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1. Introduction

Majorana zero modes (MZMs)—particle-hole symmetric zero 
energy excitations—in solid state devices have attracted much 
attention in contemporary condensed matter physics. This 
increased research is partially driven by the search for sys-
tems with non-Abelian statistics, which is expected to realize 
topological quantum computation, and also since the MZMs 
provide a signature of a novel phase of matter—topological 
superconductivity [1–3].

One system predicted to host MZMs is a one-dimensional 
(1D) semi-conducting nanowire, such as InAs or InSb, with 
strong spin–orbit coupling and large g-factors, in proximity 
with an s-wave superconductor (SC) in an external magnetic 
field [4, 5]. Above a critical magnetic field strength, the system 
is effectively a spinless p-wave SC and MZMs are expected to 
appear on the edges of the wire. The zero energy and particle-
hole properties of the MZMs are further predicted to give rise 
to a robust quantized tunneling conductance of 2e2/h at zero 
voltage bias due to perfect Andreev reflection [6–9]. Several 

experiments [10–12] have reported zero bias peaks (ZBPs) in 
this type of wires, although the quantization of the conduct-
ance has so far not been observed and alternative explanations 
for robust ZBPs, not related to MZMs, have been proposed 
[13, 14].

More generally, a 1D wire hosting MZMs is but one mani-
festation of the various phases of matter predicted by the 
recently established periodic table  of topological supercon-
ductors and insulators [15–19]. In this table, gapped and free 
fermion systems are classified according to their anti-unitary 
symmetries and spatial dimension. For a given system, one 
may construct a mathematical quantity, a topological invar-
iant, associated with the band structure of the bulk, and its 
value determines whether the system is in a topologically 
trivial or non-trivial phase. The crucial property of this entity 
is that it can not change unless the gap closes provided certain 
symmetries remain intact.

A non-trivial bulk topology of such gapped phases of matter 
is expected to give rise to various exotic boundary modes 
such as MZMs for finite systems. A short ‘bulk-boundary’ 
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argument for this statement is that any topologically non-
trivial system must change its topological invariant when bor-
dering a topologically distinct domain, for instance the trivial 
vacuum. Since the invariant can not change without a closing 
of the gap, gapless modes appear at the system boundary.

It is however not entirely clear what happens to boundary 
modes in contact with gapless phases of matter. For those, 
there are no topological invariants defined and one can not 
use arguments such as the one given above. In the context of 
localized edge MZMs, there have been some investigations 
what happens to the edge modes of a topological SC coupled 
to a finite normal gapless metal (NM) [7, 20–24]. The conclu-
sion is that the Majorana mode is exponentially localized in 
the SC region but extends into the whole NM with a uniform 
density, while keeping its zero energy and particle-hole sym-
metric properties. To highlight this feature, we shall refer to 
such modes as ‘extended’ Majorana zero modes (EMZMs). 
The density of states contribution of the mode decreases as 

L1 N/ , where LN is the NM length. For LN on the order of the 
SC coherence length, a gap is induced in the NM due to the 
SC proximity effect and there is a finite energy gap between 
the EMZM and neighbouring low energy modes.

In this work, we study a system of three 1D nanowires, 
of the type mentioned above, constituting the arms in a 
T-junction, see figure  1. Each wire is driven into an effec-
tively spinless regime by Rashba spin–orbit coupling and an 
external magnetic field, and the outer regions of the system 
are SC by proximity. This configuration of wires is effectively 
a three-terminal Josephson junction of spinless p-wave SCs 
and we assume the SC phases to be externally controllable. 
Similar setups were previously investigated in the context of 
transport or braiding [25–30] of MZMs, while in this work 
we are interested in the nature of EMZMs. We will therefore 
consider T-junctions in the long junction limit, so that we can 
really distinguish EMZMs from ‘ordinary’ MZMs.

In section  2, by using an analytical scattering matrix 
approach, we derive three key features of the T-junction.  
(i) There is always at least one EMZM located in the NM 
region regardless of the SC phases, (ii) a single EMZM’s spa-
tial distribution is shown to strongly depend on the SC phases, 
suggesting protocols for transferring them between the arms 
of the junction by tuning the SC phases, and (iii) if the system 
respects a ‘pseudo’ time-reversal symmetry (PTRS), there can 
be three EMZMs located in the NM region.

In section 3, we confirm these findings numerically with a 
tight-binding model and with scattering matrix methods we 
show how the results can be probed experimentally by tun-
neling spectroscopy. We briefly discuss experimental aspects 
in section 4 and in section 5 we end with a summary and some 
concluding remarks.

2. A T-junction of 1D topological superconductors

We consider a three-terminal Josephson junction setup, illus-
trated in figure 1, where three spin-less p-wave SC wires are 
connected by spin-less NM wires forming an SNS T-junction. 
The SCs are assumed to have the same gap p|∆ | but may have 
different SC phases p1φ , p2φ , and p3φ  respectively.

This system is described by a Hamiltonian, H, fullfilling 
the intrinsic anti-unitary particle-hole symmetry (PHS) 

= −−PHP H1  with 12 = +P . In terms of topological clas-
sification, this Hamiltonian generally belongs to symmetry 
class D [15]. We choose a basis where xτ=P K. The Pauli 
matrices xτ , yτ  and zτ  act in particle-hole space and K denotes 
complex conjugation. Furthermore, the system obeys PTRS if 
there is an anti-unitary operator T  such that 1=−THT H with 

12 = +T . With PTRS in addition to the PHS described above, 
the system belongs to class BDI . We choose our basis such 
that =T K.

We start by investigating the low energy features of this 
setup using a scattering matrix approach. In this way, we don’t 
have to worry about any microscopical details. In particular, 
the results we find below are still valid in the presence of weak 
disorder respecting the symmetry classes, assuming the dis-
order does not close the gap. The symmetry constraints of H 
are straightforwardly implemented as described next.

2.1. Scattering approach and bound state equation

In the NM region, each arm is described by a Bogoliubov– 
de-Gennes (BdG) Hamiltonian

w
m2

,w
zBdG

2

( )
⎛
⎝⎜

⎞
⎠⎟µ τ= −

∂
−H (1)

where w is the direction along the wire, m is the effective 
mass, and µ is the chemical potential. Throughout this sec-
tion, we set e 1ħ = = . We assume that the chemical potential 
and effective mass is the same for all three arms. The flux-nor-
malized [31] free electron and hole solutions of equation (1) 
are given by

k

1 1
0

ee

e

k w
in

i e( )ψ = −
 (2a)

Figure 1. Schematics of the scattering approach to the T-junction 
Josephson setup. Electron and hole scattering states /Ψj,in out in the 
central normal metal region (light grey) are connected by the normal 
scattering matrix sN. For energies below the superconducting gap, 
the scattering states leaving the central region Andreev reflect at 
the three outer topological superconductors (dark grey) with phases 
φp1, φp2, and φp3 for left, right, and bottom arms respectively. The 
Andreev processes are described by a single scattering matrix sA. 
Each arm’s w-coordinate is chosen to increase from the origin—the 
central connection point. The relative length between normal and 
superconducting segments is not drawn to scale.
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k
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1
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i h( )ψ = −
 (2b)

k

1 1
0

ee

e

k w
out

i e( )ψ = +
 (2c)

k

1 0
1

e .h

h

k w
out

i h( )ψ = +
 (2d)

Here, k m2e,h ( )µ= ± ε  are the wave vectors for electrons 
and holes respectively and ε is the energy. We use a directional 
convention where each arm separately has its positive direc-
tion pointing away from the central connection point taken to 
be w  =  0. The subscript ‘in/out’ then refers to incoming or 
outgoing states with respect to this point.

We use the states in equation  (2) as our scattering basis 
, , , , , ,e h T e e e h h h T

in out in out 1 2 3 1 2 3 in out( ) ( )/ / /ψ ψ ψ ψ ψ ψΨ = Ψ Ψ = .
With this construction, the coupling between the three NM 

arms is fully described by the scattering matrix equation

s .out N in( )Ψ = Ψε (3)

Generally, the symmetry relations obeyed by the complete 
system Hamiltonian H are carried over to the scattering matrix. 
In the basis we use, any scattering matrix s ( )εH  relating eigen-
states of H has to obey the relations [19, 32]

s s , in classes andx x( ) ( )        τ τ= −∗ε ε D BDIH H (4a)

s s , in class only.T( ) ( )      =ε ε BDIH H (4b)

In the NM region, scattering does not mix electrons and holes 
and the scattering matrix is block-diagonal in particle-hole space:

s
s

s
0

0
.N( ) ( )

( )
⎛
⎝⎜

⎞
⎠⎟=

−∗
ε

ε
ε (5)

We assume that the wires only have one single active channel 
each, so that s( )ε  is a 3 3×  unitary matrix that connects elec-
tron states between the different arms in the junction. The 
scattering matrix relating hole states is given by s ( )−∗ ε  as fol-
lows from equation  (4a). The implementation of additional 
channels or arms is straight-forward but is not considered in 
this work.

If the SCs are in their topological regime, that is hosting 
edge MZMs, the Andreev scattering processes at the NS inter-
faces are described by the following scattering matrix equa-
tion [9, 13, 33–35]

s ,in A out( )Ψ = Ψε (6)

with

α= − ∗⎛
⎝⎜

⎞
⎠⎟ε εs

r
r
0

0
.A

A

A
( ) ( ) (7)

Here, e i arccos p( ) ( / )α = − |∆ |ε ε  is the usual phase matching factor 
in the regime p|∆ |≪ε  [36–38] (we refer to the appendix for a 
brief discussion of scattering onto a spin-less 1D topological 
SC).

The matrix sA( )ε  is unitary if we assume no single particle 
transmission into the SCs which is reasonable in the subgap 
regime. We emphasize the relative sign between the off-diag-
onal blocks of sA( )ε  which indicates the p-wave nature of the 
pairing. The Andreev reflection matrix rA is given by

=
φ

φ

φ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟r i

e 0 0
0 e 0
0 0 e

,A

i

i

i

p1

p2

p3

 (8)

and encodes the phase information acquired by Andreev 
reflected electrons and holes. With this expression, we have 
assumed perfect Andreev reflection, the Andreev approx-
imation [36, 37], which holds exactly for 0=ε . From equa-
tions (4b) and (8), we note that PTRS can only be present if 
each SC phase takes values npjφ π= , where n is an integer.

Electrons and holes that scatter in the T-junction can form 
Andreev bound states (ABS) due to constructive interference 
of periodic scattering paths. In the setup considered here, with 
effectively spinless particles, an ABS at the Fermi level, 0=ε , 
satisfies the Majorana criterion ( 0 0

†ψ ψ= ) but in contrast to 
a localized MZM, this mode is spatially extended across 
the arms in the junction. It is therefore of the EMZM type 
described in the introduction.

With equations  (3) and (6), the condition for ABS in the 
T-junction is given by

s s .A N in in( ) ( )Ψ = Ψε ε (9)

This equation serves as our starting point to examine the con-
ditions for having EMZMs in the T-junction and how these 
modes are spatially located.

2.2. Existence and location of EMZMs

We now show (i) equation (9) has always at least one solution 
for 0=ε , (ii) a single 0=ε  bound state is always located in 
only two of the three arms in the junction if the NM region 
respects PTRS and two of the SC phases are equal, and  
(iii) if the total system is in class BDI , there are three 0=ε  
solutions only if the three SC phases are equal. Otherwise, 
there is only one solution.

Following [39], we rephrase equation (9) as

α
− −

Ψ = Ψ
∗⎛

⎝⎜
⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

ε
ε

ε
s

s
r

r
0

0
0

0
,

T
A

A
in in

( )
( )

( )
†

 (10)

where we have used equations  (5) and (7). Adding equa-
tion  (10) to its inverse, which conveniently maps ( )α ε  to 
2 p/|∆ |ε , gives a new eigenvalue equation

Ψ =
|∆ |
Ψ

⎛
⎝⎜

⎞
⎠⎟
ε

ε
εA

A
0

0
,

p
in in

( )
( )

†
 (11)

with

A r s s r
1
2

.T
A A( ) ( ( ) ( ) )≡ − −ε ε ε (12)

Let us now first investigate the case where the SC phases can 
take arbitrary values in 0, 2[ ]π  so that the system generally 
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belongs to class D. We seek solutions for 0=ε  and equa-
tion (11) reduces to

A A0 0, 0 0e h
in in( ) ( )†Ψ = Ψ = (13)

and the bound state condition becomes

ADet 0 0.( ( )) = (14)

Now, since rA is symmetric, A(0) is an odd-dimensional 
anti-symmetric matrix (see equation  (12)) and it follows that 

A A ADet 0 Det 0 Det 0 0T( ( )) ( ( )) ( ( ))= − = − = . This gives that 
equations (11) and (14) are always satisfied for arbitrary unitary 
s 0N( ) and arbitrary SC phases in s 0A( ). Because e

inΨ  is a solu-
tion of A 0 0e

in( )Ψ = , it follows that h e
in in( )Ψ = Ψ ∗ is a solution  

of A 0 0h
in( )† Ψ = .

To derive equation (11), we added equation (10) to its inverse, 
which may have introduced additional solutions. We there-
fore have to check for which combination , ee h T

in in
i

in( )Ψ = Ψ Ψχ  
equation (10), or equivalently, equation (9), is satisfied, where 
eiχ is a phase factor to be determined. The two constraints one 
obtains are each other’s complex conjugates, and one finds 
that r se i 0e T ei

in A in( ) ( )= − Ψ Ψχ , which is indeed a phase. Thus 
one can construct only one solution of equation  (9) from a 
solution e

inΨ  and h
inΨ  of equation (11); we will make use of this 

fact again below.
We conclude that there is at least one 0=ε  bound state, an 

EMZM, in the junction. This is of course expected because 
both MZMs and EMZMs can only gap out in pairs due to 
PHS. For similar results in a slightly different system, see 
for instance [40]. We note that this result generalizes to all 
junctions, of the type considered here, with an odd number 
of arms.

Next, we show that there are cases, in which the zero bound 
state does not spread out over the three arms, but resides com-
pletely in two arms only. To obtain this result, we note that the 
explicit elements of A(0) in general take the form

A t t0 e e ,mn mn nm
i ipm pn( )∝ −φ φ (15)

where the elements of the scattering matrix, tmn are the elec-
tron transmission amplitudes from arm n to arm m. If the 
normal region respects PTRS, we have t tnm mn= , by virtue of 
equation (4b). If in addition two of the phases are equal, say 

p1 p2 p3φ φ φ= ≠ , and recalling that A(0) is anti-symmetric, we 
find that the only non-zero elements of A(0) are A A13 31= −  
and A A23 32= − .

Thus we find that, in this case, the third component of e
inΨ  

must be zero in order to satisfy equation (13). The same argu-
ment applies to the hole-part h

inΨ , which will have a zero in 
the same position. As we saw above, these two parts have to 
be combined in the proper way to obtain a solution of equa-
tion  (9), with the zero elements carrying over. We conclude 
that in the case that the normal region respects PTRS, and 
if two of the phases are equal, there is a single zero energy 
bound state, that resides completely in the two arms whose 
phases are equal.

Finally, we consider the case 0p1 p2 p3φ φ φ= = =  (or any 
phase equal for all arms, because an overall phase corresponds 

to a global gauge choice), which gives rA 1∝ . If in addi-
tion s sT

N N= , the system belongs to class BDI  and one has 
A(0)  =  0. Then there are obviously three solutions e

inΨ  of 
equation (13) and similarly for h

inΨ . By taking the appropriate 
combinations, we find three solutions of equation  (9), so in 
this case, there are three EMZMs in the junction. We note that 
in this case, one can also use equation (9) directly to obtain 
this result.

Thus, in class BDI  there are three EMZMs if the phases 
are equal. If one phase is shifted by π with respect to the other 
two, the system remains in BDI , but two EMZMs gap out 
leaving a single EMZM in the junction as described above.

To understand the physics behind these results it is useful 
to first analyze Andreev reflection onto a topological SC in NS 
and SNS junctions.

For an NS junction, in addition to the phase of the order 
parameter, pφ , the Andreev reflection processes e h→  and 
h e→  are phase shifted by exactly π for 0=ε  due to the 
p-wave pairing. This type of phase shift occurs because 
incoming electrons and outgoing holes (the e h→  pro-
cess) with Fermi momentum pF experience an effective gap 

pp p F∆ ∼+|∆ | , while incoming holes and outgoing electrons 
(the h e→  process) have momentum pF−  and the experienced 
gap is pp p F∆ ∼−|∆ | . In that sense, for 0=ε , a p-wave SC is 
analogous to an optical phase-conjugating mirror (this behav-
iour is similar for a d-wave SC [41], but in contrast to the case 
of an s-wave SC). We refer to [42] for a comparison.

With this mechanism, an NM connected to a topological 
SC becomes completely transparent for states at 0=ε , since 
any net phase accumulated by an electron–hole-electron or a 
hole-electron–hole orbit close to the interface becomes zero 
and multiple paths interfere constructively. In this way, it is 
clear that a MZM will ‘leak out’ from a topological SC into a 
connected finite NM.

For an SNS junction, similar arguments apply. A phase dif-
ference of exactly π between the two SCs induces phase-shifts 
for the Andreev orbits such that the normal region becomes 
completely transparent at 0=ε . This behaviour is captured 

in the 4π-Josephson relation [43], D cospABS 2
p( )=±∆
φ∆

ε , 

where p∆  is the SC gap, D is the junction transparency, and 

pφ∆  is the SC phase difference. This relation is straight-for-
wardly reproduced with a two-terminal version of equation (9) 
in the short junction limit with PTRS imposed on sN( )ε .

To discuss the T-junction, we first stress that with our direc-
tional convention, a zero phase difference between two arms 
corresponds (somewhat paradoxically) to a physical phase 
shift of π.

As mentioned above, it is clear that the central region must 
host at least one EMZM. There is one localized MZM at each 
outer edge of the system and PHS implies that zero modes 
always appear in pairs. Therefore, at least one zero energy 
mode must be located in the NM region.

When only two phases are equal and PTRS is imposed 
on sN, the phase shifted arm is effectively disconnected from 
the other two at zero energy, see the discussion below equa-
tion  (15). The two connected wires form a π-shifted SNS 
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junction with an EMZM while the other two possible arm pair 
combinations form junctions that can have ABSs albeit not at 
zero energy.

When all three SC phases are equal, and the system is in 
class BDI , the wires are effectively disconnected for zero 
energy, since A(0)  =  0 with these two constraints. Then the 
argument for NS-junctions above applies separately for each 
wire and there are three EMZMs in the junction. Breaking 
PTRS, either by removing the symmetry constraint on s 0N( ) 
or by slightly shifting one of the phases, causes two EMZMs 
to hybridize and gap out.

With these results in mind, we turn to numerical calcul-
ations to verify the predictions in a microscopic setting and we 
show how they can be tested experimentally.

3. Numerical calculations

3.1. Hamiltonian

To describe the T-junction microscopically, we start with 
a model for a single semi-conducting nanowire with strong 
Rashba spin−orbit coupling (RSOC) lying in proximity to a con-
ventional s-wave SC in an external magnetic field. Assuming 
the wire to be thin, so that only one channel is occupied, we 

use the 1D BdG Hamiltonian H w w wdNW
1
2 NW( ) ( )†∫ Ψ Ψ= H  

with Nambu basis w w w w w, , , T( ) [ ( ) ( ) ( ) ( )]† †ψ ψ ψ ψΨ = ↑ ↓ ↑ ↓ , 
where w( )†ψσ  creates an electron with spin σ at coordinate w 
along the wire. We take the wire direction ŵ to lie in the x-y 
plane. With this convention,

ˆ

( )
( )

( )

( )

†

σ σµ α

σ

=
− −

= − − ⋅ × + ⋅

=|∆| −φ

∆

∆

∗

∆
−

⎛
⎝⎜⎜

⎞
⎠⎟⎟H

h p h

h h p

h p
p

m
h

p z h

,

2
,

e i ,

w
T

w

w
w

R w

y

NW

2

i s

 

(16)

where pw is the momentum operator along the wire, m∗ is the 
effective electron mass, µ is the chemical potential, and Rα  
is the RSOC strength originating from an internal electrical 
field pointing in the ẑ direction. The spin–orbit direction is 

then restricted to lie in the x-y plane. Further, gh B1
2 Bµ≡  is 

the Zeeman field with g the effective g-factor in the wire, Bµ  
the Bohr magneton, and B is the external magnetic field. The 
proximity induced SC gap is denoted |∆| with phase sφ  inher-
ited directly from the underlying s-wave SC. The set of Pauli-
matrices σ act in spin space.

It has been shown [4, 5, 26] that the Hamiltonian (16) can 
be mapped onto a spinless p-wave SC model with a topolog-
ical phase hosting MZMs [1]. This topological phase occurs 
when two conditions on the Zeeman field h are met [44, 
45]. Namely, the full field satisfies the topological criterion 

hh c
2 2µ| | > ≡ |∆| +  (in a finite lattice model, there is an 

additional upper critical field due to the finite band width, but 
that field does not play any role in this paper). In addition, the 
projection hP of the Zeeman field onto the ẑ-ŵ plane should 

satisfy h hP
2 2| | > −|∆| . This equation sets an upper bound 

on the component of the Zeeman field pointing in the spin–
orbit direction.

With these conditions in mind, we take the magnetic field 
to point in the z-direction, hh h zP ˆ= =  for the remainder of 
the paper. For large magnetic fields, h SO| |≫ ε , where the spin–
orbit energy m 2RSO

2 2ħ/α≡ ∗ε  sets the characteristic energy 
scale, the effective p-wave order parameter is hp /α|∆ |≈ | ∆ |. 
Also, the p-wave phase pφ , depends crucially on the direction 
of the wire [25, 26]. With our coordinate convention, this rela-
tion can be written as

,p sφ φ ϕ= + (17)

where sφ  is again the bulk s-wave order parameter and 
x warccos ˆ ˆ( )ϕ = ⋅ , the angle of the wire with respect to the 

positive x-axis. For a single uniform wire, this extra phase 
shift is not important due to the gauge freedom to remove any 
global phase, but for systems with wires coupled at angles it 
has interesting consequences.

For instance, two proximity induced wires connected in an 
‘L-shaped’ Josephson junction exhibit a SC phase difference 
of 2/π  even if the underlying s-wave SCs have the same phase. 
This observation suggests a generalization of the π-junction 
in [46] (see also [47]) which can be achieved by geometrical 
means in contrast to arrangements of permanent magnets. 
Even more interesting, this effect should be manifest in arbi-
trarily curved wires. For our present purposes, the extra phase 
shift must be accounted for when modeling the T-junction in 
order to compare with results from section 2.

We take three wires of the type (16), and discretize them 
on a lattice with N  =  100 lattice sites per wire. As before, 
we use a directional convention where wire 1, wire 2, and 
wire 3 point in directions w 1, 0, 01ˆ ( )= − , w 1, 0, 02ˆ ( )= , 
and w 0, 1, 03ˆ ( )= −  respectively, see figure  2. The origin is 
taken as the connection point and each wire has total length 
L L LN S= + , where LN and LS denote the normal and SC seg-
ment lengths respectively. The discretization introduces the 
hopping parameter t m a22 2ħ /( )≡ ∗  and the Rashba spin flip 
hopping parameter a2R/( )α α≡ , where a L N/≡  is the effec-
tive lattice constant. The hopping elements between wires 
are taken to be pure spin preserving hoppings with t t 10c /= . 
Moreover, we note that with the magnetic field pointing in 
the z-direction, all three wires enter the topological phase 
simultaneously. We should note that while this is convenient 
for our purposes, it does limit the extend to which our model 
calculations can be compared to experiments that use nano-
wires with an epitaxially grown superconductor layer [48], for 
which the (perpendicular) critical magnetic field is rather low.

Throughout the remainder of the paper, we use as our unit of 
energy the spin–orbit energy m 2 68RSO

2 2ħ/α µ≡ ≈∗ε eV, where 
0.2Rα =  eV Å and m m0.026 e=∗  with me being the free elec-

tron mass. We also take g  =  20 and 2.5 170SO  µ|∆|= ≈ε eV, 
parameters appropriate for InAs [12, 38, 49]. In terms of the 
spin–orbit energy, t 13.4 SO≈ ε  and 3.7 SOα≈ ε . These choices 
also define the spin–orbit length l m2 293RSO

2ħ /( )α= ≈∗  nm 
and the SC coherence length [46] l 117SO SO/ξ = ∆≈ε  nm. 
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With our numerical model, we can examine the predictions 
in section 2 and also how they can be verified experimentally 
by tunneling spectroscopy. The formalism for calculating tun-
neling conductance is introduced next.

3.2. Tunneling spectroscopy

Calculations of the tunneling conductance at an NS interface 
are implemented by the Mahaux−Weidenmüller formula, 
relating at a given energy the reflection matrix, r( )ε , to the 
Hamiltonian H by [50, 51]

r W WW W2 i i .11( ) ( )† †π π= + − − −ε εH (18)

The coupling matrix W is of size N M4 × , where 4N is the size 
of the matrix representing H and M is the total number of lead 
channels. This matrix contains the coupling elements between 
the basis states of H and the modes in the leads. The elements 
of the matrix WWi †π−  can be viewed as the lead self-energies, 
which modify the bare energies and life-times for the particles 
in the system when leads are attached.

To attach a single lead at a site Np with spin- and particle-
hole degrees of freedom, we take

W v ,p
T

41( )→λ= ⊗ (19)

where v , 0, 1 , 0,p p( )→ = … …  is a unit vector of length N repre-
senting the site degree of freedom and 41  is a 4 4×  unit matrix 
representing spin and particle-hole degrees of freedom. The 
coupling between the system and the lead is characterized by 
the parameter λ. This construction attaches a lead to site Np 
(which corresponds to a distance L aNp p=  from the origin, 
see the inset of figure 2) of the system.

The reflection matrix in equation (18) can be divided into 
particle hole-blocks as

( ) ( ) ( )
( ) ( )=

⎛
⎝⎜

⎞
⎠⎟ε

ε ε
ε ε

r
r r
r r

,ee eh

he hh
 (20)

where ree is the reflection amplitude for an incoming elec-
tron, rhh is the reflection amplitude for an incoming hole, and 
reh and rhe are Andreev reflection amplitudes which converts 
incoming electrons to outgoing holes and vice versa. The  
tunneling conductance for zero temperature and small bias 
voltages V is dominated by Andreev processes and is given 
by [52]

G V
e
h

r r
2

Tr eV eV .
2

eh eh( ) ( ( ) ( ))†= (21)

Using equations (18)–(21), we can calculate the subgap tun-
neling conductance into the T-junction at any site and for 
any tunneling strength by choosing the coupling matrix W 
accordingly.

3.3. Numerical results

In this section we present numerical results for the existence 
and spatial distribution of EMZMs in the T-junction. Both 
these entities are shown to depend on the SC phases and can 
be probed via the tunneling conductance. This indicates that 
the predictions in section 2 hold and can be verified by tun-
neling experiments. Throughout this section we choose exper-
imentally relevant lengths [10] L 4.0 µ= m, L 0.4N  µ= m, 
and L 3.6S  µ= m for each wire. The distance from the origin 
to each lead is L 0.12p  µ= m, see figure 2. With this choice, 
we are in the long junction limit since LNξ< , which is impor-
tant, because EMZM are only really distinct from ordinary 
ones in this limit.

We also choose 0µ =  for which h 2.5c SO=|∆|= ε . 
Furthermore, we assume zero temperature.

3.3.1. Existence and location of EMZMs. We start by inves-
tigating how zero energy modes are spatially located in the 
T-junction. We choose = εh 8 SO which corresponds to 
B 0.94z≈  T. With this choice, the SC segments are in the 
topological phase. Furthermore, we pick 0s1φ = , 0s2φ = , 
and 2s3 /φ π=  which by equation (17) correspond to p1φ π= , 

0p2φ =  and 0p3φ = . We find that the total system hosts four 
zero modes. The total probability distribution of these modes 
are displayed in figure 3(a). We note that there are three expo-
nentially localized MZMs on the outer edges of the SC wires 
while there is one EMZM located in arms 2 and 3. We checked 
that the EMZM is always located in the two arms with the 
same phase. Moreover, this type of spatial distribution is no 
longer present if complex hoppings are introduced, indicating 
a breaking of PTRS. Although there is always at least one zero 
mode in the central region, PTRS breaking makes the mode 
spread out in all three arms. These results are consistent with 
section 2.

Figure 2. Schematics of the T-junction setup. Three nanowires 
(light grey regions) in directions ŵ1, ŵ2, and ŵ3 for arm 1 (left), 
2 (right) and 3 (bottom) respectively are connected at the origin. 
The wires are partially (dark grey regions) lying on top of s-wave 
superconductors with phases φs1, φs2, and φs3 respectively. There 
is a magnetic field, B, in the ẑ-direction. The total wire lengths, 
superconducting segment lengths, and normal metal lengths are 
denoted L, LS, and LN respectively. Inset: a three probe (brown 
regions) configuration for measuring tunneling conductance with 
bias voltages V.
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Next, we choose s1φ π= , 0s2φ = , and 2s3 /φ π= , corre-
sponding to 0p1φ = , 0p2φ = , and 0p3φ = . This time we find 
six zero modes, three exponentially localized MZMs in the 
outer regions and 3 EMZMs distributed in all three arms in the 
central region. The total probability distribution of these zero 
modes is shown in figure 3(b). Again, this result agrees with 
our previous calculations.

3.3.2. Tunneling conductance in trivial and topological 
regimes. Next, we focus on the tunneling conductance. We 
choose a weak tunneling coupling 4SO/λ = ε  and connect 
tunneling probes at sites Np  =  3 of each wire. This site cor-
responds to a distance Lp  =  120 nm from the origin, see the 
inset in figure 2.

First, we choose phases 2s1 /φ π= , 2s2 /φ π= , 2s3 /φ π=  
and calculate the tunneling conductance for low bias volt-
ages and Zeeman field strengths. From section 2, we expect 
a single EMZM, manifested by ZBPs, in all three arms when 
the SC segments are in the topological regime. The result is 
displayed in figure 4(a). We first note that for weak Zeeman 
fields, the tunneling conductance is higher than 2e2/h. This 
is due to Andreev reflection into the proximitized NM region 
when the system is in a spin-full regime and the SC seg-
ments are non-topological. The Andreev conductance is then 

non-universal and take values between 0 and 4e2/h depending 
on the  tunneling coupling [7, 52].

Above the critical field h 2.5c =  SOε  the system enters a 
spin-less regime and the SC segments become topological. In 
this regime ZBPs are observed in each arm. The peaks are not 
of equal width in all arms, but differ since the EMZM have 
slightly different weight in the arms. We further point out that 
the ZBPs have tiny splittings which we attribute to the non-
zero overlap the EMZMs have in a system of finite length [1, 
6, 53–55]. Furthermore, we note that there are additional low 
energy modes in all arms. These modes are remnants of addi-
tional EMZMs which gap out for the particular phase choice 
here. For clarity, the conductance spectrum is shown only for 
bias voltages much smaller than the Zeeman dependent effec-
tive gap 1.8p|∆ |≈  SOε .

We next choose the first set of phases in the previous sec-
tion, 0s1φ = , 0s2φ = , 2s3 /φ π=  (which correspond to p1φ π=  
and 0p2 p3φ φ= = ), for which the results are displayed in 
figure 4(b). We note that there are ZBPs in arms 2 and 3 but 
none in arm 1 which means that the EMZM resides completely 
in arms 2 and 3, in agreement with the previous section.

We repeat the calculation for the second set of phases from 
the previous section, s1φ π= , 0s2φ = , and 2s3 /φ π=  (which 
correspond to 0p1 p2 p3φ φ φ= = = ) and the result is presented 
in figure 4(c). As expected, this time there are ZBPs in each arm. 
With the phase choice made, no EMZMs gap out and all three 
of them reside in the junction, at zero energy. Therefore, there 
are no additional low energy modes. The absence of these low-
lying modes indicates that the cases of one and three EMZMs in 
the junction can be distinguished experimentally, because one 
can continuously adjust the phases between the two cases.

These observations lead us to conclude that the EMZMs 
are manifested by a ZBP in the tunneling conductance in the 
NM regions of the junction. While the results presented are for 
a specific point in each arm, we verified that our results do not 
depend significantly on this choice, as long as the probes are 
in the NM region. We deduce that in the NM region, the zero 
modes are indeed ‘extended’. The results in this section are 
consistent with our predictions and moreover, they can be 
attributed to the topological nature of the SCs.

3.3.3. Transfer of EMZMs by phase tuning. The results 
obtained so far indicate that it should be possible to transfer 
an EMZM from one arm to another simply by letting the nor-
mal region respect PTRS and tuning the s-wave SC phases. 
This feature can be probed by measuring the tunneling con-
ductance of the junction arms when the SC phases are varied.

In figure 5 we present results indicating such EMZM trans-
fers. In figure 5(a) we have set s1φ π= , s2φ π= , and varied 

2s T3 /φ π φ= +  by tuning Tφ  from 0 to π. For 0Tφ = , ZBPs 
can be seen in arms 1 and 3 while for Tφ π=  the ZBPs are in 
arms 2 and 3.

In figure 5(b), s T1φ π φ= − , s T2φ π φ= + , and 2s3 /φ π= . 
Again, for 0Tφ =  there are ZBPs in arms 1 and 3 while for 

Tφ π=  the peaks are in arms 2 and 3.
We see that the effect of tuning the phases in both cases is 

to ‘move’ a ZBP from arm 1 to arm 2 while a ZBP remains 

Figure 3. Total zero energy mode probability distribution in 
the T-junction system. The probability weight residing in arms 
1–3 are plotted in blue, red, and green respectively. The outer 
superconducting segments (SC) and the normal metal (NM) regions 
are highlighted with dark and light gray shading respectively.  
(a) With phases, φ = 0s1 , φ = 0s2 , /φ π= 2s3 , arm 1 is effectively 
phase shifted with respect to arms 2 and 3. There are four zero 
energy modes, three exponentially located in the outer edges of 
the system and one residing in arms 2 and 3 in the central normal 
region. (b) With phases, φ π=s1 , φ = 0s2 , /φ π= 2s3 , all three arms 
have effectively the same phase. There are six zero energy modes, 
three exponentially located in the outer edges of the system and 
three residing in all three arms in the central normal region.
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in arm 3. However, in the latter arm, the conductance spectra 
differ between figures 5(a) and (b) in the sense that in the latter 
figure, the ZBP disappears temporarily for 2T /φ π=  implying 
a disappearance of the EMZM in arm 3. This feature can be 
explained in the following way. For the type of transfer in 
figure 5(b), when tuning two phases, there is a point in the 
phase parameter space where the phases in arms 1 and 2 coin-
cide during the tuning. At precisely that point, arm 3 is phase 
shifted with respect to the other two arms. The EMZM is then 
located only in arms 1 and 2 but its weight is redistributed to 
arm 3 again when the phases are shifted further. This coinci-
dence of phases does not occur in figure 5(a) and the ZBP is 
present in arm 3 during the whole process. We checked that 
for other phase choices, transfers between other arms are pos-
sible and yield similar results.

We have shown that EMZMs can be transferred between 
arms in the junction and that this process can be detected in 
low bias tunneling conductance experiments. In particular, 
when the EMZM is located in two of the three arms, the tun-
neling conductance in the third arm is zero for a finite range of 
phases. See for instance the middle panels of figures 5(a) and 
(b), for low values of the phase.

Finally, we mention that we have checked that symmetry 
respecting weak disorder does not change the qualitative 

features of our results. Importantly, to successfully transfer 
the EMZMs between arms, no PTRS breaking disorder can 
be present.

4. Experimental aspects

In this section, we briefly comment on the experimental aspects 
of our setup. We believe that with present experimental tech-
niques, the presented T-junction should be accessible. Nano-
fabrication of proximity induced wires with connected leads 
has been reported by several groups and setups with connected 
wires have also been realized [56].

Varying the SC phases of the different arms can be achieved 
by connecting the outer regions of underlying s-wave SCs 
such that two loops are formed. If the areas in these loops are 
different, an external and tunable magnetic field will vary two 
phase differences between the SCs differently. The tunneling 
conductances in the NM region can then be measured indi-
vidually as the magnetic flux is varied.

Regarding the tunneling probes, we have treated them as 
completely independent. In our calculations, we assumed 
that only one probe is active at any given time. Switching the 
probes on and off should not pose any experimental problems.

Figure 4. Differential tunneling conductance for the junction arms at distance Lp  =  120 nm from the origin. (a) Conductance as a function 
of bias voltage V and Zeeman field strength h for /φ π= 2s1 , /φ π= 2s2 , /φ π= 2s3 . (b) Conductance as a function of V and h for φ = 0s1 , 
φ = 0s2 , /φ π= 2s3 . (c) Conductance as a function of V and h for φ π=s1 , φ = 0s2 , /φ π= 2s3 .
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As previously discussed, the behaviour of the EMZMs is 
insensitive to microscopical details, such as disorder, and how 
the three wires are connected. This also holds for the inter-
faces between the central region segments and the topological 
SC segments. However, it may be beneficial to have a weak 
coupling between the wires to reduce the overlap between 
EMZMs in the normal region and the outer edge MZMs. 
Moreover, since the zero modes are extended uniformly over 
quite large regions in the wires, the exact location of tun-
neling probes is not very important, in contrast to probing 
local MZMs.

In light of the discussion in section  2.2, the results pre-
sented here provide a signal of induced p-wave superconduc-
tivity, which in the class of proximity induced nanowires is 
highly desirable, and can be experimentally tested.

5. Conclusions

In this paper, we studied a topological superconducting-normal 
metal T-junction. We found that this system naturally hosts 
zero energy Andreev bound states which are of self-conjugate 
Majorana nature. These ‘extended Majorana zero modes’ were 
shown to originate from perfect Andreev reflection upon the 
topological superconductors and also to be spatially extended 
with a uniform density over quite large regions (≈100 nm) in 
our model of the junction. Most importantly, if the junction 
respects pseudo time-reversal symmetry, we showed that the 
EMZMs distribute themselves only in two out of the three 

arms in the junction and that control of the superconducting 
phases allows for transfer of an EMZM between the junction 
arms. The location of the EMZMs can be probed by tunneling 
spectroscopy. Since we considered the long junction limit, the 
extended nature of the zero modes is crucial for our results.

We did not consider the braiding of localized MZMs in 
T-junctions (as explained in detail in [27]), but rather concen-
trated on the properties of EMZMs, and how they can be used 
to probe topological superconductors.

We supported our findings by a numerical tight-binding 
model of topologically superconducting nanowires and dem-
onstrated that our results should be experimentally accessible 
with tunneling spectroscopy.

Since our results are highly dependent on the effective 
p-wave nature of the superconducting wires, we hope that 
our findings can motivate further experiments to reveal new 
insights in the field of topological superconductivity and 
Majorana physics.
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Appendix. Symmetries of the reflection matrix  
and conductance quantization

It has been shown that particle-hole symmetry (PHS) strongly 
restricts the reflection matrix of an interface between a topo-
logical SC and a NM lead [13, 33–35]. This restriction leads 
to a topological transport signature in terms of a quantized 
ZBP in the tunneling conductance. In this appendix, we briefly 
review the derivation of these results.

For a single lead connected to a large SC (such that charging 
effects are negligible), and for energies much smaller than the 
gap, |∆|≪ε , the scattering matrix is a reflection matrix, r( )ε , 
relating outgoing to incoming states by

r ,out in( )Ψ = Ψε (A.1)

where in out/Ψ  are vectors containing the amplitudes of scat-
tering states with incoming and outgoing momenta respec-
tively. For an accessible introduction to mesoscopic scattering 
theory, see [31]. In the particle-hole basis, the reflection matrix 
is most conveniently divided into sub-blocks

=
⎛
⎝⎜

⎞
⎠⎟ε

ε ε
ε ε

r
r r
r r

ee eh

he hh
( ) ( ) ( )

( ) ( ) (A.2)

where ree is reflection amplitude for an incoming electron, rhh 
is the reflection amplitude for an incoming hole and reh and rhe 
are Andreev reflection amplitudes which converts incoming 
electrons to outgoing holes and vice versa. The tunneling con-
ductance for zero temperature and small bias voltages V is 
dominated by Andreev processes and is given by [52]

Figure 5. Differential tunneling conductance for the junction arms 
at distance Lp  =  120 nm from the origin and for fixed magnetic  
field h  =  8 εSO. (a) Conductance as a function of bias voltage V  
and phase variation φT: φ π=s1 , φ π=s2 , /φ π φ= +2s T3 .  
(b) Conductance as a function of V and φT: φ π φ= −s T1 , 
φ π φ= +s T2 , /φ π= 2s3 .
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G V
e
h

r r
2

Tr eV eV ,
2

eh eh( ) ( ( ) ( ))†= (A.3)

where it is assumed that there is neither single particle trans-
mission into the SC nor to other leads. The trace is taken over 
the channels in the lead.

Considering a spin-less single channel lead attached to a 
spin-less SC, we first note that the reflection matrix blocks are 
scalars. Secondly, the reflection matrix is unitary due to proba-
bility flux conservation and PHS enforces the zero energy con-
straint r r0 0x x( ) ( )τ τ = ∗ . These two restrictions allow only two 
possibilities for the reflection matrix entries: either r 0 1ee( )| |= , 
r 0 0eh( )| |=  or r 0 0ee( )| |= , r 0 1eh( )| |=  which have been shown 
to correspond to the trivial and topological regimes of the SC 
respectively. PHS implies additionally r r0 0eh he( ) ( )= ∗ . It fol-
lows from equation  (A.3) that the zero bias conductance is 
quantized to 2e2/h in the topological phase. It has been shown 
that this result persists even for certain types of interactions 
and also for spin-full leads [7].
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