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Abstract

We present an analytical solution for the full spectrum of Kitaev’s one-dimensional p-wave
superconductor with arbitrary hopping, pairing amplitude and chemical potential in the case of an
open chain. We also discuss the structure of the zero-modes in the presence of both phase gradients
and next nearest neighbor hopping and pairing terms. As observed by Sticlet et al, one feature of such
models is that in a part of the phase diagram, zero-modes are present at one end of the system, while
there are none on the other side. We explain the presence of this feature analytically, and show that it
requires some fine-tuning of the parameters in the model. Thus as expected, these ‘one-sided’ zero-
modes are neither protected by topology, nor by symmetry.

1. Introduction

One of the characteristic features of many topological phases is the presence of gapless boundary modes. The
(fractional) quantum Hall states are a prime example [ 1-3], and their boundary modes provide strong evidence
of the topological nature of these states. Another prime example is the Kitaev chain, whose topological p-wave
superconducting phase features so-called ‘Majorana zero modes’ at its edges [4]. Trying to establish the existence
of the topological phase is often done by trying to establish the presence of the boundary modes. This has led to
strong evidence for the topological phase in for instance strongly spin-orbit coupled nano-wires that are
proximity coupled to an s-wave superconductor in the presence of a magnetic field [5-9], or in chains of
magnetic ad-atoms[10—13]. It has been proposed that the zero energy Majorana bound states can be used as
topologically protected g-bits, for quantum information processing purposes [14, 15]. By now, there exist
various proposals to manipulate these g-bits, either in T-junction systems, in which the Majorana bound states
can be braided explicitly [16], or in Josephson coupled Kitaev chains, in which the coupling of the various chains
allows operation on the q-bits [17].

Despite the intense research on the Kitaev chain models, there are still interesting features that deserve
attention. In this paper, we look into one of them. It was observed by Sticlet ef al [ 18], that the zero-modes of
Kitaev chains carrying a current, i.e., in the presence of a gradient in the phase of the order parameter, have
interesting properties. The most striking feature is that is it possible that at one edge of the chain, there is pair of
Majorana bound states (or better, one ‘ordinary’ Dirac zero mode), while there is no zero mode at the other end
of the chain. Clearly, from a topological point of view, this means that the chain is in a trivial phase, butitis
nevertheless worthwhile to investigate these zero-modes further. In this paper, we explain the presence of these
zero-modes, via an exact solution of the zero modes of an extended Kitaev chain, i.e., in the presence of both
complex and next nearest-neighbor hopping an pairing terms. We show that it is necessary to fine tune the
couplings in order that these ‘one-sided Dirac modes’ to exist, but under these fine-tuned conditions, they can
only disappear if the bulk gap closes signaling a phase transition or a crossover. Dropping the fine-tuning will gap
out these zero modes immediately, leaving behind low-energy subgap modes. Apart from the analytical solution
of the zero modes, we also present the solution of the full spectrum of the open Kitaev chain, for real, but
otherwise arbitrary parameters, which does not seem to have appeared in the literature before.

© 2018 The Author(s). Published by IOP Publishing Ltd
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The outline of the paper is as follows. We start in section 2 by a brief review of the Lieb-Schultz-Mattis
method to solve open quadratic fermionic systems, and focus on the case of complex couplings, which is
essential for our purposes. In section 3, we provide the full solution of the open Kitaev chain, with real, but
otherwise arbitrary couplings. In section 4, we study the effect of next nearest-neighbor and complex couplings.
Here, we focus entirely on the exact solutions for the zero-modes, and start by considering the effects of next
nearest-neighbor couplings and complex pairings separately, before coming to the most interesting case, when
both are present. In section 5, we discuss the results of the paper. Some details are delegated to the appendices.

2. The Lieb-Schultz-Mattis method

In this paper, we study the zero modes of Kitaev-like chains in the presence of longer range hopping and pairing
terms, specifically next nearest neighbor (NNN) ones. In particular, we are interested in the case where these
couplings are complex. To study these systems, we use the method has been introduced by Lieb, Schultz and
Mattis (LSM) [19] who used it to solve the XY chain, for various types of boundary conditions. For a quadratic
fermionic Hamiltonian with periodic boundary conditions (PBC), one diagonalizes the Hamiltonian by using a
Fourier transformation, followed by a Bogoliubov transformation in the case of superconducting model.
Without translational invariance one can still perform a Bogoliubov like transformation directly in real space. It
was this method that LSM used to find the spectrum of the open XY chain (after using a Jordan-Wigner
transformation to transform the spin degrees of freedom to polarized fermions).

In this section we review the LSM method and follow their notation for convenience. We consider two
different cases. First, we look at the Hamiltonian with real couplings and recall how one can derive the spectrum
of the model analytically. Second, for a general quadratic Hamiltonian with complex couplings we present the
equations governing the zero mode solutions, which we use throughout the paper.

Following LSM [19], we consider the general quadratic Hamiltonian of polarized fermions as follows,

N
1
_ TA. TR T
H= Z ¢ Ajci + E(Ci Bjc] + h.c), (1)
1,j=1

in which ¢; is a fermion annihilation operator on site 7, A is a hermitian matrix, B is an antisymmetric matrix and
Nis the number of sites. Using a Bogoliubov like transformation, one can define new fermion operators, and
diagonalize the Hamiltonian:

N
Mo = 2 &niCi + haic)) @)
i=1
N
H = ZAaUZ%, (3)
a=1

in which aclabels the states and g, ; and h,, ; are two functions, which are to be determined. This transformation is
canonical, in the sense that new operators obey the fermionic anti-commutation relations, i.e. {7, 772} = Oop-

Using the equation of motion, [H, 1,] = —A 7., one finds the equations for g, ;and h,, ;:
ha,iBij'< - ga,,'Aij - _Aaga)j) (4)
}ZQ,,'A;-< — gﬂ,iBij = —Aaha,]‘. (5)

In order to find the full spectrum of the Hamiltonian, we now consider the case for which A and B have real
elements. In this case, one defines new variables as

Pui = &ayi T hasiv ()

VYo,i = &ai — hais (7)

which we combine into row vectors, ¢, = (Pa,1> - > Do, N) AN Yy = (Y15 ---» Y, n)- Summing and subtracting
equations (4) and (5) gives two coupled equations for ¢, and 1,

¢, (A — B) = Aaus )

Ya(A + B) = Aug,. ©)]

We note that the matrices act from the right side on the vectors. By acting with A + Bonequation (8)andA — B
on equation (9) from the right, the equations decouple

¢o(A — B)(A + B) = A2, (10)
V(A + B)(A — B) = A4, (11)
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To find all the eigenvalues A, and states 7),,, one solves these two decoupled equations for ¢, and ¢,,. We explain
how to do this in more detail in the next section for the open Kitaev chain [4] with real, but otherwise generic
parameters.

It is well-known that fermionic systems can host Majorana zero modes on the edges of the system, which
signals that the system is in a topological phase. In this paper, we study the zero modes of Hamiltonians with
complex parameters, so we now allow the matrices A and B to be complex again. To distinguish a Majorana
mode from the ordinary modes, we use stared labels, such as &*. The Majorana modes satisfy 1 + = nl*. Fora
finite system, the energy of a Majorana mode is exponentially small in the system size; for instance in the case
where we have a system with N sites the energy scalesas A ,x ~ e~ "N with x > 0[4, 19]. Hence we are interested
in finding general equations which allows one to find the corresponding states with zero energy, i.e. A+ = 0,in
the thermodynamic limit.

We thus search for a Majorana solution of equations (4) and (5) with zero energy. Setting h . ; = g;';’i in
equations (4) and (5) gives:

8av B = 8ur i (12)

Zoe A = 8aniBip (13)
By summing and subtracting these equations we get,

Re[g(A — B)] = 0, (14)

Im[g(A + B)] = 0. (15)

We use these equations to explore the wave functions (g, ;) of the zero modes in different cases in the following
sections.

Before closing this section, we write the 77 operators in terms of Majorana operators for future reference.
Using ¢ and ¢ as defined above and defining Majorana operators as -y, i= CJT + ¢jand i = i(c]T — ¢j), we
write the fermion annihilation operator as follows

N ¢a i .wa,'
77& — Z[_JWA,] + 1 2 ]’YBJ:|‘ (16)

The algebra of Majorana operators can be calculated from the canonical anti-commutation relations of the ¢
operators,

{’Yr,i: ’Yr’,j} = 26rr’6ij- (17)

Specifically, for the zero mode solution we can write the corresponding fermionic operator as follows:

N
Nor =y (Re[g 174 — Imlg s 178,)- (18)
=1

3. The spectrum of the open Kitaev chain

In this section, we use the method of LSM to find the full spectrum of the Kitaev chain [4], for an open chain,
with real parameters, in particular we consider

1 N1 . N 1
H = 3 Z (c}cﬁl + Ac;fcj+1 + h.c.) — MZ(CJTCJ' — 5) (19)
j=1 j=1

Here, p denotes the chemical potential, A the strength of the pairing term, and we chose the hopping
parametert = —1".

Despite the fact that this model has been studied thoroughly, these results do not seem to have appeared in
the literature, and we will use it to set the notation. Because we are interested in the zero-modes of more generic
situations in the remainder of the paper, we also quickly review the nature of the zero-modes. These latter results
are not new, but appeared in [19-21] and for generic parameters recently in [22, 23].

Itis well known [4] that the Kitaev chain is in a topological phase for || < |t|/and A = 0. A profound
feature of topological phase is the presence of a Majorana zero modes, that are exponentially localized near the
edges of the system. In addition, the energy associated with this zero mode is exponentially small in the
system size.

The ssign of tis irrelevant for the spectrum, but we set t = —1, because of the simpler relation with the associated XY model as studied
in[19].
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To set the scene, we follow Kitaev to show the presence of Majorana zero modes, by considering the special
caseof A = 1and p = 0. In this case, the Hamiltonian in terms of Majorana operators becomes,
i

N-1
H= Y > e (20)
i1

In this Hamiltonian, y4,; and v yare absent and therefore commute with it. So one can form a non-local
fermionic state, f, = %(’y .1 1 1 n)- The presence of this non-local fermionic mode is the characteristic
feature of the topological phase of the Kitaev chain. For A = —1, the unpaired Majorana operators would be
vp,1 and y4 n» owing to the p-wave nature of pairing.

We leave this fine tuned point and consider arbitrary A, but keep 1x = 0 for the moment. This corresponds
to the XY model, which was solved exactly by LSM for |A| < 1, that s, the full spectrum including the wave
functions were found [19]. For an open chain, there is a state with an exponentially small energy as a function of

_ n
the system size. The wavefunction of this state is exponentially localized on the edges, namely ¢, ~ ( L : 2 : )

where n denotes the position of the site measured from the left side of the chain. The associated v/, is localized on
the right edge. Another fine tuned point that was studied previously corresponds to the transverse field Ising
model(TFIM), thatist = —1, A = %1 butarbitrary u. Pfeuty showed that this model has a Majorana zero
mode if ;| < 1. The associated wave function takes the form ¢, ~ |u|" and is localized on the left edge of the
system [20, 21].

To find the Majorana zero modes for the general case, it is advantageous to first consider the model with
periodic boundary conditions. That is, we need to consider the hopping and pairing terms for the last site as well.
We denoted the periodic Hamiltonian by Hpgc = H + Hywhere:

Hy = %(c;’,q + Ac;,cf + h.c.), (21)

The solution of the periodic model is well known, and obtained by using a plane-wave ansatz for the wave
functions (i.e., by Fourier-transforming the model). Using the method outlined in the previous section, we start
by solving equations (10) and (11) to find the spectrum. Since ¢ and 1) are related via equations (8) and (9), we
focus on ¢. Writing equation (10) gives us one recursion relation:

(1 - Az)d)a,an - 4/u‘¢a,n71 + [4,LL2 + 2(1 + AZ)] (ba,n + (1 - AZ)¢O¢,H+2 - 4M¢a,n+1 = 4A(21¢a,n’ (22)

where n denotes the sites and runs from 1 to N. Upon setting ¢, ,, ~ €*", where we use the momentum kasa

label, one finds the eigenvalues:

Af = (p — cosk)?> + A’sin’k, k= MTm’ (23)

where mruns over 0 to N — 1. If one considers anti-periodic boundary conditions, the dispersion is the same
though the allowed values of k change to k = 2%(m + %) To study open chains, we make use the functional
form of the dispersion. In addition, by using the LSM method for open chains, we naturally have to consider
both the sectors with even and odd number of particles.

We now consider the full spectrum of the open chain. Here, we merely give the results, and refer to
appendix A, where the details of calculation are presented.

For the open chain we find the same recursion relation in the bulk which isvalidfor3 < n < N — 2.
However, we also have four boundary equations which should be treated separately (see appendix A). We start
by dealing with the bulk equations, using the method of LSM. That is, we use the same ‘function’ for the
eigenvalues, though with a generic parameter « instead of the momentum k. To find the allowed values for the
parameter v, one uses the ‘boundary equations’. Hence we parametrize the eigenvalues as:

A2 = (i — cosa)? + A’sin’a, (24)
and « is the label for the state. For the states, we use a power law ansatz, %,n ~ x/,and we find four solutions,
X, = eT@and x, = e+’ where
2p
cosa + cos = . (25)
1 - N

Note that « and S are not necessarily real, but the way we parametrize x,, turns out to be convenient. As described
in the appendix A, the relevant linear combination that one uses to find a solution for the boundary equations is:

4
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Gpn = Ar{sin[(N + 1) B]sin(na)
— sin[(N + 1)a]sin(n(3)}
+ Ay {sin[(N + 1)B]sin[(N + 1 — n)a]
—sin[(N + 1)a]sin[(N + 1 — n)5]}. (26)

inwhich A; and A; are constants that are related via equation (A24). The boundary equations give rise to another
constraint on o and (. This constraint can be shown to take the following form

. .y 1 B ), sina sin 3
sin® e + sin” 3 + ~ (cos 3 — cos ) zsin[(N T DalsnlN T DA
X {1 — cos[(N + I)a]cos[(N + 1)3]} = 0. 27)

To obtain the full solution of the model, one needs to solve equations (25) and (27) simultaneously. Though this
can not be done analytically, it is straightforward to obtain the solutions numerically. Thus, we have
characterized all the eigenvalues and eigenvectors ¢, , and by using equation (10), one finds ¥/;,, ..

Now we want to study these solutions and see when this model has a Majorana solution and what the
corresponding wavefunction is. To find such solutions, we consider thermodynamic limit, i.e. N — oo, which
makes the calculations easier.

We first mention that A can always set to be positive. One way to see this is by considering the
transformation under which ¢;maps to e'2¢;. This transformation changes neither the hopping nor chemical
potential term, but A changes to —A. In addition solutions for ;1 < 0 can be constructed from the solutions for
1 > 0.One can take the solution for i > 0, say (o, 5) = (r,5). Now consider (o, 5) = (r + m,s + ). This
change gives a minus sign for the LHS of equation (25) as required, however it leaves equation (27) unchanged.
Therefore, we restrict ourselves to A, . > 0.

First we look at the solutions for large values of y. In this case one can see that equations (25) and (27) have N
distinct real solutions for o, where we restrict o to liein therange 0 < a < 7 (a = 0 gives ¢,, = 0; for more
details, see appendix A). However by decreasing chemical potential solution with the smallest value of o will
‘disappear’. It is well known that for ;¢ < 1 one real solution islost in the thermodynamic limit. For a finite chain

thishappensfor y < 1 4+ O (%) where O (%) is a finite size correction. Thus, for ¢ < 1 one must find an
additional, complex solution. To find this solution, we consider three different cases.
(DA < landy1 — A < p < 1:1In the thermodynamic limit one can check that the following solution

satisfies equations (25) and (27),
1 1 1 1
s L o)
(51 52] & &

1 1 1
cosh— = ——, cosh— = K

& J1-m & 1— A
Furthermore it is straightforward to check that equation (24) gives A+ = 0, hence the solution is indeed a zero
mode. The wave function ¢, , for this zero mode is

(29)

_n n
Gorn = Ce & sinh(—], (30)
2
where Cis a normalization constant. Moreover, it can be shown that based on structure of A — Band A + B
matrices, one has ¥4+, = ¢« | _,- From the fact that § < &,, it follows that ¢« is localized on the left edge
while v, is localized on right edge of the system. Hence we found two Majorana operators, that are located on
the edges of the system, and the associated wavefunctions decay exponentially.

(DA < landu < +J1 — A2:in this range, one needs to use a different parametrization if one wants to use
real parameters, as is evident from equation (29). This parametrization reads

. 1, 1
= —|— — ﬁ = — Iy (31)
a*=g¢q 15 q lf

1 1
cosq = L, cosh— =

NAAY R A
Basically we changed one of the characteristic length scales to become a wave vector. As in the previous case, this
solution is indeed a zero mode, i.e. A+ = 0, whose wavefunction is given by:

(32)

_n
ot = Ce €sin(ng). (33)

This result indicates that ¢ (1) is localized on the left (right) edge with an oscillatory decaying wave function. We
should point out that this result was obtained earlier by [22]. In addition, it was observed that the correlation

5
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functions in the model with PBC are oscillatory in the same regime, i.e., for i < /1 — A> with A < 1, see for
instance [24-26].

(3) A > 1:forthisregime /1 — A2 isimaginary, hence the previous solutions are not applicable. The new
root can be written as

1 1 1 1
o =il— - =\ BF=n+i]l=+ =} (34)
(51 52] (51 52]
sinhi = ;, sinhL SRS (35)
§ A -1 3 A -1

One can check that this solution represents a zero mode with the wave function:

cosh[i] if n is odd,

Porn = Ce & X 2 (36)

. ny .. .
smh[—] if n is even.

2

For this solution § < &, since ;1 < 1 and this guarantees that ¢ (1) is localized on the left (right) edge.

4. Zero-modes for next nearest-neighbour and complex couplings

In this section we study the zero modes in the presence complex hopping and pairing terms, both in the case with
nearest neighbor hopping and pairing terms, as well as next-nearest neighbor (NNN) hopping and paring terms
The complex amplitudes model the presence of a phase gradient in the system.

In their fermionic incarnation, these generalized Kitaev models were studied in [18, 27-29]. In the language
of spin models, adding NNN terms gives rise to so-called (one-dimensional) cluster models [27, 30-33], but we
concentrate on the fermionic version of these models.

An important feature of these models is the possibility of having more than one zero modes at each end,
which is possible due to the presence of longer range terms. This can also be understood in terms of the
classification of topological insulators and superconductors [34, 35]. The Kitaev chain with real coupling
constants belongs to class BDI for which the different topological phases can be labeled by the elements of Z, in
the absence of interactions. Adding interaction changes this picture such that new classification is given by Zg
instead [36]. In the case with only nearest neighbor hopping and pairing terms, the model describes phases with
at most one Majorana mode at each end of the system. However by adding NNN terms one finds phases with two
Majorana modes at each end. This means that there would be two distinct topological phases with one and two
zero modes solutions (in addition to the trivial phase, which does not have a zero mode).

Proposals for using the non-local fermionic state as a qubit, requires the ability to move Majorana edge states
and even to do braiding. One proposal to achieve this is by inducing a phase gradient in the superconductor
order parameter, i.e A; = Ae', with non-uniform 6;[37]. Having a complex superconductor order parameter
breaks the time reversal symmetry in which case the model belongs to class D. For class D, we have the Z,
classification which means that the system could be either in the topological phase with at most one Majorana
zero mode at each end, or in the trivial phase. Surprisingly, Sticlet et al showed that NNN terms with a phase
gradient can exhibit an exponentially localized fermionic zero mode on just one edge [18]. Such a phase, though
itis not topologically protected, has local zero modes. In [18] these models were investigated numerically. Here
we present an analytical solution and study the zero-modes in detail. We first review the Kitaev chain with NNN
terms. After that, we study the effect of a constant phase gradient in the Kitaev chain. Finally, we combine the two
complications and consider NNN terms and a phase gradient simultaneously.

4.1. Next nearest-neighbor couplings

In this section we consider the Kitaev chain and add NNN hopping and pairing terms. We start with the case for
which all the parameters are real, hence the Hamiltonian belongs to class BDI. Setting it = 1, the problem has
four energy scales, corresponding to the two hopping and two pairing amplitudes. To simplify the calculation we
set the NN hopping and pairing terms equal to each other and we do the same for the NNN terms. Sticlet et al
studied this model under the same assumptions [18]. We consider the model with arbitrary complex parameters
insection 4.4.
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Figure 1. Phase diagram for Kitaev chain with NNN terms for ;o = 1 (equation (37)). The numbers in the plot show the number of
Majorana zero modes at each end of the chain. The solid 11nes represent phase boundaries. Theline A = —1 together with the dashed

lines forms the boundary of the region in which |x| = In this region the correlation length only depends on the NNN coupling.

Thus, the Hamiltonian reads,

N
Z(CCJ+1+ 1+hc)—u2( cj—l) %Z(ccﬁz—i— 2—l—hc) (37)

11 j=1

where A is the NNN hopping and pairing amplitude. To obtain the phase diagram, we first consider the model
with periodic boundary conditions [18, 27]. We do a Fourier transformation, ¢; = %Zk e™Mc;, and define

U = (¢ ¢ ;)" towrite the hamiltonian as
1
S A
2%

Hi =[—tsin(k) — Asin(2k)] 7 + [t cos(k) + A cos(2k) — u] 77, (38)

where the 7 are Pauli matrices that act in the Nambu space ;. The Hamiltonian can be written as

Hi = h(k) - 7.One can find the phase diagram by calculating the winding number for h (k) [18, 35] or by
looking at gap closing lines [27]. The phase diagram is presented in figure 1. The gap closes along the lines
A=p+ t, A= p — tand A\ = —pfort| < 2|u|. Note thatin the figure we used . = 1.

Before looking at the zero mode solution(s) of an open chain, we first consider some limiting cases to
understand the phase diagram. For very small |#|, |\| < || we get the trivial phase. The ‘0’ in figure 1 indicates
that there are no Majorana zero modes in this part of the phase diagram. Outside of the trivial region on the
vertical axis where t = 0 we have two decoupled Kitaev chains, hence there are two zero modes at each end. Fora
fixed A, adding NN terms couples these two chains. The two zero modes survive until the gap closes, thereafter
there will only be one zero-mode at each end. The horizontal axis with A = 0 (i.e., the original Kitaev chain)
belongs to this later region which is indicated by ‘1’ in the figure 1.

To find the wave functions of the zero modes, we use equations (8) and (9) with A, = 0. From equation (16)
we see that if n),, is a Majorana mode (i.e., nl = 1,), ¥ has to be purely imaginary. So for convenience we define

Y = i and we get g = %((Z) + i1h). We use this convention from now on. We obtain the following ‘bulk’

equations
—pp, + t¢n+1 + )‘¢n+z =0 (39)
M-z + 11 — pthy = 0. (40)
The ‘boundary’ equations are — i pn_1 + tén = 0, —py = 0, —pah; = Oand t); — b, = 0.So we can use
the ansatz ¢, ~ x¢'and ¥, ~ xg° "', which gives the result

n n
¢, = Lixgy + Loxg
5 N—n+1 N—n+1
wn — R+xo,+ + fo(), 5

—t 4 \Jt2 4 4
X0+ = N 4]
0,+ ) (41)

where L, and R, are real normalization constants (the subscript ‘0’ in the length scales indicates that we deal
with a zero phase gradient).

We can extract the phase diagram from this result [27] and we set 4 = 1 to be able to compare with figure 1.
For regions where A > 1 + |tjorboth A < 1 — |tjand A < —1 (corresponding to the upper and lower regions
offigure 1), one can see that |x( 4| < 1. This means thatin these regions that are indicated by 2’ the system has

7
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two independent zero mode solutions. In the right part of the phase diagram where 1—t < A < 1 + ¢, there
exists only one zero mode since |x .| < land|xg,_| > 1.If1 + t < A < 1—twealso have one zero mode,
however, in this case [xo,_| < land|xy | > 1. Wenote that in these regions, the boundary equations are also
satisfied in the large N'limit.

Itis also interesting to note that for t2 + 4\ > 0 the roots are real. Still they could be negative in some
regions which gives rise to an oscillatory behavior of the wave functions, which are then proportional to (—1)".
For* + 4\ < 0theroots become complex. The red, dashed lines in figure 1 specify the upper boundaries of

this region (in the case A < —1). In this case [x1| = which gives us the the criterion A < —1 in order to

)
have a zero mode (in the region £ + 4\ < 0).In thls\/;t of the phase diagram the correlation length only
depends on A, while the NN coupling ¢ only affects the oscillatory part of the wave function.

Before moving to the case with both NNN terms as well as with a phase gradient, we first study the Kitaev
chain with just a constant phase gradient.

4.2. Phase gradient in the order parameter

In this subsection, we consider the Kitaev chain, but with a phase gradient in the superconducting order
parameter. In the case of a superconductor with a super current, the pairing term has a site dependent phase
A; = €9V where V0 is the constant phase gradient, while j indicates the position of the site. In this case, the
Hamiltonian reads

N
lz c,+1+eJW TCT —|—hc)—,uZ( c]—l). (42)
23 -1 2
This Hamiltonian belongs to class D. As we indicated above, the topological phases are labeled by elements of Z,,
which means that the system could be in the topological phase with one Majorana zero mode at each end.
Changing the gauge, we transform the fermionic operators as ¢; — e vzﬁcj. This transformation gives us site-
independent couplings, but now also the hopping parameter has become complex. The transformed

Hamiltonian is

1= Vo 1
Egezccﬁl—i—e ]]+1+hc)—u2( C]—E). (43)
To find a zero mode solution we use equations (14) and (15). The details of the solution for the Majorana
operator are given in appendix B. The left Majorana solution is

n

Mm=1L i % Va,m (44)
2

n=1| COS\ —

where L is the normalization constant to make 'yi = 1and the sum is over the sites. This Majorana mode is
located at the left side of the system, and is a solution in the large Nlimit. The right Majorana mode is more
complicated,

N—n+1
s (V0 0
wR=R) Mv& _ X [sm(—v2 )fyA,n + cos(—v2 )fyB,n], (45)
n=1| COS (7)

where R is the normalization constant to make fyi = land the sum is over the sites. Using the Majorana modes
~r and ~yg, one can construct one fermionic mode f, = 1/2 (; + i) as usual. We note that to have alocalized
zero mode we have the criteria || < | cos (%) |. This means that turing on the phase gradient shrinks the
topological region. Second, we see that the left Majorana consists only of v, Majorana operators (recall the
definition above equation (16)), however, the right one involves both yg’s as well as y4’s. In the case that VO = 0
the left Majorana mode only involves v, operators and the right Majorana modes only v operators. This feature
of the solution comes from the fact that for real A and B matrices (see equations (14) and (15)), the equations
governing ¢ and 1) are decoupled—recall that g = %(qb + it)). Adding the phase gradient makes these matrices
complex, hence the equations become coupled and the solutions become more complicated. The direction of
the phase gradient shows itself in the elements of the A and B matrices and gives rise to this asymmetry; the ‘left-
right’k symmetry is broken explicitly.

In the next section we add NNN terms to the current problem [18]. The results presented in the current
subsection are useful to understand zero mode solution(s) when one adds the NNN terms.

4.3. Next nearest neighbor terms along with a phase gradient in the order parameter
We now consider NNN terms in the presence of a constant phase gradient. Again we set the hopping and pairing
amplitudes equal to each other for both the nearest neighbors and NNN terms. Following Sticlet et al [ 18], the

8
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Figure 2. Phase diagram for Kitaev chainat ;1 = 1 with NNN terms and a phase gradient V6 = 7/3. The numbers in parenthesis in
the plot show the number of Majorana zero modes at the left and right side of the system. The solid lines represent the phase
boundaries. The dashed line represents a crossover at which the gap closes. The A-axis should be treated differently. For |\] > 2 and
t = 0the system is in the topological phase and hosts two Majorana zero modes on each edge, while for |\| < 2andt = 0, itisin the
trivial phase without any zero mode. The points | \| = 2 and t = 0 correspond to phase transitions.

Hamiltonian reads,

N—-1
AR .
H = (C C+l+e]V9T 1+hC)+ZZ(C C]+2+611V0 }+2+h.C.)

j=1 j=1

— K % ( ) (46)

i=1

N | ~+
-

where we assumed the same phase dependence for the nearest neighbor and NNN pairing terms, with the same
phase for both terms involving the first site. As we mentioned above, for VO = 0 this model has a trivial phase
without any zero modes and two topological phases that hosts one or two Majorana zero modes respectively (see
figure 1). For V6 = 0, the model belongs to class D. This means that, contrary to V& = 0 case, there is only one
type of topological phase. The phase that had two Majorana zero modes becomes trivial upon adding the phase
gradient. The natural question is then what happens to the phases with two Majorana edge states? Despite the
fact that the phase has become trivial, one finds that it is still an interesting trivial phase, as was already observed
in [18]. Here, we study the zero modes of the model, and shed light on the zero mode present in one of the trivial
phases.

By transforming ¢; — e’jVT”cj as in the previous section, the Hamiltonian becomes

f N-1 )\ N=2

.Vo 7<V(9 + T
T2 Do+ e e+ he) + = 2 Z(elwcicf+2+ eVl cfis + hc)
=1 =t

- uZ( fej — —) (47)

As we show in the next section (where we consider the model for general parameters), the locations where
the gap of this model closes are very similar to the locations of the phase transitions of the model with zero phase
gradient, V6 = 0. Namely, they take the same form, if written in terms of the variables f = cos(V6/2)¢ and
X = cos(V#) \, while ;s remains unchanged. So, the gap closes when X = ;1 + 7,aswellaswhenboth X = —p
and |7] < 2ll.

In figure 2, we show the phase diagram for a phase gradient V@ = /3, and indicate the number of zero-
modes on the left and the right separately. We first present the analysis of the zero modes and based on those
results we explain the phase diagram of the model.

Sticlet et al [18] showed that the topological phase of this model has one zero mode at both edges as expected.
The trivial phase, however, is divided into two regions. One region does not have any zero mode, while the other
region has two ‘Majorana’ zero modes that are localized on one edge (i.e., a localized fermionic zero mode),
while there is no zero mode on the other edge (see figure 2). The former trivial region corresponds to the trivial
phase of the model without phase gradient while the later trivial region corresponds to the topological phase of
the model without phase gradient with two Majorana zero modes on both sides. In what follows we present
analytical wave functions for all the zero modes and determine for which parameters they are present. To find
the Majorana zero modes we use equations (14) and (15) and as before, we set g = %((bn + i1),). The ‘bulk
equations’ read
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— b, + t cos (%9)17)”_1 + Acos(VO),_» = 0, (48)
- ue, + z‘cos(VTO)qbn+1 + Acos(VO) o, ,

. (VOY -~ ~ . ~ ~
= tSln(T)@ﬁnq = Ppi) + Asin(VO) (Yp_2 — Pui2). (49)
In this case, there are four boundary equations (two for each end) that differ from the bulk ones, namely
B VO -~ -
—uty =0 t cos (T)wl — wp, =10 (50)
and
Ve . (VO - ~ ) -
— oy + tCOS(T)(bNtSln(T)(l/JNfz — PN) + Asin(VO)Pn_;
YA . ~
— pdy = tsin - Un_1+ Asin(VO)Yn_,. (51)

We start by solving the bulk equations, without paying attention to the boundary equations. We then solve the
boundary equations, in the different regimes of the phase diagram.

The equations for ¢,, involves the solution for 1),,. Thus, the solution for ¢,, consists of two pieces, namely the
general solution to equation (49) with the right hand side set to zero, which we will denote by ¢,,, ,,,as wellasa

specific solution, for the full equation. We start with the ansatz Dgenyn ~ X" This gives us two correlation lengths

—t cos (?) + \/tz cos? (?) + 4\ cos(V)
2\ cos(VO) )

Thus, the generic solution is ¢gen)n = L. x! + L_x",where L, are constants. As before, {pn = qbgen, Nent 1o which

X+ =

(52)

shows that the generic solution for ¢ is localized on the left edge and the solution for ¢) is localized on the right

edge, P, = Rox fr\] 4 R_x N7 with R, two constants. To find the full solution ¢,,, based on equation (49)
we need to add a particular solution to (bgen’n of the form S x f 4§ x N7l yith constant Sy = k4R,

since it should behave as {Z) After some algebra, one finds that

t sin (@)
2

kr = —tan(V0) + Xt 53
* (V) 0s(VO) [t + Acos(VO)] (53)
The general solution to the bulk equations (48) and (49) is thus given by
Py = RyxN " 4 R XNt
B, = Lyx" + L x" + S,xN "t 4 g x Nt
Si = IiiRi. (54)

With the general solution for the bulk equations at hand, we turn our attention to the boundary equations,
which we solve in the different regimes.

(1) |x4| > 1:inthis case, both characteristic length scales are bigger than one, which occurs for the part of the
phase diagram where the model without phase gradient is in the trivial phase. In this case, it is not hard to
convince oneself that the boundary equations (50) and (50) lead to L = R, = 0, which means that, as
expected, there are no zero modes in this regime.

(2) x4+ < land|x_| > 1:inthis case, the model is topological and x” increases with n, which means that x”.
islocalized on the right edge instead of the left one. It is therefore convenient to write this solutions as

L (L)Ni " 1, with L = xM*'L_, to highlight that this solution is localized on the right edge.

X

he boundary equations (50) imply that R_ = S_ = 0. The boundary equations (51) give, after some

algebra,that L_ = —R, sin(V9/2)

S0+ A cos(T8)’ while S, = k., R, asbefore. Thus, the solution for the zero mode is
given by

Py = Ryx N ", (55)
7 o.n Nent1 , 7 (1 N
¢n = L+X+ —+ S+X+ —+ L . (56)
x_

We find that in this case, there is one zero mode, that is localized on both edges of the system. One special
property of this zero mode, which differs from the case without a phase gradient, is that ¢, has support on both

10
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Figure 3. The second derivative of the ground state energy as a function of Afor u = 1and V0 = /3. Wessett = 0 for the dashed
lineand ¢t = 0.1 for the solid line.

edges of the system, while 1, only has support on the right edge. Finally, we note that the case |x,| > 1and
[x_| < 1iscompletely analogous.

(3) [x+| < 1:this case corresponds to the part of the phase diagram in which the model without phase
gradient has two zero modes on both sides of the system. With the phase gradient, this model is in a trivial phase.
To determine if there are any zero modes, we again solve the boundary equations. The boundary equations for
n = 1,2,1.e. (50), give rise to terms that are proportional to ) at the left edge. Equation (54) assures that these
terms are of order x{’ and can be neglected in the thermodynamic limit. So the solution satisfies the boundary
equations (50). The boundary equations (51) do give a non-trivial constraint. Namely, for a non-zero phase
gradient V& = 0 (for VO = 0 the boundary equations are satisfied), one finds that

Rix;y +Rx =0 Rux2+Rx2=0. (57)

These two boundary equations imply that Ry = 0. We conclude that in this regime there are two zero modes on
the left side of the system, and none on the right side, i.e. ¢, = L. x + L_x"and 1, = 0. This precisely
corresponds to the surprising result obtained by Sticlet et al [ 18]. We stress that this ordinary, or ‘Dirac’ zero
mode on the left side of the system is not topological, but is in fact a consequence of fine tuning the parameters.
We discuss this fine tuning in more detail in section 4.4. Nevertheless, as long as one keeps these parameters fine
tuned, the only way this localized zero mode can disappear is via a closing of the gap, signaling a phase transition
Or a Crossover.

We can now shed light on the phase diagram figure 2 (where we set VO = 7/3) and discuss it in more detail.
The two solid lines in the figure, A = p/ cos(V8) + t cos(VO/2)/ cos(V0), indicate phase transitions. Along
the dashed line, A = — i/ cos (V6), the gap closes and a crossover occurs between a region with no zero mode
and a region where the system has two zero modes on left edge and none on the right edge. The corners of the
triangular region without any zero modes are given by (0, 1t/ cos (V@) and (£2u/ cos(V0/2), —u/ cos(VH)).

Upon increasing V6, the slope of the lines indicating the phase transitions increases, and the size of the trivial
center region increases. At V6 = 7/2, the two phase transition lines are parametrized by t = ++/2 y and the
trivial center region without any zero mode becomes a stripe in the middle of phase diagram. For
VO € (m/2, 7) the shape of the phase diagram is inverted with respect to the ¢-axis in comparison with figure 2.

We should note that the A-axis (t = 0) should be treated separately. For t = 0, the model corresponds to two
copies of the model that we studied in section 4.2, one for the even sites and another one for the odd sites.
Therefore, the system is either in a trivial phase (for t = 0and |p| > | cos(V#)]) or in a topological phase (for
t = 0and |p| < | cos(VA)]). In the topological phase the system has two Majorana zero modes on each edge,
because the two chains are decoupled.

To provide further insight in the phase diagram (figure 2), we calculated the second derivative of the ground
state energy for u = 1,V = m/3andt = Oaswellast = 0.1for \ € [—4, 4]". The result is shown in figure 3.
We first consider the line t = 0 (the blue dashed line). As we described above, for A = —4 the system is in the
topological phase. The point A = —2 is a critical point. Upon increasing A, one enters the trivial phase. By
passing the other critical point, namely A = +2, one enters another topological phase. These two critical points
give rise to divergencies in —d”E/d\* as is shown in figure 3. This is a clear signature of a second order phase
transition. For ¢ = 0, (in the figure we used t = 0.1, the black line), the situation is quite different. At A = —2,
—d’E/d\* is smooth (the critical pointat A = —2and t = 0 shows its presence via a bump) and the system

We used the version of the model with periodic boundary conditions, equation (59), that will be presented in section 4.4.
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undergoes a crossover, although the gap closes. One still observes two divergencies symmetrically around A = 2.
These two divergencies correspond to the phase transitions indicated by the solid lines in figure 2.

We close this section by mentioning that it is of course possible to have the localized Dirac zero mode at the
other edge of the system. One way to achieve this is by changing the phase dependence of the original pairing
terms in the original Hamiltonian equation (46) to %ei(j+1)vgcf CJT Lt e A il +2)v9 ,. This is equivalent to an
inversion accompanied by the change V8 — — V6. We note that merely changmg V0 — —V6 does not
change the role of the left and right hand side of the system. Basically the same calculation as above shows that
this new pairing leads to two zero modes on right edge and none on the left edge (because the role of ¢,, and ¢, in
equations (48) and (49) is swapped). The model with these pairing terms has the same topological and trivial
phases, however the left and right sides of the chain change their role. As we show in the next subsection, in the
translational invariant formulation of the model, as in equation (47), the location of the zero-modes is
determined by the relative sign of the phases of the hopping and paring terms.

4.4. The general case
To understand the fine tuning that is necessary to have the Dirac zero mode that resides on one side of the system
as described in the previous section, we look at the more general Hamiltonian,

N— N-2
1
E tlc Ciy1 + Nl cﬁ_1 + h.c.) + 7 E (tzc;rcﬁz + Azcjc};z + h.c)
et =1

1
2
*HZ( CJ*_) (58)

where t;, Ay, t, and A, are arbitrary complex parameters. In the case of periodic boundary conditions, we can
define ¥y = (¢, ¢ k)T and write the Hamiltonian as:

szzﬁww%%u:mml+mmm

k

ho(k) = —=3(#)sink — TJ(t,)sin(2k),

hi(k) = =J3(Apsink — J(A,)sin(2k),

hy(k) = —R(A)sink — R(A,)sin(2k),

hs(k) = R(t)cosk + R(ty)cos(2k) — p, (59)

where 1 is the two by two identity matrix. Performing a unitary transformation with U = % (7% + T%) we get,

mw+mmm®+%®)

. 60
(k) — (k) (k) — (k) (60)

Or=U"HU = (
By comparing the model we discuss here, equation (47) with (59) we find that in this case, all the imaginary parts
depends are proportional to sin(V6/2) or sin(V6), for the nearest neighbor or NNN case respectively. So, these
terms vanish for VO = 0. In that case, we obtain

(61)

il vo=o = 0 hs (k) + 1h2(k))'

(ha(k) — thy(k) 0

Since we performed an unitary transformation, Det Q; = Det Hy. So in the gapped phase, either topological or

trivial, Det Qi = |hs(k) + ihy(k)|> = 0 canbe used to define a topological invariant via the winding of

Arg(hs (k) + ihy(k)), see [35]. This calculation leads to the same phase diagram we discussed before, see figure 1.
We now consider a phase gradient, i.e. V@ == 0, which is the case we are interested in. Based on

equation (47) we have

ho(k) = —t sin (VTQ) sink — Asin(V0)sin(2k),
. (Vo) . . .
hi(k) = t sin (7) sink + Asin(V60)sin(2k),
Vo) . .
hy(k) = —t cos (7) sink — A cos(V6)sin(2k),
\YJ
h3(k) =t cos - cosk + A cos(V)cos(2k) — p. (62)

The factthat 3() + J(A) = T(tp) + T(A,) = 0, givesriseto Oy 1; = 0. This means that, similar to the
V60 = 0 case, we have that Det Q; = |hs(k) + ih,(k)|?, despite the fact that Qy 5, = 0.
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Thus we find effectively the same phase diagram for the model with the phase gradient, namely the one given
in figure 1, if we replace t — ¢ cos ( )and A — Acos(V0).

As we indicated in the previous section, by changing the paring terms in the original Hamiltonian
equation (46) to %ei(j + l)wc;’ c]T o+ %ei(f +2)WCJT c]T . »» we can have the situation that the system has two
‘Majorana’ zero modes on the right edge and none on the left side The gauge transformation ¢; = e’jvzgcj changes
these terms to %e’yfj E]TH + %eivgff &' ,. The hopping terms c ¢+ c ¢j+2 become
%e’yff Cip1+ %eivgff Cjy2 as before. In this case we find that J(tl) — J(Al) = J(t;) — J(A;) = 0,which
resultsin Qy 5, = 0.

In class BDI, all the information about the zero modes is encoded in Det Q. The discussion above shows
that this is not so in the present case. Whether Q. ;1 = 0 or @ 5, = 0 plays an important role in determining the
position of the (non-topological) localized zero modes. It is also clear what fine tuning we need in order to have a
pair of ‘Majorana’ zero modes localized at one side of the system and none on the other. We need either Qy ;; or
Oy 22 to be zero, but not both. This is the case if we fine tune J(f, + A)) = J(t, + A;) = 0or
It — A) = J(t, — A;) = 0, but not both which would imply that all these parameters are real, and one has
an equal number of zero-modes on either side of the system.

To explore this situation further, we write the Hamiltonian in terms of Majorana operators,

I+ A RS R — A
=20t 8 > e+ N6 -2 5 Z M YBi1
4 =1 4 j=1
R+ A I = AN~
_RE A+ A) > A+ o= 2) > BB
4 j71 4 j=1
Jta+ A Rt — A
M Z Maaj+2 + M Z YA B j+2
4 j=1 4 j=1
Rt + A It — A
SRICRES N Z B A+2 T RCRELES Z DB V5.2
4 j=1 4 j=1
u &
- EZ 1A, YB,j- ©

j=1

As asimple example we can see that for the Hamiltonian presented in equation (47), setting i = 0 and
V6 = 7, yields following Majorana representation
;N1 \ N2
H= =) ivgjpj+1+ = D VB A2 (64)
2o 2 =
where it is evident that 4 ; and 4, do not appear in the Hamiltonian and therefore commute with it. Hence
there are two Majorana zero modes on the left edge.

Itis interesting to note that for V6§ = 7, the Hamiltonian belongs to class BDI. From the form of the
Hamiltonian in equation (47) this is not obvious, but it is for the form equation (46), because all the coupling
constants are real. On the other hand, in this form, some of the couplings are staggered, and in the periodic case,
the model is translationally invariant with a two-site unit cell. The phase diagram has a different structure in this
case, with only three phases. The phase boundaries do not depend on ¢, and are given by A = + 1. Because of the
two-site unit cell, we use the formulation of the phase-winding invariant as given by [38]. One finds that all three
phases are in fact trivial. In the trivial phases with | A| > |u/, there is alocalized Dirac zero mode only on the left
side of the system, and no zero modes on the right side. This is consistent with the analysis of the model based on
equation (47). From the point V6 = 7 itis clear that also in symmetry class BDI, there are Hamiltonians that
have trivial phases, which have a localized Dirac zero mode only on one side of the system, if parameters are fine-
tuned.

Our previous discussion led us to conclude that J(f; + A)) = J(t, + A,) = 0 could resultin two zero
modes on the left edge. Based on equation (63) we can see that this means that there should not be any terms like
Y, YA, j+1 and iy, 4, j+2 present in the Hamiltonian. We can shed more light on this issue based on our
analytical solution for the non-uniform pairing with nearest neighbor hopping and pairing.

As afirstastep, we assume that t = 0. This means that we have two decoupled chains with a phase gradient.
Our previous analysis shows that in the topological phase we have one Majorana zero mode on each edge. The
wavefunctions for these Majorana modes are given in equations (44) and (45). The crucial difference between
these two wave functions originates in the direction of the phase gradient, which causes the left mode to be
independent of ~y;, while the right modes consists of both y, and 5. Namely, for the left mode g,, is purely real
while for the right mode g,, is complex, and hence involves both ¢ and 7).
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In the second step, we turn on nearest neighbor couplings, i.e. t = 0. We see that the first four terms in the
Hamiltonian equation (63) result in a coupling between the zero modes of the two decoupled chains. Under the
assumption that J(# + A) = 0and J(#, + A;) = 0, which holds in our analytic calculation of the zero
modes, we find that the right zero modes from the two different chains become coupled because of the i
VB, Y8, j+1 terms present then ¢ = 0, which gaps them out. On the other hand, the zero modes on the left edge do
not become coupled directly, and remain gapless. Their wavefunctions are modified to the new ones presented
in equation (54).

Finally, we mention that we checked numerically that under the conditions J(#; + A)) = J(t, + A;) = 0,
the system has a phase for which the ground state has two zero modes located on the left edge, and none on the
right edge. The same holds true in the case that J(f; — A)) = J(t, — A;) = 0, if one exchanges the leftand
right edge of the system.

5. Discussion

In this paper, we investigated the ‘one-sided’ fermionic zero modes observed by Sticlet et al [ 18], by solving the
Kitaevmodel, in the presence of complex hopping and pairing terms, including NNN terms, for open chains.
From our investigation, it became clear that fine-tuned parameters are necessary for such zero modes to exist,
but under the fine-tuned conditions, the gap needs to close in order to destroy them. Leaving the fine-tuned
conditions gaps these zero-modes out, turning them into one-sided low-energy subgap modes. Phases with such
one-sided bound states can occur both in one-dimensional systems in class D, as well as in class BDI. These
modes are not protected by topology, which means that they can occur in the topologically trivial phase.

The general condition for the existence of ‘one-sided zero modes’ is most easily explained in terms of the
Majorana formulation of the chains. Starting from a situation in which two pairs of (delocalized) Majorana
bound states are present (i.e., in class BDI), one needs a perturbing term such that the two Majoranas describing
the mode on, say, the left side are coupled, while the modes on the right side are not. It is worth to mention that if
one assumes a different phase gradient for the nearest neighbour and next-nearest neighbour pairing terms in
equation (46), these ‘one-sided zero modes’ gap out.

There has been alot of progress on models in higher dimensions, that exhibit exact zero modes, see for
instance [39]. It would be interesting to investigate if it is possible to construct models, that exhibit ‘one-sided’
zero modes along the lines of the ones described in this paper, even in those higher-dimensional systems.
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Appendix A. Details of the Kitaev chain spectrum calculation

In this appendix we present details of the solution for the open Kitaev chain with generic real parameters and free
boundary conditions. The Hamiltonian reads:

1 Nzl A N1 N 1
H= > > (c;ch + ho) + > > (CJTCJT+1 + ho) — uZ(chcj - E) (A1)
i1 =1 i=1

It is helpful to recall the (of course well known) solution for the periodic case, which is obtained via a Fourier
transformation, ¢; = %Zk eicy, and defining W, = (¢, ¢, ). Thisresults in

1 (—p + cosk iAsink
H==>" 178 A2
2%: k( —iAsink p — cosk k (42)
Diagonalization of this2 x 2 matrix gives us:

1
H=3% fk(fJ « — —)> (A3)

k 2
€ = \/(u — cosk)? + A’sin’k, (A4)

where f; is a new fermionic quasiparticle annihilation operator.
To tackle the open case, we use the LSM method which is reviewed in section 2. To this end, we need to
arrange the Hamiltonian to have the form of equation (1),
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N
. 1 . .
H= Z Ci’Ai]‘Cj + E(C;Bijc} + h.c). (A5)
1,j=1
To find ¢, and 9, from equations (10)and (11)i.e.,
¢ (A — B)(A + B) = A2¢,
(A + B)(A — B) = A2 b,
we have to construct the matricesA — Band A + B.
We present these matrices for the more general case of Hamiltonian in equation (58), i.e.,
1 N-1 1 N-2 R
H = 5 Z:l (t1C]TCj+1 + AlchCJTH + h.c.) + > Z:l (tzchchrz + Azcj' c]-T+2 + h.c.)
j= j=
N 1
_ugiqg——} (A6)
— 2
j
because we need them later on. In this case, A — Band A + Bread,
—Z/L h— Al t — Az
tl* + A =24 Hh— A Hh— A 0
X 4Ny A 2u A - A
A—B=— ,
2 * *
t2 +A2 tl +A1 —2}1, tl—Al tz—Az
0 tz* + Az tl* + Al —2[}, h— Al
4+ Ny A —2u
(A7)
—2/1, tl + Al t2 + Az
tl* WA =24 4+ A 6+ A 0
1 tz* — Az tl* — Al *ZILL i+ Al t) + Az
t2 - Az tl* - Al —ZM h+ Al ) + Az
0 tz* — Az tl* — Al —2/14 H+ Al
t;k — Az tl* — Al *2#
(A8)
For the Hamiltonian equation (A1), i.e.witht; = 1,A; = A,and#, = A, = 0, thesereduce to,
=25 1—A
1+A —2u 1-A 0
N IR SR T
A-B=— , (A9)
2 1+A 20 1-A 0
0 1+A —2u 1-A
1+A —2u
—2u 14+ A
1-A —2u 1+A 0
N U AT It
2 1-A —2u 1+A 0
0 1-A —2u 1+4+A
1-A —2u
Using these matrices in equation (10) one gets
a- Az)d)u,an - 4ILL¢(X,7171 + [4/1’2 +2(1 + AZ)] (;Sa,n - 4lu’¢a’,n+1 +d - Az)d)u,nJrZ = 4A(21¢a,n’ (A1D)

for3 < n < N — 2. We call this the ‘bulk equation’. In the case of periodic boundary conditions, this is actually
the only equation one has to consider. However, for an open chain with free boundary conditions, we also have
four boundary equations which are different from the bulk one, namely forn = 1,2, N — 1 and N one has:
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(417 + (1 = D1¢, ) — 4udy, + (1 — A, 5 = 4A%0,, (1= 1) (A12)

4y + (47 + 201+ MG, , — 4pd, s + (1 — MG, = 4A3 0, , (1 =2) (A13)

(1 — Ay ns — 4y + (412 + 2(1 + MG, vy — 4y = 4N2B, Ny (n =N —1)  (Al4)
(1 — A,y — Ay oy + (412 + (1 + A G, = 4026, (n = N). (A15)

We note the difference between the ¢,, ; term in the equation for n = 1 and the ¢,, term in the equation
forn = N.

To solve these equations we can start with an ansatz for the eigenvalues A .. Note that the bulk equation is the
same for both the periodic and the open chain. This suggests to use our knowledge about the periodic case. The
bulk equation determines the form of the eigenvalues as a function of a parameter o, which in turn is determined
by the boundary equations. This is exactly what happens in the periodic case, where we use k instead of o and fix
k= 2% forn =0,1,... N — linequation (A4) bydemandingcy,1 = ¢;.

Therefore we use the same parametrization for the eigenvalues as in the open case,

A2 = (u — cosa)? 4+ Alsin’a. (A16)

a =

Now we need to find an equation based on which one can determine all the possible values of a. With the ansatz
for A, we solve equation (A11) by the standard approach, i.e. we consider ¢,, ,, ~ x5 Using this in
equation (A11) gives us:

x:f — sz 4+ 2(K cosa — cos 20¢)x§ — Kx,+1=0, (A17)
4p

= . Al18

T~ (A18)

One checks that e are solutions independent of the parameter K. Since we have found two roots, we can find
the other two, which are given by e’ where 3satisfies

cosa + cos B = g (A19)

Therefore each o has a 8 partner. We note that w and B are equivalent. The associated eigenvalues can be written
in the same functional form,i.e. A, = Ag = \/ (u — cos 8)* + A’sin? 3, which follows from equation (A19).
We continue to use « as the label indicating the eigenvalue.

These solutions tell that e** and e are the most general solution for the bulk equation. Now we need to
determine a linear combination of these functions that satisfies the boundary equations. Treating the left and
right edges in an equivalent way, we consider the following combination:

Gn.n = Arsin(na) + Ay sin[(N + 1 — n)a] + Bysin(nB) + Bysin[(N + 1 — n) 3], (A20)

inwhich A,, A,, B, and B, are constants.
Using this ansatz, equations (A13) and (A14) give us:

Aysin[(N 4+ 1)a] + By sin[(N + 1)3] = 0 (A21)
Ay sin[(N + 1)a] + By sin[(N + 1)5] = 0. (A22)

Based on these relations, we rewrite the ansatz:

Msin(ﬂﬂ)} + Ay (sin[(N + 1 — ma]

¢a,n = Al{SIH(na) - sm[(N T l)ﬁ]

_ sin[(N+ Da] . B
7sin[(N T sin[(N + 1 n)ﬂ]}. (A23)

Finally, we make sure that the ansatz satisfies equations (A12) and (A15), which leads to the following
equations:

A
1 —

A
_1 _ Afﬂ,(ar ﬂ) - Afl(a’ ﬂ) +f2(O‘) 6) (

A 2) = (8) (A24)
1+

A
Afl(a) B) + f, (o, B) H—Aﬁ(a, B3)

in terms of the functions

sin[(N + 1)a]
sin[(N + 1) 5]
f(a, B) = sin[(N + 1)a](cos 8 — cos ) (A26)

fi(a, B) = sin(No) — sin(N[) (A25)
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sin[(N + 1)a] i

(@, B) = sina — (N 1 D] in (. (A27)

To find a non-trivial solution for A and A,, we require that the determinant of the matrix in equation (A24)
is zero. This gives us another equation for avand 3:

. . 5 1 B ) sin asin 3
sin* v + sin* 3 + ~ (cos B — cos ) zsin[(N T DalsnlN DB
X {1 — cos[(N + 1)a]cos[(N + 1)3]} = 0. (A28)

This equation should be solved together with equation (A19) to give us all admissible labels. Generically, this has
to be done numerically.

In the analysis below, we focus on the regime with ¢ > 0and A > 0. We assume that A = 1, the case
A = t = 1 was considered explicitly in [20, 21]. From the equations (A28) and (A19), we see that a solution (c,
B) for A > 0also gives a solution for A < 0 (though the form of the wave function ¢, ,, changes). In addition,
the solutions for 1+ < 0 can be related to the solutions with 4+ > 0. Ifa pair («, () satisfies the equations for
p > 0, the pair (o + 7, § + 7) will satisfy the equations for ;4 < 0. Note that this shift does not change
equation (A28). However, it gives rise to a minus sign in the left hand side of equation (A19) which indeed
changes the sign of . Finally, the actual eigenvalues A, are also unchanged.

Thus from now on, we assume that ¢, A > 0. The structure of the solutions (o, (3) is as follows. For pn > 1,
one finds N solutions, for which o and or (is real. Because « and 3 are completely equivalent, we assume that «v
isreal. When 0 < p < 1,thereare N — 1 solutions, with areal, and 3 either real or complex. We note that if 5is
complex, itsreal part Re § = 0 for A < 1,and Re § = 7 for A > 1. The ‘missing’ solution has both azand 8
complex, and corresponds to the zero mode, which we describe in detail below. In figure 4, we show this for a
chain of N = 6ssites, A = 0.8 and different values of .

Before we do so, we first discuss the solutions with « real. We first note that for any («, ) pair that solves
equation (A28) and (A19), all the combinations of (£ «, +/3) are also a solution. Since these pairs give rise to
same wavefunction, we only consider avin therange 0 < o < 7.

The solutions are then obtained by finding the solutions of equation (A28), where 31is given by
equation (A19). Special care has to be taken in the case that both avand [ are real, say (o, ) = (o, 51), because
one will also find the equivalent solution (c, 8) = (01, &), so one has to restrict the range of « further, to avoid
‘double counting’ of solutions.

From equation (A19) it is clear that  and 3 can only be both real when —1 < ﬁ < 1. Because
i, A = 0,thisleads to tworegimes, A < /1 — ppand A > /1 + u.Inthese regimes, one always finds the
solution o = 3 = arccos(u/(1 — A?) = a,, because equation (A28) is trivial when o = (3. This solution is
not valid, however, because itleads to ¢, = 0.

Nevertheless, the value « is useful when specifying the appropriate range for c. If there are solutions with
both avand [ real, one has that either & < o, < §,0r 8 < @, < «.Inaddition, for therange A < /1 — p,one
finds that all the solutions («, 3) with fimaginary have a > «. Thus, to find all solutions in this range, one
should only take the solutions for o such that oo, < @ < 7. Fortherange A > /1 + u,thesituation is
opposite, and one should take the solutions for «vin the range 0 < o < .. In the other regime, namely
JI —p <A < J1+ p,onehasto consider all solutions for cvin therange 0 < o < 7.

We now turn our attention to the Majorana zero mode solution. The goal is to find the analytical expression
for the wave function of this mode. For simplicity, we work in the limit of large system size,i.e., N — oo.

By analyzing equation (A28), one finds that the solution one loses, is the one with smallest positive, real a.
Taking thelimit &« — 0and N — oo of equation (A28), using equation (A19), gives

4

m(u - Dip—10-M]=0 (A29)

This shows that there is a solution with « = 0, for p = 1. In addition, further analysis shows that for 4 < 1, one
loses this solution, both for A < 1and A > 1, while for iz > 1, this solution shifts to finite, positive . This
behavior can be seen for a chain with N = 6sites, A = 0.8and x = 1.2,0.6,0.25 in figure 4. In the case of
1 = 0.25, only the solutions with o > a,, & 0.257 are independent, so the there are still only five solutions. The
additional, sixth solution is still a zero-mode.

We note that for finite N, the value of 1 for which one loses the solution has 1/N corrections, and depends on
A. That the phase transition between the trivial and topological phase occurs for i = 1 in the large N limit is of
course well known, and is given by the value of 1 for which the gap closes. Based on equation (A4), we infer that
(@ = £ 1arethe only possible values of chemical potential for which gap closes (provided that A = 0).

Now we turn to finding the missing root and its associated features. To do so we need to consider different
cases.
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Figure 4. Plot of the left hand side of the constraint equation (A28) as a function of a for N = 6, A = 0.8 and . = 1.2, 0.6, 0.25 for (a),
(b) and (c) respectively. For ;1 = 1.2, there are six solutions, so there are no zero-modes. For ;¢ = .6, there are five solutions. For
1 = .25, there are five independent solutions, which one can pick to lie in the range o > o & 0.257.

(DA < landy1 — A* < p < 1:inthisregime, we lost one solution with « real, so we look for a solution
with both & and fimaginary, and in fact, purely real. Such a solution indeed exist namely,

1 1) L 11
B N Ly L | (A30)
* l(a 52] ’[fl fz)
coshi = ;, cosh1 = K (A31)

& 1— A2 s 1-~

which solves equation (A19) and equation (A28) in the large Nlimit. For V1 — A? < 1 < 1,both & and &, are
real. Let us explore the properties of this solution. First, substituting this result back into the equation (A16) gives
us A+ = 0, so we indeed have a zero-mode. This means that we can use equation (8) to solve for the wave
function. Alternatively, we can set A; = 01in equation (A23) to obtain the Majorana mode that is localized on the
left side of the system. Either approach gives
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_n
Gor, = Ce & sinh[?), (A32)
2

where Cis a normalization constant. Because & < &,, the mode ¢+ is indeed localized on the left edge.

The same reasoning can be done for 1, ,. The important observation is that (A + B)(A — B) has the same
structureas (A — B)(A + B)ifwelook atit from the other side of the chain,i.e.n — N + 1 — n.So we get
Yarn = Gor g1 Which tells us that 1) , is localized on the right edge.

Q)A < landp < N1 — A:for pp < 1 — /A2, the parameter &, in equation (A30) becomes imaginary,
so is more natural to rewrite the previous solution. The root can be written as:

af=—gq+ 1%, B*=q+ 1%, (A33)

cosq = L, coshl = ; (A34)

1- A £ J1-A
Again, one finds that A ;* = 0. Using the same logic as above, one finds that

P, = Ce &sin(ng), (A35)

with Csome constant. This result shows that ¢+ is localized on the left edge. Although this in this case instead of
having decaying functions, we have an oscillatory decaying function.

(3) A > 1:in this case we can not use the previous results, because v/1 — A? becomes imaginary. One finds
that the new root in this regime is given by

11 11
a*=i———,ﬁ*=7r+1( +—], (A36)
(El 52) & &
snh+ = 1 gnpto_ K (A37)
& A2 — 1 & A — 1

Weseethat § < &, since < 1. One can check that for this root A+ = 0, hence it is also a zero mode. To find
the Majorana mode that islocalized on the left edge, we again set A, = 0in equation (A23), which results in

cosh[?), if n is odd,
Gy = Ce & X : (A38)
sinh(i] if n is even.
)

This result shows that ¢ is localized on the left edge.

To close this section we note that for 1 = /1 — A%, wehave a* = (3*. Therefore one can not use x; and xj
as separate solutions, but one should use nx as the other independent solution.

Appendix B. The zero-modes of the Kitaev chain with a phase gradient

In this appendix, we investigate the zero mode of the Kitaev chain, in the presence of a phase gradient in the
order parameter. We assume that [t| = |A| = 1.
As we mentioned in section 4.2, after a gauge transformation the Hamiltonian takes the form

1 V=l
EZezcc]Jrl—i-e’zc]H—ic) Z( c]——) (B1)

inwhich V s the phase gradient per site, which is constant. To find the zero-mode, we use the method which is
presented in section 2. From equation (A7), the matrices A — Band A + Bread
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— isin(ﬁ)
a 2
Vo
e "2 —u isin(VTe) 0
Vo
0 e "2 — 1 isin(vTe)
A—-B= ,
\j
ez —pu isin(v—) 0
2
Vo
0 e "2 — L isin(V@%)
Y4
e 2 — U
(B2)
_ COS(V_Q)
a 2
V@)
0 - cos| — 0
ol
A+ B= E v . (B3)
— cos(—) 0
2
VH)
0 - cos| —
ol
—H

In this case we are only looking for the zero mode and the corresponding Majorana operator. Hence we drop
the * index. In order to have a Hermitian operator, ¢ needs to be imaginary in equation (16). So we set 1) = i1}
and g, = %((;5" + i),). First we look at the ‘bulk equation’ that follows from equation (15):

i (L)oo o

The only equation which is different from this bulk equation has index one (note that matrices are acting from
the right on the vectors),

—puthy = 0. (B5)
These two equations give us the solution:

N—n+1
u=R % , (B6)
cos (—
2
where R is a normalization constant. We see that the boundary equation holds (in the large N limit), provided
that p < cos (VT()), which precisely corresponds with the criterion to be in the topological phase, as we discussed

insection 4.2.
We move on to find ¢. The ‘bulk equation’ coming from equation (14) reads

—M¢n + cos (%9)¢n+1 = Sin(%e)({pnfl - "Ln+1)- (B7)

Here we encounter the first difference in comparison with the case with only real couplings. In this case the
equation governing ¢ depends on 7). This means that the general solution for ¢ consists of a part that satisfies
equation (B7) with the right hand side set to zero, and a particular solution. The general solution takes the
following form

n N—n+1

Vo
(bn =1L % — Rtan(—) % 5 (BS)
cos(— cos(—
2 2
where the first term satisfies equation (B7) with the right hand side set to zero and the second term satisfies the

full equation (B7). Thus, in this (unnormalized) solution, L is a free parameter. We note that the first term is
localized on the left hand side of the system, while the second term is localized on the right hand side. We should
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also check the two boundary equations, which are given by:
n=1:—po, + cos(v70)<b2 = —sin(%e)fpz, (B9)

n=N:—upy = sin(?)ﬂm,l. (B10)

By substituting the solution for ¢ and ¢ back into equations (B9) and (B10), we find that they are satisfied up to
terms that are exponentially small in the large N limit.

Using this general solution, we can construct two solutions for g, that are localized on either side of the
n
m
Ccos (VTe)
we see that the corresponding electron operator 7,, only involves the operators 4 j, not the v ;. The other
N—n+1

. Thus, this

system. Setting R = 0, one finds a real solution (localized on the left): g, = L . Using equation (16),

R .V i
4 le’ 2 Ve
0S (T) cos (T)
right mode involves both 7, ;and 3 ;. We note that the above solutions are valid in the limit of semi-infinite
chains. In the case of a finite, but long chain, they can be combined to form an approximate solution (up to
corrections that are exponentially small the length of the system) of the fermionic zero-mode, that is delocalized,
with support on both ends of the chain.

solution, localized on the right, is found for L = 0,andisgivenby g, =
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