] or by
looking at gap closing lines [27]. The phase diagram is presented infigure 1. The gap closes along the lines
λ=μ+t,λ=μ−t andλ=−μ for N�∣ ∣ ∣ ∣t 2 . Note that in the figure we usedμ=1.

Before looking at the zeromode solution(s) of an open chain, wefirst consider some limiting cases to
understand the phase diagram. For very small M N�∣ ∣ ∣ ∣ ∣ ∣t , we get the trivial phase. The ‘0’ infigure 1 indicates
that there are noMajorana zeromodes in this part of the phase diagram.Outside of the trivial region on the
vertical axis where t=0we have two decoupledKitaev chains, hence there are two zeromodes at each end. For a
fixedλ, addingNN terms couples these two chains. The two zeromodes survive until the gap closes, thereafter
therewill only be one zero-mode at each end. The horizontal axis withλ=0 (i.e., the original Kitaev chain)
belongs to this later regionwhich is indicated by ‘1’ in thefigure 1.

Tofind thewave functions of the zeromodes, we use equations (8) and (9)withΛα=0. From equation (16)
we see that if ηα is aMajoranamode (i.e., I I�B B

† ),ψhas to be purely imaginary. So for convenience we define

Z Z� ˜i andwe get G Z� �( ˜ )g i1

2
.We use this convention fromnowon.We obtain the following ‘bulk’

equations

NG G MG� � � �� � ( )t 0 39n n n1 2

MZ Z NZ� � �� �˜ ˜ ˜ ( )t 0. 40n n n2 1

The ‘boundary’ equations are−μfN−1+tfN=0,−μfN=0, NZ� �˜ 01 and Z NZ� �˜ ˜t 01 2 . Sowe can use
the ansatz G _ xn

n
0 and Z _ � �˜ xn

N n
0

1, which gives the result

G

Z

MN
M

� �

� �

�
� o �

� � � �

� �
� �

� �
� �

o

˜

( )

L x L x

R x R x

x
t t

,

,

4

2
, 41

n
n n

n
N n N n

0, 0,

0,
1

0,
1

0,

2

where L± andR± are real normalization constants (the subscript ‘0’ in the length scales indicates that we deal
with a zero phase gradient).

We can extract the phase diagram from this result [27] andwe setμ=1 to be able to compare withfigure 1.
For regionswhere M � � ∣ ∣t1 or both M � � ∣ ∣t1 andλ<−1 (corresponding to the upper and lower regions
offigure 1), one can see that �o∣ ∣x 10, . Thismeans that in these regions that are indicated by ‘2’ the systemhas

Figure 1.Phase diagram forKitaev chainwithNNN terms forμ=1 (equation (37)). The numbers in the plot show the number of
Majorana zeromodes at each end of the chain. The solid lines represent phase boundaries. The lineλ=−1 together with the dashed
lines forms the boundary of the region inwhich �

Mo∣ ∣ ∣ ∣x 1 . In this region the correlation length only depends on theNNNcoupling.
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two independent zeromode solutions. In the right part of the phase diagramwhere 1−t<λ<1+t, there
exists only one zeromode since ��∣ ∣x 10, and ��∣ ∣x 10, . If 1+t<λ<1−t we also have one zeromode,
however, in this case ��∣ ∣x 10, and ��∣ ∣x 10, .We note that in these regions, the boundary equations are also
satisfied in the largeN limit.

It is also interesting to note that for M� �t 4 02 the roots are real. Still they could be negative in some
regionswhich gives rise to an oscillatory behavior of thewave functions, which are then proportional to (−1)n.
For t2+4λ<0 the roots become complex. The red, dashed lines in figure 1 specify the upper boundaries of
this region (in the caseλ<−1). In this case �

Mo∣ ∣ ∣ ∣x 1 which gives us the the criterionλ<−1 in order to

have a zeromode (in the region t2+4λ<0). In this part of the phase diagram the correlation length only
depends onλ, while theNNcoupling t only affects the oscillatory part of thewave function.

Beforemoving to the case with bothNNN terms as well as with a phase gradient, wefirst study theKitaev
chainwith just a constant phase gradient.

4.2. Phase gradient in the order parameter
In this subsection, we consider theKitaev chain, but with a phase gradient in the superconducting order
parameter. In the case of a superconductor with a super current, the pairing termhas a site dependent phase
% � R�ej

ij where∇θ is the constant phase gradient, while j indicates the position of the site. In this case, the
Hamiltonian reads

� �N� � � � �R

�

�

�
�

�
�

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )† † † †H c c e c c h c c c

1

2
. .

1

2
. 42

j

N

j j
ij

j j
j

N

j j
1

1

1 1
1

ThisHamiltonian belongs to class D. Aswe indicated above, the topological phases are labeled by elements of '2,
whichmeans that the system could be in the topological phasewith oneMajorana zeromode at each end.
Changing the gauge, we transform the fermionic operators as l

R�
c e cj

ij
j2 . This transformation gives us site-

independent couplings, but now also the hopping parameter has become complex. The transformed
Hamiltonian is

� �N� � � � �
R R

�

� �
�

� �
�

�

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )† † † †H e c c e c c h c c c

1

2
. .

1

2
. 43

j

N
i

j j
i

j j
j

N

j j
1

1

2 1 2 1
1

Tofind a zeromode solutionwe use equations (14) and (15). The details of the solution for theMajorana
operator are given in appendix B. The leftMajorana solution is

�H
N

H�
R

�
�

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥( ) ( )L

cos
, 44L

n

N
n

A n
1

2

,

where L is the normalization constant tomake H � 1L
2 and the sum is over the sites. ThisMajoranamode is

located at the left side of the system, and is a solution in the largeN limit. The rightMajoranamode ismore
complicated,

�H
N R

H
R

H� q
�

�
�

R
�

�

� �

⎜ ⎟ ⎜ ⎟
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( )R

cos
sin

2
cos

2
, 45R

n

N
N n

A n B n
1

2

1

, ,

whereR is the normalization constant tomake H � 1R
2 and the sum is over the sites. Using theMajoranamodes

γL and γR, one can construct one fermionicmode f0=1/2 (γL+i γR) as usual.We note that to have a localized

zeromodewe have the criteria N � R�( )∣ ∣ ∣ ∣cos
2

. Thismeans that turing on the phase gradient shrinks the
topological region. Second, we see that the leftMajorana consists only of γAMajorana operators (recall the
definition above equation (16)), however, the right one involves both γBʼs as well as γAʼs. In the case that∇θ=0
the leftMajoranamode only involves γA operators and the rightMajoranamodes only γB operators. This feature
of the solution comes from the fact that for realA andBmatrices (see equations (14) and (15)), the equations
governingf and Z̃ are decoupled—recall that G Z� �( ˜ )g i1

2
. Adding the phase gradientmakes thesematrices

complex, hence the equations become coupled and the solutions becomemore complicated. The direction of
the phase gradient shows itself in the elements of theA andBmatrices and gives rise to this asymmetry; the ‘left-
right’k symmetry is broken explicitly.

In the next sectionwe addNNN terms to the current problem [18]. The results presented in the current
subsection are useful to understand zeromode solution(s)when one adds theNNN terms.

4.3. Next nearest neighbor terms alongwith a phase gradient in the order parameter
Wenow considerNNN terms in the presence of a constant phase gradient. Againwe set the hopping and pairing
amplitudes equal to each other for both the nearest neighbors andNNN terms. Following Sticlet et al [18], the
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Hamiltonian reads,

� �

�

M
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2
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2
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1
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ij
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j
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j j

1

1

1 1
1

2

2 2

1

wherewe assumed the same phase dependence for the nearest neighbor andNNNpairing terms, with the same
phase for both terms involving the first site. Aswementioned above, for∇θ=0 thismodel has a trivial phase
without any zeromodes and two topological phases that hosts one or twoMajorana zeromodes respectively (see
figure 1). For R� v 0, themodel belongs to class D. Thismeans that, contrary to∇θ=0 case, there is only one
type of topological phase. The phase that had twoMajorana zeromodes becomes trivial upon adding the phase
gradient. The natural question is thenwhat happens to the phases with twoMajorana edge states?Despite the
fact that the phase has become trivial, onefinds that it is still an interesting trivial phase, as was already observed
in [18]. Here, we study the zeromodes of themodel, and shed light on the zeromode present in one of the trivial
phases.

By transforming l
R�

c e cj
ij

j2 as in the previous section, theHamiltonian becomes

� �
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M
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R R R R
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1

2
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Aswe show in the next section (wherewe consider themodel for general parameters), the locationswhere
the gap of thismodel closes are very similar to the locations of the phase transitions of themodel with zero phase
gradient,∇θ=0.Namely, they take the same form, if written in terms of the variables R� �˜ ( )t tcos 2 and
M R M� �˜ ( )cos , whileμ remains unchanged. So, the gap closeswhen M N� o˜ t̃ , as well as when both M N� �˜
and - N∣˜∣ ∣ ∣t 2 .

Infigure 2, we show the phase diagram for a phase gradient∇θ=π/3, and indicate the number of zero-
modes on the left and the right separately.Wefirst present the analysis of the zeromodes and based on those
results we explain the phase diagramof themodel.

Sticlet et al [18] showed that the topological phase of thismodel has one zeromode at both edges as expected.
The trivial phase, however, is divided into two regions. One region does not have any zeromode, while the other
region has two ‘Majorana’ zeromodes that are localized on one edge (i.e., a localized fermionic zeromode),
while there is no zeromode on the other edge (see figure 2). The former trivial region corresponds to the trivial
phase of themodel without phase gradient while the later trivial region corresponds to the topological phase of
themodel without phase gradient with twoMajorana zeromodes on both sides. Inwhat followswe present
analytical wave functions for all the zeromodes and determine forwhich parameters they are present. Tofind
theMajorana zeromodeswe use equations (14) and (15) and as before, we set G Z� �( ˜ )g in n n

1

2
. The ‘bulk

equations’ read

Figure 2.Phase diagram forKitaev chain atμ=1withNNN terms and a phase gradient R Q� � 3. The numbers in parenthesis in
the plot show the number ofMajorana zeromodes at the left and right side of the system. The solid lines represent the phase
boundaries. The dashed line represents a crossover at which the gap closes. Theλ-axis should be treated differently. For M �∣ ∣ 2 and
t=0 the system is in the topological phase and hosts twoMajorana zeromodes on each edge, while for M �∣ ∣ 2 and t=0, it is in the
trivial phase without any zeromode. The points M �∣ ∣ 2 and t=0 correspond to phase transitions.
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In this case, there are four boundary equations (two for each end) that differ from the bulk ones, namely
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We start by solving the bulk equations, without paying attention to the boundary equations.We then solve the
boundary equations, in the different regimes of the phase diagram.

The equations forfn involves the solution forψn. Thus, the solution forfn consists of two pieces, namely the
general solution to equation (49)with the right hand side set to zero, whichwewill denote by G ngen, , as well as a
specific solution, for the full equation.We start with the ansatz G _ xn

n
gen, . This gives us two correlation lengths

MN R

M R
�

� o � �

�

R R

o

� �( ) ( ) ( )
( )

( )x
t tcos cos 4 cos

2 cos
. 52

2
2 2

2

Thus, the generic solution is G � �� � � �L x L xn
n n

gen, , where oL are constants. As before, Z G� � �
˜n N ngen, 1, which

shows that the generic solution forf is localized on the left edge and the solution for Z̃ is localized on the right
edge, Z � �� �

� �
� �

� �˜ R x R xn
N n N n1 1, with oR two constants. Tofind the full solutionfn, based on equation (49)

weneed to add a particular solution to G ngen, of the form �� �
� �

� �
� �S x S xN n N n1 1with constant L�o o oS R ,

since it should behave as Z̃. After some algebra, one finds that

L R
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t
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The general solution to the bulk equations (48) and (49) is thus given by

Z

G
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n
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n
n n N n N n
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With the general solution for the bulk equations at hand, we turn our attention to the boundary equations,
whichwe solve in the different regimes.

(1) �o∣ ∣x 1: in this case, both characteristic length scales are bigger than one, which occurs for the part of the
phase diagramwhere themodel without phase gradient is in the trivial phase. In this case, it is not hard to
convince oneself that the boundary equations (50) and (50) lead to � �o oL R 0, whichmeans that, as
expected, there are no zeromodes in this regime.

(2) ��∣ ∣x 1and ��∣ ∣x 1: in this case, themodel is topological and x−
n increases with n, whichmeans that x−

n

is localized on the right edge instead of the left one. It is therefore convenient towrite this solutions as

�
� �

�
( )L̃

x

N n1 1
, with �� �

�
�L̃ x LN 1 , to highlight that this solution is localized on the right edge.

The boundary equations (50) imply that � �� �R S 0. The boundary equations (51) give, after some
algebra, that � � R

R N M R� �
�

� � �
˜ ( )

( )( ( ))L R t sin 2

cos cos
, while L�� � �S R as before. Thus, the solution for the zeromode is

given by

Z � � �
� �˜ ( )R x , 55n

N n 1

G � � �� � � �
� �

�
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� �
⎜ ⎟⎛
⎝

⎞
⎠˜ ( )L x S x L

x

1
. 56n

n N n
N n

1
1

Wefind that in this case, there is one zeromode, that is localized on both edges of the system.One special
property of this zeromode, which differs from the case without a phase gradient, is thatfn has support on both
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edges of the system,whileψn only has support on the right edge. Finally, we note that the case ��∣ ∣x 1and
��∣ ∣x 1 is completely analogous.
(3) �o∣ ∣x 1: this case corresponds to the part of the phase diagram inwhich themodel without phase

gradient has two zeromodes on both sides of the system.With the phase gradient, thismodel is in a trivial phase.
To determine if there are any zeromodes, we again solve the boundary equations. The boundary equations for
n=1, 2, i.e. (50), give rise to terms that are proportional to Z̃ at the left edge. Equation (54) assures that these
terms are of order ox N and can be neglected in the thermodynamic limit. So the solution satisfies the boundary
equations (50). The boundary equations (51) do give a non-trivial constraint. Namely, for a non-zero phase
gradient R� v 0 (for∇θ=0 the boundary equations are satisfied), onefinds that

� � � �� � � � � � � � ( )R x R x R x R x0 0. 572 2

These two boundary equations imply that �oR 0.We conclude that in this regime there are two zeromodes on
the left side of the system, and none on the right side, i.e. G � �� � � �L x L xn

n n and Z �˜ 0n . This precisely
corresponds to the surprising result obtained by Sticlet et al [18].We stress that this ordinary, or ‘Dirac’ zero
mode on the left side of the system is not topological, but is in fact a consequence offine tuning the parameters.
We discuss thisfine tuning inmore detail in section 4.4.Nevertheless, as long as one keeps these parameters fine
tuned, the onlyway this localized zeromode can disappear is via a closing of the gap, signaling a phase transition
or a crossover.

We can now shed light on the phase diagram figure 2 (wherewe set∇θ=π/3) and discuss it inmore detail.
The two solid lines in thefigure, M N R R R� � o � �( ) ( ) ( )tcos cos 2 cos , indicate phase transitions. Along
the dashed line,λ=−μ/ cos (∇θ), the gap closes and a crossover occurs between a regionwith no zeromode
and a regionwhere the systemhas two zeromodes on left edge and none on the right edge. The corners of the
triangular regionwithout any zeromodes are given by (0,μ/ cos (∇θ)) and N R N Ro � � �( ( ) ( ))2 cos 2 , cos .

Upon increasing∇θ, the slope of the lines indicating the phase transitions increases, and the size of the trivial
center region increases. At∇θ=π/2, the two phase transition lines are parametrized by N� ot 2 and the
trivial center regionwithout any zeromode becomes a stripe in themiddle of phase diagram. For
R Q Q� � ( )2, the shape of the phase diagram is invertedwith respect to the t-axis in comparisonwithfigure 2.
We should note that theλ-axis (t=0) should be treated separately. For t=0, themodel corresponds to two

copies of themodel that we studied in section 4.2, one for the even sites and another one for the odd sites.
Therefore, the system is either in a trivial phase (for t=0 and N M R� �∣ ∣ ∣ ( )∣cos ) or in a topological phase (for
t=0 and N M R� �∣ ∣ ∣ ( )∣cos ). In the topological phase the systemhas twoMajorana zeromodes on each edge,
because the two chains are decoupled.

To provide further insight in the phase diagram (figure 2), we calculated the second derivative of the ground
state energy forμ=1,∇θ=π/3 and t=0 as well as t=0.1 for M � �[ ]4, 4 2. The result is shown infigure 3.
Wefirst consider the line t=0 (the blue dashed line). Aswe described above, forλ=−4 the system is in the
topological phase. The pointλ=−2 is a critical point. Upon increasingλ, one enters the trivial phase. By
passing the other critical point, namelyλ=+2, one enters another topological phase. These two critical points
give rise to divergencies in−d2E/dλ2 as is shown infigure 3. This is a clear signature of a second order phase
transition. For vt 0, (in thefigurewe used t=0.1, the black line), the situation is quite different. Atλ=−2,
−d2E/dλ2 is smooth (the critical point atλ=−2 and t=0 shows its presence via a bump) and the system

Figure 3.The second derivative of the ground state energy as a function ofλ forμ=1 and R Q� � 3.We set t=0 for the dashed
line and t=0.1 for the solid line.

2
Weused the version of themodel with periodic boundary conditions, equation (59), that will be presented in section 4.4.
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undergoes a crossover, although the gap closes. One still observes two divergencies symmetrically aroundλ=2.
These two divergencies correspond to the phase transitions indicated by the solid lines infigure 2.

We close this section bymentioning that it is of course possible to have the localizedDirac zeromode at the
other edge of the system.Oneway to achieve this is by changing the phase dependence of the original pairing
terms in the originalHamiltonian equation (46) to �R M R� �

�
� �

�
( ) † † ( ) † †e c c e c ct i j

j j
i j

j j2
1

1 2
2

2. This is equivalent to an
inversion accompanied by the change R R� l �� .We note thatmerely changing R R� l �� does not
change the role of the left and right hand side of the system. Basically the same calculation as above shows that
this new pairing leads to two zeromodes on right edge and none on the left edge (because the role offn and Zn in
equations (48) and (49) is swapped). Themodel with these pairing terms has the same topological and trivial
phases, however the left and right sides of the chain change their role. Aswe show in the next subsection, in the
translational invariant formulation of themodel, as in equation (47), the location of the zero-modes is
determined by the relative sign of the phases of the hopping and paring terms.

4.4. The general case
Tounderstand thefine tuning that is necessary to have theDirac zeromode that resides on one side of the system
as described in the previous section, we look at themore general Hamiltonian,
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where t1,Δ1, t2 andΔ2 are arbitrary complex parameters. In the case of periodic boundary conditions, we can
define : � �( )†c c,k k k

T andwrite theHamiltonian as:
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k
k k k k 0

0 1 2

1 1 2

2 1 2

3 1 2

where 1 is the two by two identitymatrix. Performing a unitary transformationwith U U� �( )U x z1

2
we get,

)  � �
� �
� �

⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )†U U

h k h k h k ih k
h k ih k h k h k

. 60k k
0 1 3 2

3 2 0 1

By comparing themodel we discuss here, equation (47)with (59)wefind that in this case, all the imaginary parts
depends are proportional to R�( )sin 2 or R�( )sin , for the nearest neighbor orNNNcase respectively. So, these
terms vanish for∇θ=0. In that case, we obtain

) �
�

�R� �
⎛
⎝⎜

⎞
⎠⎟∣ ( ) ( )

( ) ( ) ( )h k ih k
h k ih k

0
0

. 61k 0
3 2

3 2

Sincewe performed an unitary transformation, )  �Det Detk k. So in the gapped phase, either topological or
trivial, ) � � v∣ ( ) ( )∣h k ih kDet 0k 3 2

2 can be used to define a topological invariant via thewinding of
�( ( ) ( ))h k ih kArg 3 2 , see [35]. This calculation leads to the same phase diagramwe discussed before, see figure 1.

We now consider a phase gradient, i.e. R� v 0, which is the casewe are interested in. Based on
equation (47)wehave

R
M R

R
M R

R
M R
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M R N
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��
�
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⎠
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⎠
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⎛
⎝
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⎠

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

h k t k k

h k t k k

h k t k k

h k t k k

sin
2

sin sin sin 2 ,

sin
2

sin sin sin 2 ,

cos
2

sin cos sin 2 ,

cos
2

cos cos cos 2 . 62

0

1

2

3

The fact that � % � � % �( ) ( ) ( ) ( )I I I It t 01 1 2 2 , gives rise to) � 0k,11 . Thismeans that, similar to the
∇θ=0 case, we have that ) � �∣ ( ) ( )∣h k ih kDet k 3 2

2, despite the fact that) v 0k,22 .
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Thuswefind effectively the same phase diagram for themodel with the phase gradient, namely the one given

infigure 1, if we replace l R�( )t t cos
2

and M M Rl �( )cos .

Aswe indicated in the previous section, by changing the paring terms in the originalHamiltonian
equation (46) to �R M R� �

�
� �

�
( ) † † ( ) † †e c c e c ct i j

j j
i j

j j2
1

1 2
2

2, we can have the situation that the systemhas two

‘Majorana’ zeromodes on the right edge and none on the left side. The gauge transformation �
R�

c̃ e cj
ij

j2 changes

these terms to � M R
�

�
�

R� ˜ ˜ ˜ ˜† † † †e c c e c ct i
j j

i
j j2 1 2 22 . The hopping terms � M

� �
† †c c c ct
j j j j2 1 2 2 become

� M R
�

�
�

R� ˜ ˜ ˜ ˜† †e c c e c ct i
j j

i
j j2 1 2 22 as before. In this case wefind that � % � � % �( ) ( ) ( ) ( )I I I It t 01 1 2 2 , which

results in) � 0k,22 .
In class BDI, all the information about the zeromodes is encoded in )Det k. The discussion above shows

that this is not so in the present case.Whether) � 0k,11 or) � 0k,22 plays an important role in determining the
position of the (non-topological) localized zeromodes. It is also clear what fine tuningwe need in order to have a
pair of ‘Majorana’ zeromodes localized at one side of the system andnone on the other.We need either)k,11or
)k,22 to be zero, but not both. This is the case if we fine tune � % � � % �( ) ( )I It t 01 1 2 2 or

� % � � % �( ) ( )I It t 01 1 2 2 , but not bothwhichwould imply that all these parameters are real, and one has
an equal number of zero-modes on either side of the system.

To explore this situation further, wewrite theHamiltonian in terms ofMajorana operators,
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j

N
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j
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As a simple examplewe can see that for theHamiltonian presented in equation (47), settingμ=0 and
R Q� � , yields followingMajorana representation

� �H H
M

H H� �
�

�

�
�

�

� ( )H
t

i i
2 2

, 64
j

N

B j B j
j

N

B j A j
1

1

, , 1
1

2

, , 2

where it is evident that γA,1 and γA,2 do not appear in theHamiltonian and therefore commutewith it. Hence
there are twoMajorana zeromodes on the left edge.

It is interesting to note that for R Q� � , theHamiltonian belongs to class BDI. From the formof the
Hamiltonian in equation (47) this is not obvious, but it is for the form equation (46), because all the coupling
constants are real. On the other hand, in this form, some of the couplings are staggered, and in the periodic case,
themodel is translationally invariant with a two-site unit cell. The phase diagramhas a different structure in this
case, with only three phases. The phase boundaries do not depend on t, and are given by M N� o . Because of the
two-site unit cell, we use the formulation of the phase-winding invariant as given by [38]. One finds that all three
phases are in fact trivial. In the trivial phases with M N�∣ ∣ ∣ ∣, there is a localizedDirac zeromode only on the left
side of the system, and no zeromodes on the right side. This is consistent with the analysis of themodel based on
equation (47). From the point R Q� � it is clear that also in symmetry class BDI, there areHamiltonians that
have trivial phases, which have a localizedDirac zeromode only on one side of the system, if parameters arefine-
tuned.

Our previous discussion led us to conclude that � % � � % �( ) ( )I It t 01 1 2 2 could result in two zero
modes on the left edge. Based on equation (63)we can see that thismeans that there should not be any terms like
iγA, jγA, j+1 and iγA, jγA, j+2 present in theHamiltonian.We can shedmore light on this issue based on our
analytical solution for the non-uniformpairingwith nearest neighbor hopping and pairing.

As a first a step, we assume that t=0. Thismeans that we have two decoupled chains with a phase gradient.
Our previous analysis shows that in the topological phasewe have oneMajorana zeromode on each edge. The
wavefunctions for theseMajoranamodes are given in equations (44) and (45). The crucial difference between
these twowave functions originates in the direction of the phase gradient, which causes the leftmode to be
independent of HB, while the rightmodes consists of both γA and γB. Namely, for the leftmode gn is purely real
while for the rightmode gn is complex, and hence involves bothf and Z̃.
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In the second step, we turn on nearest neighbor couplings, i.e. vt 0.We see that thefirst four terms in the
Hamiltonian equation (63) result in a coupling between the zeromodes of the two decoupled chains. Under the
assumption that � % �( )I t 01 1 and � % �( )I t 02 2 , which holds in our analytic calculation of the zero
modes, we find that the right zeromodes from the twodifferent chains become coupled because of the i
γB, jγB, j+1 terms present then vt 0, which gaps themout. On the other hand, the zeromodes on the left edge do
not become coupled directly, and remain gapless. Their wavefunctions aremodified to the newones presented
in equation (54).

Finally, wemention that we checked numerically that under the conditions � % � � % �( ) ( )I It t 01 1 2 2 ,
the systemhas a phase forwhich the ground state has two zeromodes located on the left edge, and none on the
right edge. The same holds true in the case that � % � � % �( ) ( )I It t 01 1 2 2 , if one exchanges the left and
right edge of the system.

5.Discussion

In this paper, we investigated the ‘one-sided’ fermionic zeromodes observed by Sticlet et al [18], by solving the
Kitaevmodel, in the presence of complex hopping and pairing terms, includingNNN terms, for open chains.
Fromour investigation, it became clear thatfine-tuned parameters are necessary for such zeromodes to exist,
but under thefine-tuned conditions, the gap needs to close in order to destroy them. Leaving the fine-tuned
conditions gaps these zero-modes out, turning them into one-sided low-energy subgapmodes. Phases with such
one-sided bound states can occur both in one-dimensional systems in class D, aswell as in class BDI. These
modes are not protected by topology, whichmeans that they can occur in the topologically trivial phase.

The general condition for the existence of ‘one-sided zeromodes’ ismost easily explained in terms of the
Majorana formulation of the chains. Starting froma situation inwhich two pairs of (delocalized)Majorana
bound states are present (i.e., in class BDI), one needs a perturbing term such that the twoMajoranas describing
themode on, say, the left side are coupled, while themodes on the right side are not. It is worth tomention that if
one assumes a different phase gradient for the nearest neighbour and next-nearest neighbour pairing terms in
equation (46), these ‘one-sided zeromodes’ gap out.

There has been a lot of progress onmodels in higher dimensions, that exhibit exact zeromodes, see for
instance [39]. It would be interesting to investigate if it is possible to constructmodels, that exhibit ‘one-sided’
zeromodes along the lines of the ones described in this paper, even in those higher-dimensional systems.
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AppendixA.Details of theKitaev chain spectrum calculation

In this appendixwe present details of the solution for the openKitaev chainwith generic real parameters and free
boundary conditions. TheHamiltonian reads:

� � �N� � �
%

� � �
�

�

�
�

�

�
�

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )† † † †H c c h c c c h c c c

1

2
.

2
.

1

2
. A1

j

N

j j
j

N

j j
j

N

j j
1

1

1
1

1

1
1

It is helpful to recall the (of course well known) solution for the periodic case, which is obtained via a Fourier
transformation, � �c e cj N k

ikj
k

1 , and defining : � �( )†c c,k k k
T. This results in

�
N

N
� :

� � %
� % �

:
⎛
⎝⎜

⎞
⎠⎟ ( )†H

k i k
i k k

1

2

cos sin
sin cos

. A2
k

k k

Diagonalization of this 2×2matrix gives us:

��� �⎜ ⎟⎛
⎝

⎞
⎠ ( )†H f f

1

2
, A3

k
k k k

� N� � � %( ) ( )k kcos sin , A4k
2 2 2

where fk is a new fermionic quasiparticle annihilation operator.
To tackle the open case, we use the LSMmethodwhich is reviewed in section 2. To this end, we need to

arrange theHamiltonian to have the formof equation (1),
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�

( ) ( )† † †H c A c c B c h c
1

2
. . . A5

i j

N

i ij j i ij j
, 1

Tofindfα and ZB from equations (10) and (11) i.e.,

G G

Z Z

� � � -

� � � -
B B B

B B B

( )( )
( )( )
A B A B

A B A B ,

2

2

wehave to construct thematricesA−B andA+B.
We present thesematrices for themore general case ofHamiltonian in equation (58), i.e.,
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becausewe need them later on. In this case,A−B andA+B read,
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For theHamiltonian equation (A1), i.e. with t1=1,Δ1=Δ, and t2=Δ2=0, these reduce to,
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Using thesematrices in equation (10) one gets

G NG N G NG G G� % � � � � % � � � % � -B B B B B B B� � � �( ) [ ( )] ( ) ( )1 4 4 2 1 4 1 4 , A11n n n n n n
2

, 2 , 1
2 2

, , 1
2

, 2
2

,

for - - �n N3 2.We call this the ‘bulk equation’. In the case of periodic boundary conditions, this is actually
the only equation one has to consider. However, for an open chainwith free boundary conditions, we also have
four boundary equationswhich are different from the bulk one, namely for n=1, 2,N−1 andN one has:
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,
2

,

Wenote the difference between thefα,1 term in the equation for n=1 and thefα, N term in the equation
for n=N.

To solve these equations we can start with an ansatz for the eigenvaluesΛα. Note that the bulk equation is the
same for both the periodic and the open chain. This suggests to use our knowledge about the periodic case. The
bulk equation determines the formof the eigenvalues as a function of a parameterα, which in turn is determined
by the boundary equations. This is exactly what happens in the periodic case, wherewe use k instead ofα andfix
� Qk n

N

2 for n=0, 1,KN−1 in equation (A4) by demanding cN+1=c1.
Therefore we use the same parametrization for the eigenvalues as in the open case,

N B B- � � � %B ( ) ( )cos sin . A162 2 2 2

Nowwe need tofind an equation based onwhich one can determine all the possible values ofα.With the ansatz
for -B, we solve equation (A11) by the standard approach, i.e. we considerfα,n∼xnα. Using this in
equation (A11) gives us:

B B� � � � � �B B B B( ) ( )x Kx K x Kx2 cos cos 2 1 0, A174 3 2

N
�

� %
( )K

4

1
. A18

2

One checks that Boe i are solutions independent of the parameterK. Sincewe have found two roots, we can find
the other two, which are given by Coe i whereβ satisfies

B C� � ( )K
cos cos

2
. A19

Therefore eachα has aβ partner.We note thatα andβ are equivalent. The associated eigenvalues can bewritten
in the same functional form, i.e. N C C- � - � � � %B C ( )cos sin2 2 2 , which follows from equation (A19).
We continue to useα as the label indicating the eigenvalue.

These solutions tell that Boe in and Coe in are themost general solution for the bulk equation. Nowwe need to
determine a linear combination of these functions that satisfies the boundary equations. Treating the left and
right edges in an equivalent way, we consider the following combination:

G B B C C� � � � � � � �B ( ) [( ) ] ( ) [( ) ] ( )A n A N n B n B N nsin sin 1 sin sin 1 , A20n, 1 2 1 2

inwhichA1,A2,B1 andB2 are constants.
Using this ansatz, equations (A13) and (A14) give us:

B C� � � �[( ) ] [( ) ] ( )A N B Nsin 1 sin 1 0 A211 1

B C� � � �[( ) ] [( ) ] ( )A N B Nsin 1 sin 1 0. A222 2

Based on these relations, we rewrite the ansatz:
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Finally, wemake sure that the ansatz satisfies equations (A12) and (A15), which leads to the following
equations:
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in terms of the functions
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B C B C B� � �( ) [( ) ]( ) ( )f N, sin 1 cos cos A262

16

J. Phys. Commun. 2 (2018) 045010 IMahyaeh and EArdonne



B C B
B
C

C� �
�
�

( ) [( ) ]
[( ) ]

( )f
N

N
, sin

sin 1

sin 1
sin . A273

Tofind a non-trivial solution forA1 andA2, we require that the determinant of thematrix in equation (A24)
is zero. This gives us another equation forα andβ:
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sin sin
1
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sin sin

sin 1 sin 1
1 cos 1 cos 1 0. A28

2 2
2

2

This equation should be solved together with equation (A19) to give us all admissible labels. Generically, this has
to be done numerically.

In the analysis below, we focus on the regimewith .N 0 and .% 0.We assume that% v 1, the case
Δ=t=1was considered explicitly in [20, 21]. From the equations (A28) and (A19), we see that a solution (α,
β) forΔ>0 also gives a solution forΔ<0 (though the formof thewave functionfα,n changes). In addition,
the solutions forμ<0 can be related to the solutionswithμ>0. If a pair (α ,β) satisfies the equations for
μ>0, the pair B Q C Q� �( ), will satisfy the equations forμ<0.Note that this shift does not change
equation (A28). However, it gives rise to aminus sign in the left hand side of equation (A19)which indeed
changes the sign ofμ. Finally, the actual eigenvaluesΛα are also unchanged.

Thus fromnowon, we assume that .N %, 0. The structure of the solutions (α,β) is as follows. Forμ>1,
onefindsN solutions, for whichα and orβ is real. Becauseα andβ are completely equivalent, we assume thatα
is real.When - N �0 1, there areN−1 solutions, withα real, andβ either real or complex.We note that ifβ is
complex, its real part C �Re 0 forΔ<1, and C Q�Re forΔ>1. The ‘missing’ solution has bothα andβ
complex, and corresponds to the zeromode, whichwe describe in detail below. Infigure 4, we show this for a
chain ofN=6 sites,Δ=0.8 and different values ofμ.

Before we do so, we first discuss the solutionswithα real.Wefirst note that for any (α,β) pair that solves
equation (A28) and (A19), all the combinations of B Co o( ), are also a solution. Since these pairs give rise to
samewavefunction, we only considerα in the range - -B Q0 .

The solutions are then obtained by finding the solutions of equation (A28), whereβ is given by
equation (A19). Special care has to be taken in the case that bothα andβ are real, say (α,β)=(α1,β1), because
onewill alsofind the equivalent solution (α,β)=(β1,α1), so one has to restrict the range ofα further, to avoid
‘double counting’ of solutions.

From equation (A19) it is clear thatα andβ can only be both real when - -� N
�%

1 1
1 2 . Because

.N %, 0, this leads to two regimes, N% � �1 and N% � �1 . In these regimes, one alwaysfinds the
solution B C N B� � � % �( ( ))arccos 1 c

2 , because equation (A28) is trivial whenα=β. This solution is
not valid, however, because it leads tofα,n=0.

Nevertheless, the value Bc is useful when specifying the appropriate range forα. If there are solutionswith
bothα andβ real, one has that eitherα<αc<β, orβ<αc<α. In addition, for the range - N% �1 , one
finds that all the solutions (α,β)withβ imaginary haveα>αc. Thus, tofind all solutions in this range, one
should only take the solutions forα such that B B Q� �c . For the range . N% �1 , the situation is
opposite, and one should take the solutions forα in the range - B B�0 c. In the other regime, namely

N N� � % � �1 1 , one has to consider all solutions forα in the range - B Q�0 .
We now turn our attention to theMajorana zeromode solution. The goal is tofind the analytical expression

for thewave function of thismode. For simplicity, wework in the limit of large system size, i.e., l dN .
By analyzing equation (A28), onefinds that the solution one loses, is the onewith smallest positive, realα.

Taking the limit B l 0 and l dN of equation (A28), using equation (A19), gives

N N
% � %

� � � % �
( )

( )[ ( )] ( )4

1
1 1 0 A29

2 2
2

This shows that there is a solutionwithα=0, forμ=1. In addition, further analysis shows that forμ<1, one
loses this solution, both forΔ<1 andΔ>1, while forμ>1, this solution shifts tofinite, positiveα. This
behavior can be seen for a chainwithN=6 sites,Δ=0.8 andμ=1.2, 0.6, 0.25 infigure 4. In the case of
μ=0.25, only the solutionswith B B Q� x 0.25c are independent, so the there are still only five solutions. The
additional, sixth solution is still a zero-mode.

Wenote that for finiteN, the value ofμ for which one loses the solution has 1/N corrections, and depends on
Δ. That the phase transition between the trivial and topological phase occurs forμ=1 in the largeN limit is of
course well known, and is given by the value ofμ for which the gap closes. Based on equation (A4), we infer that
N � o1are the only possible values of chemical potential for which gap closes (provided that% v 0).

Nowwe turn tofinding themissing root and its associated features. To do sowe need to consider different
cases.
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(1)Δ<1 and N� % � �1 12 : in this regime, we lost one solutionwithα real, sowe look for a solution
with bothα andβ imaginary, and in fact, purely real. Such a solution indeed exist namely,

* *B
Y Y

C
Y Y

� � � �
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )i i

1 1
,

1 1
, A30

1 2 1 2

Y Y
N

�
� %

�
� %

( )cosh
1 1

1
, cosh

1

1
, A31

1
2

2
2

which solves equation (A19) and equation (A28) in the largeN limit. For N� % � �1 12 , both Y1 and Y2 are
real. Let us explore the properties of this solution. First, substituting this result back into the equation (A16) gives
us *- �B 0, so we indeed have a zero-mode. Thismeans thatwe can use equation (8) to solve for thewave
function. Alternatively, we can setA1=0 in equation (A23) to obtain theMajoranamode that is localized on the
left side of the system. Either approach gives

Figure 4.Plot of the left hand side of the constraint equation (A28) as a function ofα forN=6,Δ=0.8 andμ=1.2, 0.6, 0.25 for (a),
(b) and (c) respectively. Forμ=1.2, there are six solutions, so there are no zero-modes. Forμ=.6, there arefive solutions. For
μ=.25, there arefive independent solutions, which one can pick to lie in the range B B Q� x 0.25c .
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*G
Y

�B
Y

� ⎛
⎝⎜

⎞
⎠⎟ ( )Ce

n
sinh , A32n

n

,
2

1

whereC is a normalization constant. Because Y Y�1 2, themode *GB is indeed localized on the left edge.
The same reasoning can be done for ZB n, . The important observation is that (A+B)(A−B) has the same

structure as (A−B)(A+B) if we look at it from the other side of the chain, i.e. l � �n N n1 . Sowe get

* *Z G�B B � �n N n, , 1 , which tells us that *ZB n, is localized on the right edge.

(2)Δ<1 andN � � %1 2 : for N � � %1 2 , the parameter Y2 in equation (A30) becomes imaginary,
so ismore natural to rewrite the previous solution. The root can bewritten as:

* *B
Y

C
Y

� � � � � ( )q i q i
1

,
1

, A33

N
Y

�
� %

�
� %

( )qcos
1

, cosh
1 1

1
. A34

2 2

Again, onefinds that *- �B 0. Using the same logic as above, onefinds that

*G �B Y
� ( ) ( )Ce nqsin , A35n

n

,

withC some constant. This result shows that *GB is localized on the left edge. Although this in this case instead of
having decaying functions, we have an oscillatory decaying function.

(3)Δ>1: in this case we can not use the previous results, because � %1 2 becomes imaginary. One finds
that the new root in this regime is given by

* *B
Y Y

C Q
Y Y

� � � � �
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )i i

1 1
,

1 1
, A36

1 2 1 2

Y Y
N

�
% �

�
% �

( )sinh
1 1

1
, sinh

1

1
. A37

1
2

2
2

We see that Y Y�1 2 sinceμ<1.One can check that for this root *- �B 0, hence it is also a zeromode. Tofind
theMajoranamode that is localized on the left edge, we again setA1=0 in equation (A23), which results in

*G
Y

Y

� qB
Y

�

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )Ce

n
n

n
n

cosh , if is odd,

sinh if is even.

A38n

n

,
2

2

1

This result shows that *GB is localized on the left edge.

To close this sectionwe note that for N � � %1 2 , we have * *B C� . Therefore one can not use Bx n and Cxn

as separate solutions, but one should use Bnx n as the other independent solution.

Appendix B. The zero-modes of theKitaev chainwith a phase gradient

In this appendix, we investigate the zeromode of theKitaev chain, in the presence of a phase gradient in the
order parameter.We assume that � % �∣ ∣ ∣ ∣t 1.

Aswementioned in section 4.2, after a gauge transformation theHamiltonian takes the form

� �N� � � � �
R R

�

� �
�

� �
�

�

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )† † † †H e c c e c c h c c c

1

2
.

1

2
, B1

j

N
i

j j
i

j j
j

N

j j
1

1

2 1 2 1
1

inwhich∇ θ is the phase gradient per site, which is constant. Tofind the zero-mode, we use themethodwhich is
presented in section 2. From equation (A7), thematricesA−B andA+B read
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N
R

N
R

N
R

N
R

N R
R

N

� �

�
�

�
�

�
�

�
�

� �
�

�

R

R

R

R

R

� �

� �

� �

� �

� �

%

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
( )

A B

i

e i

e i

e i

e i

e

0

0

sin
2

sin
2

0 sin
2

sin
2

0

sin
2

,

B2

i

i

i

i

i

2

2

2

2

2

N
R

N
R

N
R

N
R

N

� �

�
�

�
�

�
�

�
�

�

%

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

( )A B

0

0

cos
2

0 cos
2

cos
2

0

cos
2

. B3

In this case we are only looking for the zeromode and the correspondingMajorana operator.Hencewe drop
theα* index. In order to have aHermitian operator,ψneeds to be imaginary in equation (16). Sowe set Z Z� ˜i
and G Z� �( ˜ )g in n n

1

2
. First we look at the ‘bulk equation’ that follows from equation (15):

NZ
R

Z� �
�

��⎜ ⎟⎛
⎝

⎞
⎠˜ ˜ ( )cos

2
0. B4n n 1

The only equationwhich is different from this bulk equation has index one (note thatmatrices are acting from
the right on the vectors),

NZ� �˜ ( )0. B51

These two equations give us the solution:

Z
N

�
R�

� �⎡

⎣
⎢⎢

⎤

⎦
⎥⎥( )˜ ( )R

cos
, B6n

N n

2

1

whereR is a normalization constant.We see that the boundary equation holds (in the largeN limit), provided
that N � R�( )cos

2
, which precisely corresponds with the criterion to be in the topological phase, as we discussed

in section 4.2.
Wemove on tofindf. The ‘bulk equation’ coming from equation (14) reads

NG
R

G
R

Z Z� �
�

�
�

�� � �⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ˜ ˜ ) ( )cos

2
sin

2
. B7n n n n1 1 1

Herewe encounter thefirst difference in comparisonwith the case with only real couplings. In this case the
equation governingf depends on Z̃. Thismeans that the general solution forf consists of a part that satisfies
equation (B7)with the right hand side set to zero, and a particular solution. The general solution takes the
following form

G
N R N

� �
�

R R� �

� �

⎜ ⎟
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎛
⎝

⎞
⎠

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥( ) ( ) ( )L R

cos
tan

2 cos
, B8n

n N n

2 2

1

where thefirst term satisfies equation (B7)with the right hand side set to zero and the second term satisfies the
full equation (B7). Thus, in this (unnormalized) solution, L is a free parameter.We note that the first term is
localized on the left hand side of the system,while the second term is localized on the right hand side.We should
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also check the two boundary equations, which are given by:

NG
R

G
R

Z� � �
�

� �
�⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠ ˜ ( )n 1: cos

2
sin

2
, B91 2 2

NG
R

Z� � �
�

�⎜ ⎟⎛
⎝

⎞
⎠ ˜ ( )n N : sin

2
. B10N N 1

By substituting the solution forf andψ back into equations (B9) and (B10), wefind that they are satisfied up to
terms that are exponentially small in the largeN limit.

Using this general solution, we can construct two solutions for gn, that are localized on either side of the

system. SettingR=0, one finds a real solution (localized on the left): � N
R�

⎡
⎣⎢

⎤
⎦⎥( )g Ln

n

cos
2

. Using equation (16),

we see that the corresponding electron operator ηα only involves the operators γA,i, not the γB,i. The other

solution, localized on the right, is found for L=0, and is given by � N
� �

R

R

R�

�

�

⎡
⎣⎢

⎤
⎦⎥( ) ( )g ien

R i
N n

cos cos

1

2

2

2

. Thus, this

rightmode involves both γA,i and γB,i.We note that the above solutions are valid in the limit of semi-infinite
chains. In the case of afinite, but long chain, they can be combined to form an approximate solution (up to
corrections that are exponentially small the length of the system) of the fermionic zero-mode, that is delocalized,
with support on both ends of the chain.
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