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I. Introduction

In a 2001 paper, Kitaev predicted the existence of unpaired 
Majorana zero modes (MZM) localized at the ends of a prox-
imity effect induced one dimensional (1D) p-wave supercon-
ductor [1]. The Bogoliubov–de Gennes (BdG) mean field 
Hamiltonian of this ‘Kitaev chain’ is distinguished from a 
trivial gapped 1D system by a 2Z -invariant. This topological 
invariant can be expressed in terms of the Pfaffian of the 
Bloch-Hamiltonian in the Majorana representation. In the 
more recently established periodic table of topological states 
[2–4], this invariant is located in the column for dimension 
d  =  1 in the row for symmetry class D , i.e. the class of super-
conductors without any additional symmetries [5].

A single channel nanowire with Rashba spin orbit cou-
pling, in proximity to a bulk s-wave superconductor, and sub-
ject to an external magnetic field, has been one proposal for 
an experimentally viable realization of the Kitaev chain [6, 7]. 

A different approach taken is a magnetic impurity chain on top 
of a superconductor [8–11].

Due to their charge-neutrality and non-magnetic nature, 
the unpaired MZMs are not easy to detect. The two main pro-
posed signatures are a zero bias anomaly when the wire is 
coupled to a normal metal lead, and an anomalous π4 -peri-
odic Josephson effect. Experimental evidence for the zero bias 
anomaly has been reported by several experimental groups 
[12–14]. However, it is fair to say that alternative explanations 
for robust zero bias resonances, not related to MZMs, have 
also been proposed [15, 16]. So, in spite of a huge experi-
mental effort, there is still no uncontested experimental reali-
zation of a 1D topological superconductor. The search for 
alternative observable signatures of this state thus remains a 
key challenge.

In this paper we investigate the spectroscopy of sub-gap 
modes in different types of Josephson junctions in some detail, 
and ask to what extent this might provide such an alternative 
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signature. Apart from the frequently considered junctions, 
in which the order parameter changes sign by going through 
zero, we also consider junctions for which the phase of the 
order parameter winds, while the amplitude stays constant. 
The sub-gap modes in these junctions can, at least in prin-
ciple, be detected by standard probes sensitive to the density 
of states, and in particular scanning tunneling spectroscopy. 
Since ordinary s-wave superconductors can also have sub-gap 
modes in Josephson junctions, we want to identify spectral 
features that are specific to the Kitaev chain.

We note that several other studies, complementary to ours, 
have investigated various aspects of Josephson junctions in 
topological wires [17–19].

The π4 -periodicity of the Josephson effect occurring in a 
junction between two Kitaev chains was pointed out already 
in [1] (see, e.g. [20] for a detailed discussion). Closely related 
to this π4 -Josephson effect is a characteristic level crossing 
between two sub-gap states associated with a change in the fer-
mion parity of the many body ground state. This level crossing 
is accompanied with a fermionic zero energy state localized in 
the junction region. Here, we study the physics of such junc-
tions in both s- and p-wave paired wires from a topological 
perspective, focusing in particular on the nature of the previ-
ously mentioned (Dirac) zero mode located at a π-junction. 
We recall how the level crossing at phase π is protected by an 
additional pseudo time reversal symmetry (PTRS) which is 
present in Kitaev’s minimal model [1] for the Majorana wire 
if the pairing field is real (up to a constant phase). This addi-
tional symmetry, which is well known to refine the 2Z  parity 
to an integer winding number [21, 22], also protects the local-
ized zero mode in the junction region. A major part of our 
present work is devoted to the study of the more general case 
where the phase of the superconducting order parameter is 
allowed to wind in the complex plane in the junction region, 
thus locally breaking the PTRS. We compare the properties 
of the π-junction in the topologically non-trivial p-wave case 
with those in the trivial s-wave case. Even in s-wave super-
conductors, there can still be localized sub-gap modes at a 
Josephson junction, but there is no protected zero mode.

Although Kitaev’s original lattice model can be solved 
numerically for rather large systems and arbitrary junction 
profiles, it is nevertheless interesting to verify the presence 
of the sub-gap modes, and in particular the zero mode, in the 
junction by analytical means. To achieve this, we linearize the 
spectrum around the Fermi points to obtain a Luttinger model, 
augmented with anomalous, charge non-conserving terms, 
which is essentially equivalent to the Su-Schrieffer-Heeger 
model for polyacetylene [23], with the Josephson junction 
playing the role of the famous domain wall soliton [24]. This 
allows us to find an analytical solution for the zero mode, and 
also, for a special order parameter profile, for the full sub-
gap spectrum. Although the topological properties of this lin-
earized model differ from those of the original Kitaev chain, 
we present both theoretical and numerical arguments for them 
describing the same physics. First we compare with an alter-
native linearized model (called below the ‘V-shape model’) 
which does have the same topology as the Kitaev chain. Since 
this model differs from the first linearized model only at high 

(∼ ∆) energies it gives theoretical support for our claim that 
the extended Luttinger model indeed describes the low energy 
features of the Kitaev chain. Secondly, the analytical results 
from this model agrees extremely well with the numerical 
results obtained by directly diagonalizing the Kitaev chain.

Experimentally, the most obvious way to induce a junc-
tion in the wire such that the order parameter changes sign, is 
by proximity effect from a bulk superconductor with a real, 
sign changing order parameter already present—this is the 
original scenario considered by Kitaev. In such a junction, it is 
natural to assume that the induced order parameter in the wire 
remains real also in the junction region, and thus has to vanish 
at some point. An alternative way to introduce a junction is to 
place the wire on top of a bulk superconductor through which 
a current is flowing between two external leads placed below 
the wire. The resulting phase gradient is, by proximity, also 
present in the wire. The resulting ‘phase winding junction’ 
violates the PTRS, and the zero energy state is transformed 
into a finite energy sub-gap state.

When discussing topological phases, it is interesting to 
ask what is the minimal model that will encapsulate the topo-
logical properties of the phase, and in particular those of the 
elementary excitations. Important examples are the Chern–
Simons theories describing various Quantum Hall liquids 
[25], and the BF theories describing superconductors and top-
ological insulators[26–28]. In the present case, the elementary 
excitations carrying topological charge are widely separated 
π-junctions at fixed positions, and we show that the linearized 
model, in the background of these π-junctions can be mapped 
onto a Dirac equation  with a Goldstone-Wilczek type mass 
term [29]. We take this as a starting point for constructing an 
effective topological field theory describing the solitons and 
their associated zero modes, and comment on similar attempts 
in the case of the 2D topological superconductor.

This article is organized as follows: in the next section we 
first define the models that we shall study. In section III we study 
junctions with a real order parameter for the different models 
and with both analytical and numerical approaches. Section IV 
contains a similar analysis for the phase winding junctions with 
constant absolute value of the order parameter, but in this case 
we have to rely more heavily on numerics. Section V briefly 
discusses possible experimental configurations to study the 
physics of topological π-junctions, and finally, in section VI we 
construct the topological field theory referred to above. We end 
with a few concluding remarks. Some technical points, and in 
particular a discussion of the rather subtle k-space topology of 
the linearized models, are put in appendices.

II. Models

To set the stage for our analysis, we here first define the var-
ious models for the superconducting wires studied below.

II.A. The p-wave wire

The Hamiltonian for a spinless (or spin polarized) 1D p-wave 
superconductor can be written as
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∫ ∫ ψ µ ψ
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where ψ is a fermionic field (for simplicity we sometimes 
suppress the x-dependence), µ̄ is the chemical potential and 
∆ = ∆x x k/p F( ) ( )  is the dimensionless p-wave supercon-
ducting order parameter. The order parameter, ∆ x( ) is defined 
such that, for constant ∆, the energy gap is ∆2 .

By discretizing the Hamiltonian (1) we get the Kitaev 
chain model [1]
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Here, the ai are (spin polarized) fermion operators, and we 
have set the lattice parameter to unity for simplicity. The hop-
ping parameter is denoted by t, µ is the chemical potential and 
∆j is the superconducting order parameter which can be posi-
tion dependent. These parameters are related to those in the 
continuum model by t  =  1/(2m), and µ µ= − t2¯ .

To write the HK in momentum space (assuming constant 
∆), we introduce the Nambu spinor Ψ = −a a,k k k( )† † , in terms 
of which,

∑= Ψ ΨH k ,K
k

k K kH ( )†

with kKH ( ) given by

µ τ τ
τ

= − − − ∆
+ ∆

k t k k

k
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K z y

x

H ( ) ( ( )) ( ) ( )
( ) ( ) (3)

where the Pauli-matrices τi act in the particle-hole spinor 
space. It is known [1], that for a constant order parameter, i.e. 
∆ = ∆j , the Kitaev chain resides in a topological phase when 
∆≠ 0 and µ| | < | |t2 .

II.B. The s-wave wire

As discussed in the introduction, we will compare the results 
for the topological wires with their topologically trivial, s-
wave paired, counterparts. These trivial wires are described 
by the continuum Hamiltonian,

∫

∫

∑ ψ µ ψ

ψ ψ ψ ψ

= −
∂
−

+ ∆ +∆

σ
σ σ

=↑ ↓

↑ ↓ ↓ ↑

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟H x

m

x x x

d
2

d * ,

s
x

s s

,

2

¯

( ( ) ( ) )

†

† †

 (4)

where σ is the spin index, ψ↑, ψ↓ are fermionic fields, µ̄ is the 
chemical potential and ∆ xs( ) is the position dependent s-wave 
order parameter.

II.C. Two linearized models

To capture the behavior of the above models close to the 
Fermi energy, we expand ψ into fields containing only low 
energy degrees of freedom. We consider two different ways of 
doing this, which give the same low-energy physics, but differ 
in their topological properties.

II.C.1. Luttinger like model. There is a standard way to lin-
earize that is illustrated in figure 1(c), where the parabolic 
band is replaced by a Dirac like dispersion relation. Just as 
in the Luttinger model, we have extended the spectrum by 
adding unphysical ‘positron’ states. In the Luttinger model, 
a gap can be opened by k2 F processes that scatter electrons 
between the two Fermi points. In our case a gap is opened 
by charge non-conserving processes that creates or destroys 
a Cooper pair formed by two electrons at different Fermi 
points.

Formalizing this argument we first define,

ψ ϕ ϕ= ++ −
−

1
2

e e ,k x k xi iF F( )

where, µ≡k m2F ¯  is the Fermi momentum, and ϕ+ and ϕ− are 
right and left moving fermion fields respectively. Inserting 
this expression into (1), neglecting terms ∼ ±e k2i F, we obtain

∫ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= − ∂ + ∂

+ ∆ +∆

+ + − −

− + + −

H x v v

x x

1
2

d i i

2 * ,

x xLin F F(

( ( ) ( ) ))

† †

† †
 (5)

where the Fermi velocity is =v k m/F F . The quadratic dis-

persion, µ= −k k
m2

2

ε ( ) ¯, is thus effectively replaced by two 

bands, corresponding to the right and left moving linearized 
fermionic fields, with dispersion relations µ=± −± k v kFε ( ) ¯. 
In terms of the momentum q relative to the respective Fermi 
momenta, this reads =±± q v qFε ( ) . The superconducting 
order parameter couples these right and left moving fermions.

By introducing the spinor ϕ ϕΨ = + −, i( )† †  (the factor i is for 
notational convenience) we get, after integration by parts, the 
linear Hamiltonian

Figure 1. Schematic dispersion relations for the free fermion 
models corresponding putting ∆ = 0 in (a) Hp solid line, (b) Hv 
dashed line, and (c) HLin dotted lines.
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∫= Ψ ΨH x xdLin LinH ( )†

with

τ τ τ= − ∂ − ∆ − ∆v x x
1
2

i 2 Re Im ,z x y xLin FH ( ( ( ( )) ( ( )) )) (6)

where the Pauli matrices now act in right-left spinor-space. 
The pairing term is taken so that the gap for constant ∆ coin-
cides with that in the previous models.

In the following it will be important that, after rescaling 
vF by 1/2, the Hamiltonian (6) is identical to the one used by 
Takayama, Lin-Liu and Maki (TLM) [24], to describe the zero 
energy soliton solutions of the polyacetylene chain model 
introduced by Su, Schrieffer and Heeger (SSH) [23]. We shall 
therefore refer to it as the TLM model.

A linearized version of the trivial wire described by (4) can 
be constructed in a similar fashion, but with a four spinor con-
taining the left and right components of the two spin polariza-
tions. For details, see appendix B.

At this point we should point out that the Hamiltonian HLin 
presents conceptual problems, and does not fit easily into the 
usual topological classification. The reasons are as follows: in 
appendix A we show that as a consequence of the spectrum in 
figure 1(c) extending from plus to minus infinity, the k-space 
topology is not well defined. Also, the particle-hole symmetry 
is not a consequence of a redundancy due to an artificial dou-
bling of a band. Rather it follows from extending the linear 
dispersion to arbitrary large negative energies. If we were to 
add band bending corrections to this model we would break 
the particle-symmetry which again would change the topo-
logical classification of the model. This situation is unsatis-
factory since it raises questions about the validity of linear 
approximations, and in particular the use of the TLM model, 
for analyzing the Kitaev chain. To resolve this we shall now 
present an alternative model that resolves the problems related 
to topology and doubling, while retaining a linear spectrum. 
Having shown the existence of such a model, we can safely 
continue to use HLin in the subsequent discussion.

II.C.2. V-shape model. First we replace the parabolic 
band in figure  1(a) with a V-shaped band, with dispersion 

µ=| | −k k vv Fε ( ) ¯, as shown in figure 1(b).
Next we express the full field ψ k( ) in terms of the low 

momentum fermion fields ϕ± k( )

ψ ϕ ϑ ϕ ϑ= + −+
−

−k k k k k
1
2

e e ,k x k xi iF F( ) ( ( ) ( ) ( ) ( )) (7)

where ϑ k( ) is the step function. In order to write a BdG 
Hamiltonian, we first define

χ ϕ ϑ ϕ ϑ= − ++
−

−k k k k k
1
2

e e ,k x k xi iF F( ) ( ( ) ( ) ( ) ( )) (8)

and the Nambu spinor ψ χΦ = −, i( )† † . Next we substitute (7) 
and (8) in the expression for Hp, and disregard the rapidly 
oscillating terms ∼ ±e k2i F to get

µ τ τ= Φ − + | | +∆ Φk v k k
1
2

sgn ,z yv FH ( ) [( ¯ ) ( ) ]† (9)

where again the Pauli matrices τi act in the Nambu space. As 
usual, this amounts to a doubling of the spectrum, and this 
redundancy is manifested in the particle-hole symmetry of 

vH  which cannot be broken. The pairing term ∼ ∆ (which is 
assumed to be real) is such that it gives rise to the same gap as 
the original Hamiltonian Hp for constant ∆.

By inspection, we see that the dispersion relation for kvH ( ) 
has an unphysical ∆2  jump at k  =  0. This discontinuity can 
be regularized by smoothening the tip of the V-shaped band, 
and this will in fact be necessary when we analyze the topo-
logical properties in appendix A. Such a regularization will 
however necessarily yield a more complicated model, that 
is only amenable to numerical solutions, in spite of having a 
very simple low energy limit. We will not pursue this since, 
this model is of interest only to demonstrate the existence of a 
consistent model with a linear spectrum, and good topological 
properties.

III. Junctions and solitons

III.A. Topological properties

We start our discussion of π-junctions in 1D superconductors, 
by reminding the reader about which different topological 
superconductors are possible in 1D systems. To do this, we 
recall the topological classification of non-interacting fer-
mion systems [2–4], where the possible topological phases 
are classified according to their non-unitary symmetries, viz. 
time-reversal symmetry (TRS) T  and particle-hole symmetry 
(PHS) C (we note that the PHS is technically a spectral con-
straint rather than a physical symmetry. However, we here 
chose to follow the widely adopted terminology of [2]).

In this paper, we consider superconductors in one dimen-
sion without spin rotation symmetry. The BdG structure of 
the Hamiltonian entails a built in algebraic constraint rooted 
in the fermionic algebra of the field operators that can for-
mally be viewed as a PHS with = +12C . In the absence of 
time-reversal symmetry, i.e. for class D, the superconductor 
is either topologically trivial, or non-trivial, depending on the 
value of the 2Z  invariant. In the latter case the wire supports 
MZMs at both ends [1]. In the case of time-reversal symmetric 
superconductors, with = −12T , i.e. in class DIII, the situa-
tion is similar, but in this case, the topological phase exhibits 
a Kramers-degenerate pair of MZMs at both edges, see, e.g. 
[30, 31].) Finally, if the system respects the PTRS = +12T , 
i.e. for class BDI, the different topological phases are distin-
guished by an integer winding number, giving an infinite set 
of different topological non-trivial phases.

The p-wave wire, (1) or (2), will in general, i.e. when we 
allow both the hopping and the order parameter to be com-
plex, belong to symmetry class D, which means that it can 
either be in a trivial phase, or in a topological phase. In the lat-
tice model, the former happens for µ| | > | |t2 , while the latter 
occurs for µ| | < | |t2 , with |∆|≠ 0.

If both t and ∆ are real, the Hamiltonian (2) is also pseudo 
time-reversal symmetric (here T  is simply complex conjuga-
tion, so trivially = 12T ), and in this case, the possible topo-
logical phases are labeled by an integer, corresponding to a 
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winding number (see appendix A). Kitaev’s model with a con-
stant order parameter exhibits three of these phases, namely 
the trivial one (when µ| | > | |t2  ), as well as two non-trivial 
ones, both occurring for µ| | < | |t2 , one with ∆> 0, the other 
with ∆< 0.

This means that for real t and ∆, the Kitaev chain can harbor 
an interesting junction, by allowing the order parameter to 
change from −∆ to +∆ in a finite region, corresponding to a 
π-junction. Just as the edge of a Majorana wire hosts a MZM, 
because it constitutes the boundary between a topological 
phase and the trivial vacuum, the π-junction we consider here 
will also support zero modes. Since the difference in winding 
number between the two neighboring topological phases 
is two, we expect twice as many zero modes in comparison 
to the edge of the Kitaev chain. Below we show that this is 
indeed the case, irrespective of the precise x-dependence of 
the order parameter.

We already mentioned the problems related to properly 
define the k-space topology for the TLM model, and how 
they are resolved by an alternative linearization scheme. The 
details are given in appendix A, but we should here again 
stress that the outcome of this analysis is that we can safely 
use the TLM model to discuss the topological properties of 
the Kitaev chain.

III.B. The π-junction as a soliton

Although the k space argument for topology of the linearized 
model LinH  given in appendix A is compelling, it is important 
to find out how well the TLM model (6) really captures the 
topological properties of the full model (2). To do this, we 
first briefly recall how a Dirac Zero Mode (DZM) arises in 
the TLM model [24], and then compare it with the zero mode 
arising in the full model (2), in the presence of a junction, at 
which the real order parameter ∆ changes sign.

The presence of the DZM in the case of a real order param-
eter is most easily demonstrated in the TLM model, and from 

LinH  we get the BdG equations

− + ∆ =

− ∆ =

v u x x v x u x

v v x x u x v x

1
2

i ∂ 2i * *

1
2

i ∂ * 2i *

x

x

F

F

ε

ε

( ( ) ( ) ( )) ( )

( ( ) ( ) ( )) ( )
 (10)

For real ∆ x( ), and taking = 0ε  since we are interested in 
the zero modes, these equations  are easily decoupled by 

introducing = ±±f x u x v x*( ) ( ) ( ). For a π-junction that 
interpolates between a negative constant ∆− for x 0≪  to 
a positive constant ∆+ for x 0≫ , one finds the solution 

= =∫
+

− ∆
−

′ ′f x N f xe , 0x xdk
v

x2 F
F( )   ( )( ) . Here, we will consider 

the special profile ξ∆ = ∆x xtanh /0( ) ( ), that gives rise to the 
analytical solution [24]

ξ= =ξ ξ
+ −f x N x f xsech / , 0,0

/ 0( ) ( ) ( ) (11)

where ξ ≡ ∆v / 20 F 0( ) and N0 a normalization constant.
We compare the DZM of the TLM model to the full model, 

by considering the discretized version ξ∆ = ∆ jtanh /j 0 ( ) of 
the TLM profile ξ∆ = ∆x xtanh /0( ) ( ) in (2). By choosing the 
width ξ not too large, this determines the order parameter to 
−∆0 at one end of the chain and +∆0 at the other end, gener-
ating a domain wall (between sectors with different winding 
numbers) at the center of the chain. We set the junction param-
eter ξ ξ= 0, and fit the resulting zero mode to the TLM solu-
tion λ=g x xsech /( ) ( ), with λ used as a fitting parameter. In 
table 1 we show some representative results and in figure 2, 
we display a typical result for the probability density of the 
DZM located in the junction, as obtained from the Kitaev 
chain. Evidently, the TLM model captures the the properties 
of the DZM in the junction region of the Kitaev chain very 
well.

IV. Phase winding junctions

In this section, we extend the previous discussion to the case 
of junctions with a complex order parameter where the phase 
winds in a finite segment of the wire. For simplicity we shall 
assume that the absolute value |∆| remains constant. In this 
case we can find an analytical solution in the linearized model 
by taking a simple winding profile, while our numerical anal-
ysis easily generalizes to more general profiles.

Table 1. The fitting parameter λ, compared to its analytic value in 
the TLM model ξ0, as well as the error of the fit (using the Method 
of Least Squares), for a system with N  =  1001 sites and various 
values of t.

t ∆0 µ λ ξ/ 0 MLS Error

10.0 1.0 0.0 0.999 418 ⋅ −2.2002 10 8

8.0 1.0 0.0 0.999 098 ⋅ −6.7994 10 8

5.0 1.0 0.0 0.997 777 ⋅ −7.5333 10 7

2.0 1.0 0.0 0.991 853 ⋅ −1.2267 10 4

1.0 1.0 0.0 1.071 428 ⋅ −6.8020 10 3

Figure 2. The probability distribution (black dots) of the zero 
energy mode located in the junction region of the Kitaev chain 
with order parameter profile ( )ξ∼ xtanh / 0 . The parameters used 
are: t  =  10.0, ∆ = 1.00  and µ = 0.0 yielding ξ = 100 . The fit (red, 
dashed line) is made by the method of least squares, and resulted in 
λ = 9.994, in good agreement with the value of ξ0. The number of 
sites is N  =  1001; the figure only shows the central region.
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Although a complex order parameter breaks the PTRS and 
with that the chiral symmetry that protects the DZMs in the 
junctions with real profiles, one would still expect that the low 
energy theory should not differentiate a rapid winding of the 
phase from 0 to π from a sharp step in the magnitude of ∆. 
We now demonstrate that this intuition is correct, and that low 
energy modes persist even in the case of phase winding junc-
tions. Again it is easiest to start from the linearized model.

IV.A. Sub-gap states in the linearized model

We consider an order parameter with an x-dependent phase

θ θ π∆ = ∆ −∞ = ∞ =θ fe , 0, ,x
0

i ( ) ( )( ) (12)

where ∆0 is a positive constant, θ x( ) is continuous and f is 
some real number. The BdG equation (10) then become,

ξ
ξ

− ∂ + =
∂ − =

θ

θ

−u x v x u x

v x u x v x

i i/ e *

i * i/ e * ,
x

x

x
x

0
i

0
i

ε

ε

( ) ( ) ˜ ( )
( ) ( ) ˜ ( )

( )

( ) (13)

where ξ = ∆v / 20 F 0( ) and = v2 / Fε ε˜ . From the first equa-
tion we have

ξ= − + ∂θv x u x* i e ix
x0

i ε( ) ( ˜ ) ( )( ) (14)

and substituting this into the second, we get

ε ε( ) ˜( ) (˜ ) ( )⎡⎣ ⎤⎦θ θ ξ+ + + − =− u x∂ i ∂ ∂ ∂ 0.x x x x
2 2

0
2

 (15)

This equation cannot be solved analytically for a general pro-
file, but for the case of

( ) ⩽⎜ ⎟

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝

⎞
⎠θ π

π

=

<−
+ | |

>

x

x a
x a

a
f x a

f x a

0

2k (16)

we can solve (15) in the three regions and then match the solu-
tions. Just as in an 1D Schrödinger problem in a piece-wise 
constant potential, this is done by matching the function and 
its (logarithmic) derivative. We focus on the case f   =  1, which 
corresponds to a π-junction where ∆ changes sign, but the 
analysis below can easily be extended to junctions with arbi-
trary phase winding.

The piecewise solutions are given by

α

α α
α

=
<−

+ | |
>

κ

π κ κ

κ

− + − −

−

⎧
⎨⎪
⎩⎪

u x

x a

x a
x a

e

e e e
e

x

a
x x x

x

1

i
4 2 2

3

( ) ( ) ⩽˜ ˜ (17)

where κ ξ= −−0
2 2ε̃  and κ ξ π= − +− a/ 40

2 2ε˜ ( ˜ ( )) . To 

obtain a normalizable solution, we must take κ< 0, or ξ| | < 1/ 0ε̃ , 
implying that the (sub-gap) solution is localized in the junc-
tion region. From the matching conditions for the wave func-
tion and its derivative, one can infer that there is no solution 
when κ̃ is real. An imaginary κ̃ requires that ξ π> − a1/ / 40ε̃ ( ), 
so localized sub-gap modes are possible in the energy range 
ξ π ξ− < <a1/ / 4 1/0 0ε( ) ˜  if ξ π>a /80 , or in the whole gap 

region ξ ξ− < <1/ 1/0 0ε̃  if ξ π<a /80 .

For imaginary κ̃, the matching conditions have a solution if 
the following constraint is satisfied

⎜ ⎟
⎛
⎝
⎜⎜

⎛
⎝

⎞
⎠

⎞
⎠
⎟⎟π ξ

ξ ξ

ξ

+ −

=
− + −

+ −

π

π

−

− −

−

a
a

tan 2
4

.
a

a

2

0
2

0
2 2

4

2

0
2

2
4 0

2

ε

ε ε

ε ε

( )
˜

˜ ˜

˜ ˜

 (18)

Upon analyzing this equation, one finds that even for arbitrary 
small a, there is always at least one solution. The energy of 
the associated bound state is always positive, but approaches 
zero in the limit of small a. Upon increasing a, more and more 
bound state solutions appear. In order to have at least p  +  1 

bound states, a should satisfy πξ−a p4 1

8

2
0⩾ ( ) .

Before turning to the numerical results, we briefly discuss 
the case of general phase winding, i.e. we allow f in (16) to be 
arbitrary. For f arbitrary small, one finds a bound state, with an 
energy slightly below the band gap, ξ1/ 0ε !˜ . Upon increasing 
f , the energy of this bound state decreases towards ξ= −1/ 0ε̃ . 
In the mean time, more bound states appear at the gap edge 

ξ= 1/ 0ε̃ . In the limit of large f , the energies of the bound 
states become periodic in f , with a period of 2, i.e. a period of 
π2  in the winding angle. Finally, in the limit of a very short 

junction, we find that for f an odd integer, there is a bound 
state at ≈ 0ε̃ , while for f an even integer, there are two bound 
states with energy ξ≈± 1/ 0ε̃ . In the former case, the junction 
behaves as a π junction with a real order parameter, while the 
second case is equivalent to not having a junction at all. This 
is consistent with the topological discussion above, although 
we should point out that there are no topological reasons why 
the phase junction should behave as a real junction in the short 
junction limit. We next compare some of the results of this 
section with numerical simulations in the Kitaev chain and in 
the full s-wave model.

IV.B. Comparison with the Kitaev chain

Starting with the Kitaev chain model given in (2), we take the 
profile ∆ =|∆ | π

+
ej 0

i j a
a2

( )
, so that over a segment of length 2a, the 

phase increases linearly from 0 to π. Effectively, this amounts 
to changing the sign of ∆ just as in the previous section. Using 
this profile, we numerically calculated the energy of the low 
lying fermion states both for the Kitaev chain and the linear-
ized model, using a range of parameters. Typical results are 
shown in table 2, where the agreement between the first two 
columns is a measure of the precision of our numerics, and the 
good agreement with the third column again confirms that the 
linearized model faithfully describes the full Kitaev chain. We 
have also compared the numerical wave functions for the low 
lying states in the Kitaev chain, with the analytical expres-
sions (17) and again found excellent agreement.

Next we studied what happens when the length of the 
phase winding π-junction shrinks. In figure 3, which shows 
our result for the p-wave case, we see clearly how a state 
that is close to the gap for large junctions comes down, and 
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becomes a zero mode for the shortest junctions (which essen-
tially amounts to a sign change between two lattice points). 
This supports the heuristic argument, given earlier, that a short 
phase winding π-junction should have properties very similar 
to the one where ∆ remains real but changes sign. The corre-
sponding s-wave setup is depicted in figure 4, where no zero 
modes need to be formed in the short junction limit.

These results give additional confirmation that the low 
energy properties of junctions made by Kitaev chains can be 
captured by the linearized model in (5), and in the section VI 
we construct a topological field theory, which captures the 
same physics.

V. How to experimentally probe topology by a 
π-junction

Most of the experimental effort in studying the topological 
wires has been aimed at detecting the MZM at the edges. But 
as mentioned in the introduction, the proposed signatures for 
these modes can also be emulated by other effects. It is thus 
interesting to consider other signatures for the wire being in 
the topological phase, and here we suggest the possibility of 
using the DZMs at π-junctions as such a probe. For this idea 

to be useful, we not only need a way to experimentally realize 
such a junction and detect the associated fermionic zero 
modes, but also a clear signature for the topological phase. 
We shall consider both junctions with topologically protected 
zero modes, and phase winding junctions. We begin with the 
latter.

V.A. Phase winding π-junction

One way to make a phase winding junction is to put a wire 
of the type used in previous experiments on top of a s-wave 
superconductor through which a current is driven between 
external leads placed close to the wire. By the the relation 
φ∼ J▽ , where φ is the superconducting phase and J is the 

current, one can arrange for a π phase difference between the 
leads, which will, by proximity, be imprinted on the wire. An 
experimentally more challenging task is to probe the fermion 
spectrum at the junction. An obvious possibility is to use a 
tunneling contact weakly coupled to the wire, or a scanning 
tunneling microscope.

From the previous section it would appear that a good sig-
nature for the p-wave pairing phase would be the presence of 
an almost zero mode in the junction region. Unfortunately, 
the situation is not very clear since an s-wave pairing would 
have a similar signature. Figure 4 is similar to figure 3, but 
for s-wave pairing. Also here we find a low-lying sub-gap 
state for short junctions, and although it does not come all 
the way to zero, it is not clear that it could be distinguished 
from the p-wave case. Clearly one would need much more 
detailed studies of more realistic microscopic models in order 
to resolve this question.

V.B. Real π-junction

As already pointed out, in a π-junction with a real order param-
eter (that must go through zero) the zero energy Dirac mode is 
always present when the superconductor is in the topological 
phase. For the trivial s-wave case, there is no such protected 

Table 2. The energies of the first three bound states in a p-wave π 
phase winding junction. The parameters used for these calculations 
are: t  =  10.0, ∆ = 1.0, µ= 0.0, a  =  120, N  =  800. Analytical, 
linear model and full model refer to the equations (18), (10) and (2) 
respectively. Note that the linear model values are just a measure of 
how well analytic solution describes the discretized linear model, 
while the full model values describe how well the linearization 
captures the low energy degrees of freedom.

Analytic sol. Linear model Full model

0.940 199 0.940 201 0.940 156
0.956 549 0.956 556 0.956 385
0.981 316 0.981 324 0.981 002

Figure 3. The energy spectrum of the Kitaev chain as a function 
of its π phase junction length (in units of the lattice parameter). 
A junction length of 1 means that the phase jumps from 0 to π from 
one site to another. Note that the zero energy states that represent 
MZMs located at the end points of the chain have been omitted. 
In addition, two new zero modes are formed as the junction length 
shrinks, effectively imitating a real π-junction. The parameters 
used are t  =  2.0, ∆ = 1.00 , µ = 0.0 and N  =  200. The spectrum is 
displayed in a low energy regime.

Figure 4. The energy spectrum of the s-wave wire as a function of 
the length of its π phase junction (in units of the lattice parameter). 
A junction length of 1 means that the phase jumps from 0 to π from 
one site to another. Because the s-wave wire is topologically trivial, 
no zero modes form, even in the limit of a short junction. The 
parameters used are t  =  2.0, ∆ = 1.00 , µ = 0.0 and N  =  200. The 
spectrum is displayed in a low energy regime.
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zero mode, but the spectrum of the subgap modes does 
depend on the profile of the order parameter at the junction 
(and on the other parameters, such as the chemical potential). 
Importantly, there can be junction modes with zero energy, 
that can be described by the TLM model we studied above, 
for certain choices of parameters. For example, putting the 
chemical potential in the band middle (µ = 0 or equivalently 
µ = t2¯  as measured from the bottom of the band), there are 
localized modes with zero energy, regardless of the junction 
length. But these states can be gapped out in the short junc-
tion limit by lowering the chemical potential to the vicinity of 
the band bottom. This feature is demonstrated in figure 5 and 
contrasted with the corresponding p-wave system in figure 6. 
In the latter case, the topology protects the zero mode, regard-
less of the junction length, as long as the chemical potential 
lies in the band, so that the system is in the topological phase.

We note that for wide p-wave junctions, ξ 30! , there are 
additional subgap modes with finite energy which are not in 
the range of ξ-values in figure 6.

There are at least two possible ways to experimentally 
realize a junction of this type. The most direct would be to 
implement a π-junction in the underlying s-wave supercon-
ductor, but the problem here is that it is not easy to determine 
the ∆ profile in the junction. An alternative way is to put the 
wire as a bridge connecting two different s-wave supercon-
ductors that are held at different values of θ, for instance by 
a SQUID geometry. In this case one might calculate the ∆ 
profile by a realistic modeling of the wire.

Clearly both options need to be studied in more detail 
before any definite conclusion can be made about the feasi-
bility of using sub-gap junction spectroscopy for probing the 
topological nature of the wire.

VI. A topological field theory for π phase winding 
junctions

Having discussed in detail different π phase winding junctions 
and speculated on how one might distinguish between these 

experimentally, we now turn to the construction of a minimal 
description of the junction bound states.

As in the previous sections we consider ∆ as given by the 
background s-wave superconductor by proximity. We gener-
alize the previous discussion somewhat by considering a wire 
with many widely separated π-junctions of the phase winding 
type. Since the bound states are exponentially localized, such 
configurations will support subgap modes at each junction. 
We stress that we consider a fixed junction configuration, 
given by the background s-wave order parameter, and derive 
an effective theory for the fermions. We can, using the same 
formalism, also describe adiabatic motion of the junctions, but 
they cannot be considered as bona fide itinerant particles.

Our starting point is the Lagrangian formulation of the lin-
earized version of the p-wave superconductor (6), which is 
given by

ψ ψ= ∂ − ϑ γg xi e ,xi 5L ¯( ( ) )( ) (19)

where the functions ϑ and g are related to the supercon-
ducting order parameter by ∆ = ϑ π+gei /2( ), and where 
the Dirac matrices are related to the Pauli matrices by 
γ γ σ σ= −, , ix

x y
0( ) ( ) so γ σ= z

5 . We have in our derivation 
relabeled the spinor Ψ to ψ, in accordance with standard nota-
tion. Furthermore, we have put =v 2F , consistent with the 
linearization of (1). Note that for real ∆, the energy gap ∆ is 
nothing but the mass in the Dirac equation.

The aim here is first to derive a bosonic form of the 
Lagrangian (19), and then to extract an effective action that 
describes the physics of the bound states on the solitons. This 
theory is topological in the sense that it does not have any 
bulk degrees of freedom, but only describes the quantum 
mechanics of the bound states residing on the solitons. Before 
embarking on this exercise, we will put it in context, and view 
it as part of the more challenging problem to formulate topo-
logical theories in the presence of fermionic zero modes.

As mentioned in the introduction, the Kitaev chain is a 
one-dimensional cousin of the two-dimensional (2D) p-wave 

Figure 5. The energy spectrum (bulk states in black and subgap 
states in red) of the s-wave wire (a discrete version of equation (4)) 
as a function of the width of its real π-junction (in units of the 
lattice parameter). Modes with zero energy exist only in the 
limit of a wide junction, and are gapped out in the short junction 
region due to the low chemical potential. The parameters used are 
t  =  1.0, ∆ = 1.00 , µ = 1.9 (µ̄ = 0.1) and N  =  200. The spectrum is 
displayed in a low energy regime.

Figure 6. The energy spectrum (bulk states in black and subgap 
states in red) of the p-wave wire (equation (2)) as a function of the 
width of its real π-junction (in units of the lattice parameter). The 
Dirac zero mode is topologically protected and exists for short and 
long junctions since the wire is in its topological phase. Subgap 
modes with finite energy are not present in the junction length 
regime displayed here. The parameters used are t  =  1.0, ∆ = 1.00 , 
µ = 1.9 ( µ̄ = 0.1) and N  =  200. The spectrum is displayed in a low 
energy regime.
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superconductor, and the Majorana states located on the inter-
faces between the normal and topological phase of the model 
can, by employing geometries with junctions, be used for 
quantum computing. In this context the quantum mechanics 
of the zero modes is clearly very interesting. In the 2D case, 
there are two candidates for a topological field theory that 
describes the braiding of vortices with Majorana zero modes. 
One is based on a SU(2) Chern–Simons theory [32], while 
the other employs an abelian BF theory coupled to a single 
Majorana field [33]. In this 2D case, the vortices are in prin-
ciple itinerant, but are in practice often pinned to impurities. 
In this latter case there is a close analogy with our system of 
fixed, or adiabatically moving, π-junctions.

None of these effective theories just mentioned has been 
derived from a microscopic description, but are obtained 
from general principles based on symmetry and scaling. The 
effective topological theory for the fermionic bound states on 
solitons that we shall describe shortly, is closely related to 
the second of the 2D topological theories that we just men-
tioned. An obvious, and important, difference is that the fer-
mionic modes on the solitons are of Dirac type, so, even if 
fine tuned to zero energy, they can not be used for topological 
quantum computing. The advantage with the present case is 
that it is more amenable to analytical treatment. Still we have 
not managed to obtain the topological theory directly from 
the microscopic model in a controlled fashion. The derivation 
presented below is therefore phenomenological and again 
based on symmetry considerations and scaling arguments.  
In appendix C we do offer a microscopic derivation which 
however involves several unproven, and admittedly question-
able, assumptions.

VI.A. Symmetries

We now discuss the symmetries of (19). From this Lagrangian 
we can immediately get the vector and axial charge densities,

ρ ψ ψ ϕ ϕ ϕ ϕ= = −+ + − −V
† † † (20)

ρ ψ γ ψ ϕ ϕ ϕ ϕ= = ++ + − −A 5
† † † (21)

which shows that the electric charge ∫ ρ≡ =Q Q x xdA Aem ( ) in 
the superconductor is given by the axial charge (21) in the 
Dirac theory (19), and is thus not conserved, as appropriate for 
a superconductor. Note, however that (19) is invariant under 
the combined global transformation

ψ ψ
θ θ β−

βγe
2 .

i 5→
→ (22)

In a BdG description this corresponds to a simultaneous global 
phase change of the electron field and the superconducting 
condensate ψψ⟨ ⟩. Also note that the transformation,

ψ ψ ψ= −πγei 5→ (23)

is indeed a symmetry. As expected, this is a manifestation of 
the the conservation of electric charge modulo two, which is 
most easily seen by noting that the transformation (23) leaves 

the pairing terms ϕ ϕ+ −
† †  and ϕ ϕ+ − invariant. It will be impor-

tant later that the vector charge ∫ ρ=Q x xd VV ( ) in the Dirac 
theory is indeed conserved. Physically this is a consequence 
of the Cooper pairs having zero momentum, so adding or sub-
tracting a pair will give identical changes at the two Fermi 
points [34]. In the following we shall give a bosonized version 
of the theory where it will be important to keep the correct 
symmetry pattern.

VI.B. Bosonization

It will be advantageous to rewrite (19) in bosonic variables 
using the bosonization ‘translation table’, (see for instance 
[35]),

ψψ κ ϕ
ψ γ ψ κ ϕ

ψγ ψ
π

ϕ∂µ
µν
ν

cos

i sin
1

2

5

ε

¯ →
¯ →
¯ →

 (24)

where the dimension-full parameter κ depends on the short 
distance cutoff, and the scalar field ϕ is normalized so that the 
bosonic version of (19) is

π
ϕ ϕ ϑ= ∂ − −µ g

1
8

cos2L ( ) ( ) (25)

where we have rescaled g with κ. The minima of the potential 
are at

ϕ ϑ π π θ π π= + + = − +n n2
2

2 ,n (26)

so for large g, ϑ θ π= − /2 will make small fluctuations 
around one of these (equivalent) minima. In particular, if θ 
winds, then ϕ follows. From the work of Jackiw and Rebbi 
[36], and Goldstone and Wilczek [29], we know that wind-
ings in the scalar field ϕ will describe solitons carrying (in 
general fractional) fermion number. For simplicity we neglect 
π2  windings, and taking n  =  0 in (26) we define the kink cur-

rent as

π
θ= ∂µ

µν
νj

1
2

,k ε (27)

so the charge of the soliton that interpolates θ x( ) from ϕL to 
ϕR is given by,

π
ϕ ϕ= −Q

1
2

.s R L( ) (28)

It follows that the π-junctions we discussed earlier carry a half 
unit of fermion number.

Next we shift the field ϕ by ϕ ϕ φ= +0  to get

π
θ

π
φ φ φ

π
θ

= ∂ −

+ ∂ − + ∂ + ∂

µν
ν µ µ

µ

µ
µ
µν

ν
µ

b b j

g j

1
2
1

8
cos

1
2

1
8

k

k
2 2

ε

ε

L

( ) ( ) ( )
 (29)

where µb  is a multiplier field that imposes the condition (27). 
Since the φ-field is massive, it can be integrated, to yield the 
truly trivial topological theory,
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π
θ= ∂ −θ

µν
ν µ µ

µb b j
1

2
,b kεL (30)

where the term θ∂
π µ
1

8
2( )  has been dropped since it is less rel-

evant in the RG sense.

VI.C. Retaining the fermion bound states

The topological theory we just derived is however not always 
a good description of the low energy physics. This is most 
easily seen by considering the special case where the topo-
logical current describes widely separated narrow π-solitons. 
We learned in section III.A that these can support low energy 
fermionic bound states with energy < <∆0ε ε  inside the gap. 
Since we furthermore can fine tune so one of these modes 
occurs arbitrarily close to zero energy, the topological theory 
(30) can clearly not be universally correct. Moving away 
from the 0ε  point, but still having the bound state far below 
the bulk gap, i.e. g0≪ε , it would still be desirable to have a 
theory that describe these low-lying excitations. What went 
wrong in the derivation of (30) is that while the bosonic fluc-
tuations with energy ⩾g were integrated, the more important 
fluctuations changing the fermion number were not taken into 
account. We will now remedy this and present a model that 
properly includes the dynamics of the low-lying fermionic 
bound states.

We shall first construct a model in the limit of widely sepa-
rated point-like kinks. Any real function ∆ that interpolates 
between ±|∆ |0  at =±∞x  supports a zero mode. The kink, 
η|∆| x( ), where η is the step function, can be thought of as 

a limit of such functions, and thus supports a zero mode. 
Also, as discussed above, we get an approximate zero mode 
for constant |∆|= m, and a rapid winding of the phase θ an 
odd number of π. In both these cases the topological current 
related to the kink can be described by

∑ δ= −
=

j x t x x x, 1, ˙k
a

N

a a
1

( ) ( )( ) (31)

where we allowed for the kink at position xa to move with 
velocity ẋa.

It is now straightforward to write a Lagrangian for the 
bound states residing on the kinks,

∫

∑

∑

ξ ξ

ξ ξ

ξ ξ

=

= ∂− ∂

= ∂µ
µ

=

=

L
t

t x t x t t x t

x j x t x t

i
d
d

, i ˙ ,

d , i , .

a

N

a a

a

N

a a t a x a a

k

1

1

( ( )) ( ( ) ) ( ( ))

( ) ( )

†

†

†

 (32)

Combining this with the term (30), yields

π
θ ξ ξ ξ ξ= ∂ + ∂ − −ξθ

µν
ν µ µ µ

µb b j
1

2
ib k0ε εL [ ]† † (33)

where we also introduced a chemical potential 0ε  that fixes 
the energy of the bound state. We shall take ξ to be a com-
plex fermionic field (otherwise it would not describe a single 

bound state), but note that it differs from a conventional Dirac 
fermion in being dimensionless.

The first term in Lagrangian (33) is closely related to the 
topological Lagrangian for a spin-less 2D chiral supercon-
ductor given in [33]. The main difference is that in the 2D 
case the Dirac fermion ξ x t,( ) is replaced by a Majorana field 
γ x t,( ). In the present setting, that would be appropriate for 
a domain wall between a trivial and non-trivial phase of the 
wire. The second term ∼ 0ε  is not topological and is present 
only for a complex field. Note that the kinetic term ξ ξ∼ ∂0

†  in 
(33) has support only where the topological charge does not 
vanish, and thus there are no bulk degrees of freedom. The 
above analysis is, however, valid only for point like sources. 
The generalization to extended sources, that is the finite size 
kinks considered in the previous sections, is our next task.

VI.D. Fermion bound states in extended kinks

Since for a static kink, the Hamiltonian in (33) is only a 
chemical potential, it can not describe the fermion modes on 
an extended kink, but instead gives a continuum of states at 
energy 0ε . To get a realistic low energy theory we must thus 
introduce more terms in the effective Hamiltonian. Following 
the usual logic of effective theories we shall retain the lowest 
derivative terms that ensure the correct symmetries. The 
crucial symmetry here is the broken global U(1) symmetry 
related to the electric charge. In the linearized theory (19) this 
is the (global) chiral symmetry (22). Clearly terms like ξ ξ† , 
ξ ξ∂x

2†  etc, are allowed, but also pairing terms like ξ ξ∂θe x
i † † 

etc. In fact it is necessary to include a pairing term in order 
to get the appropriate symmetry breaking. Putting the chem-
ical potential 0ε  to zero, the simplest possible action for an 
extended kink is,

π
θ ξ ξ= ∂ + ∂ − −ξθ

µν
ν µ µ ξ µ

µb b j
1

2
ib kεL H[ ]† (34)

with

π
ξ ξ δ

π
ξ ξ ξ ξ= − ∂ + ∂ + ∂ξ
θ θ−M

M1
2 4

e i e i ,x x x
2 2 i iH ( ) [ ]† † † (35)

where the mass parameter M and the pairing strength δ, are 
phenomenological parameters.

We can simplify this Hamiltonian by performing a rotation 
of the fields:

→ →† †ξ ξ ξ ξθ θ−e , e .i /2 i /2 (36)

This will transform the Hamiltonian (35) to 
ξ ξ ξ ξ=ξ , , TH H( ) ¯ ( )† †  with

θ δ

δ θ
=

− ∂ − ∂ ∂

∂ − + ∂ + ∂
ξ

⎜ ⎟

⎜ ⎟

⎛

⎝

⎜⎜⎜⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠

⎟⎟⎟⎟

M M

M M

i
2

i

i
i
2

.
x x x

x x x

2
2

2
2

H̄ (37)

Next, we expand the quantum field as 
ξ = ∑ +−x t u x c v x c, e * e *

n
Et

n n
Et

n n
i i( ) ( ( ) ( ) )† , which yields the fol-

lowing BdG equations for the eigenfunctions u(x) and v(x),
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( ) ( ) (

( ) ( ) ( )

θ θ δ

θ θ δ

∂ + ∂ + ∂ − + ∂ =

∂ − ∂ − ∂ − − ∂ =

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

E M u x M v x

E M v x M u x

i
2

i * ) 0

i
2

* i 0

x x x x

x x x x

2 2

2 2

 (38)

In the limit δ 0→  and under the assumption that θ varies 
slowly (i.e we assume θ∂x

2  and θ∂x
2( )  to be small) we obtain 

the following equation for u(x)

[ ( ) ( ) ] ( )θ θ∂ + ∂ ∂ + ∂ − =E M u xi 0,x x x x
2 2 (39)

which is (15) in the limit where the energy E is small compared 
to M. As expected there is no continuous component in the 
spectrum, and the low energy part of the spectrum compares 
well with the full model with suitable adjustment of the model 
parameters. In particular, we should set ξ= = ∆−M v4 /2

0
2 2

F
2 , 

= =E v2 / Fε ε˜ . The requirement that E M≪  then translates 
to ∆≪ε , that is, for energies well below the gap, which is 
consistent with a zero energy bound state.

To actually derive the effective Lagrangian (33) one should 
integrate out the high energy modes. This would not only give 
expressions for the effective parameters, but also provide an 
ultraviolet cutoff that would define the region of validity of 
the effective model. We have not been able to do this in a 
controlled way, but in appendix C it is shown, by manipu-
lating path integral expressions, how the crucial kinetic term 

θξ ξ∂ ∂µν
ν µi1

2
ε †  can arise from the microscopic description.

Finally we note that the extension of the topological theory 
(33) to the model Lagrangian (34) for the sub-gap regime, 
is reminiscent of the extension, proposed in [37] of the 2D 
topological theory in [33] In both cases the models are con-
structed using phenomenological and heuristic arguments, 
and it remains a theoretical challenge to find general methods 
to describe localized fermionic zero modes in the general con-
text of topological field theory.

VII. Concluding remarks

In this paper we studied several models for trivial and topo-
logical superconducting wires in one dimension. More spe-
cifically, we investigated the properties of π-junctions, and in 
particular those where the phase of the order parameter winds 
an angle π over the junction, corresponding to a system in 
symmetry class D. For this more general case, we find that 
there is no topologically protected zero energy mode associ-
ated with a π-junction. Rather, local breaking of the PTRS 
by means of the complex winding of the order parameter can 
shift the energy of the bound state in the junction region away 
from zero energy. This symmetry breaking is not allowed in 
class BDI, where, as a consequence, the bound state is topo-
logically pinned to zero energy. We demonstrated that the low 
energy bound states in some specific cases can be obtained 
analytically and showed that these results agree well with 
numerical calculations. Most importantly, we discussed how 
our results might be used to obtain a bulk probe—in contrast 
to the common method of probing the edges—to distinguish 
a topological wire from a trivial one, and suggested some 

experimental approaches to this end. Finally we constructed 
a low energy field theory with a topological term describing 
itinerant π-junctions, and discussed its relation to theories in 
two dimensions.
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Appendix A. Topology of the p-wave 
 superconductor modes

Here, we discuss the topological properties of the various 
models we consider in this paper. To set the scene, we start 
by recalling the topological properties of the Kitaev chain, see 
[1].

Consider the model (2) and assume that t and ∆ are both 
real, so that the Hamiltonian belongs to symmetry class BDI. 
The topological invariant takes the form of a winding number 
[2], and to show this in the present case, we write the k-space 
Hamiltonian (3) as

τ= ⋅
→ →k d k ,KH ( ) ( ) (A.1)

with τ τ τ τ=→ , ,x y z( ). For models in class BDI, one can choose 
a basis such that one of the components of the vector 

→
d  is 

zero, say dx  =  0. The energy is given by ( ) ( )→
ε =± | |k d k , 

which means that for a gapped system, we have >
→
d k 02( ) . 

Hence, the winding number ν around the origin of the curve 
in τ τ,y z( )-space (i.e. the space of Hamiltonians) swept out 
by 

→
d k( ) as k sweeps through the full Brillouin zone is well 

defined. This winding number is the topological invariant 
characterizing the different phases. For the Kitaev chain we have 

µ= −∆ − −
→
d k k t k0, sin , /2 cos( ) ( ( ) ( )), and in figureA1, we 
(schematically) show the curve 

→
d k( ) in the trivial phase, with 

winding ν = 0, and the two different topological phases, with 
winding ν =±1.

Next we turn to the linear model LinH  in equation  5. 
Assuming that ∆ is real and constant, the momentum space 
version of the Hamiltonian (6) is again of the form (A.1), with 

= − ∆
→
d k v k0, 2 , F( ) ( ).

Since the k-space is not compact, it is possible that the 
curve swept out by = | |

→ →
d k d k d k/ˆ( ) ( ) ( )  (the normalization 

is needed to obtain finite limits and is valid as long as the 
Hamiltonian is gapped) as k goes from −∞ to ∞ is not closed. 
This is indeed what we find in figure A2, where we depict the 
two cases 1∆ =± .

Despite that we can not define a winding number for nei-
ther of the values ±∆, we can still consider the difference 
in winding number δν between the two cases, which gives 
δν| | = 1. Therefore, we expect a zero energy bound state at 
a boundary between two regions with 1∆ =±  respectively, 
even in the linearized model. We stress, that although that this 
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argument in not rigorous, it is nevertheless true, and in the 
main text we showed that the analytic form of the zero mode 
of the linearized model of [24] accurately describes the DZM 
in the junction of the full Kitaev chain.

We now turn to the alternative linearized model given by 
vH  in equation (9). Here the k-space is again not compact, and 

there is also a discontinuity at k  =  0. The first issue is remedied 
by identifying the points at ±∞ (which amounts to considering 
the a 0→  limit of the lattice model). To deal with the second, 
we note that for this model, µ= ∆ − + | |

→
d k k v k0, sgn ,1

2 F( ) ( ( ) ¯ ), 
and in figure A3 we show the corresponding ‘winding’ of the 
vector = | |

→ →
d k d d/ˆ( ) , in the case ∆> 0. Even when iden-

tifying the points at k =±∞, the curve is not continuous, 
but with a regularization that smoothens out the singularity 
in the V-shaped band, by replacing the factor sgn by a con-
tinuous odd function that rapidly changes sign around k  =  0, 
the d-vector will will be continuous, and the winding number 
will be well defined. This concludes the demonstration of the 
existence of a linearized continuum model with topological 
properties identical to that of the Kitaev chain.

Appendix B. Topological aspects of the s-wave 
paired models

In this appendix, we discuss the topological properties of 
the full and linearized s-wave models. Due to the extra spin 
degree of freedom in these models, the winding arguments 
used for the p-wave superconductors are not directly appli-
cable and another method of topological classification must be 
used. We will use the method outlined in [22].

We begin with the full s-wave model, given by (4). Assuming 
a real and constant order parameter, the corresponding k-space 
Hamiltonian can (in suitable units) be written as

µ τ τ= − −∆H k k s sS
z y y

2
0( ) ( ¯) (B.1)

where the Pauli matrices τi and si act in particle-hole space and 
spin-space respectively. This Hamiltonian belongs to sym-
metry class BDI, meaning PTRS = +12T  and PHS = +12C . 
These operators are in our chosen basis given by τ= s K0 0T  
and τ= s Kx 0C , with K denoting the complex conjugation 
operator.

To investigate the topological properties of this Hamiltonian, 
we write it in the form

=
∆

∆ −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟H k

H k

H k
,S 0

T
0

( ) ( ) ˆ
ˆ ( )

 (B.2)

where the matrix structure is in particle-hole space, 
µ= −H k k s0

2
0( ) ( ¯)  and ∆ = ∆ si y

ˆ . We note that the latter term 
is real and has the property ∆ = −∆Tˆ ˆ . By a unitary trans-
formation with π τ= −U sexp i /4 y 0( ( ) ), the matrix in equa-
tion (B.2) can be rotated into

=
−

⎛
⎝⎜

⎞
⎠⎟UH k U

A k

A k

0
0

,S
T( ) ( )

( )
† (B.3)

with = +∆A k H k0( ) ( ) ˆ .
Next, we note that H k UH k UDet DetS S( ( )) ( ( ) )†= =
( ( )) ( ( ) )−A k A kDet Det T  so that if HS(k) is gapped for all k, i.e. 

≠H kDet 0S( ( )) , the determinant   of   A(k) can not vanish either. This 
allows us to define θ= = | |z k k A k A kexp i Det / Det( ) ( ( )) ( ( )) ( ( ))  
for gapped Hamiltonians HS(k). One may then show that

µ= ∆ + −z k ksgn .2 2 2( ) ( ( ¯) ) (B.4)

For the s-wave Hamiltonian (B.1), which is real and 
gapped for all k, µ̄ and finite ∆, the determinant is real and 
non-vanishing. Then z(k) is well defined and is equal to  +1, 
independently of any compactification of k-space (which is 
needed for any well defined topological invariant), rendering 
the model topologically trivial.

We next turn our attention to the linear s-wave model. To 
derive it, we apply the linearization scheme described in sec-
tion II.C to (4) and again assume a real order parameter which 
gives us the following Hamiltonian:

Figure A1. Winding numbers ν of ( )→
d k  for the full Kitaev chain, in 

(a) trivial phase with ν = 0, for µ< <t0 /2, ∆> 0, (b) topological 
phase with ν = 1 for µ = 0, < = ∆t0  and (c) topological phase 
with ν = −1 for µ = 0, < = −∆t0 . The arrows denote the 
direction in which k increases.

Figure A2. ‘Winding’ of the vector ˆ( )d k  for the linearized model 
(6), for (a) ∆> 0 and (b) ∆< 0.

Figure A3. The ‘winding’ of the ˆ( )d k -vector corresponding to the 
linearized model Hv before the regularization which removes the 
discontinuity at k  =  0. The arrows indicate the direction in which 
k increases. We have used ∆> 0. As discussed in the text, the gap 
between the points 0+ and 0− is closed if the dispersion relation is 
smoothened at k  =  0.
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(( )

( )( )

† †

† † † †

∫ ∑ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

= − ∂ + ∂

+∆ + + +
σ

σ σ σ σ+ + − −

↑ + ↓ − ↑ − ↓ + ↓ + ↑ − ↓ − ↑ +

H x v v

x

d i i

.

S
x xLin F , , F , ,

, , , , , , , ,

 (B.5)

We write this as

∫= Ψ ΨH x xdS S
Lin LinH ( )† (B.6)

with

=

− ∂ −∆
− ∂ ∆
∆ ∂

−∆ ∂

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

v
v

v
v

i 0 0
0 i 0
0 i 0

0 0 i

,S

x

x

x

x

Lin

F

F

F

F

H (B.7)

and the basis

ϕ ϕ ϕ ϕΨ = ↑ + ↓ + ↑ − ↓ −, , , ., , , ,
T( )† † (B.8)

The matrix in equation (B.7) looks very much like two sep-
arate blocks of the linear p-wave superconductor which seems 
a bit troublesome since we know that the linear p-wave model 
host zero modes. That would imply that the linear s-wave 
model also would host zero modes, which would contradict 
our findings in this paper.

One may suspect that the appearance of two p-wave models 
is incidental, and that by adding corrections to the lineariza-
tion this illusion is shattered. This suspicion is indeed justified 
since, as we now show, the linear s-wave superconductor in 
fact is topologically trivial.

The corresponding k-space Hamiltonian is given by

τ τ= +∆H k v k s sS
z y yLin F 0( ) (B.9)

where the Pauli matrices τi and si now act in right-left space and 
spin-space respectively. This Hamiltonian also belongs to class 
BDI. In our basis the particle-hole (now right-left) symmetry 
operator is given by τ= s Kz 0C  and the pseudo time reversal 
symmetry operator is τ= s Kx xT . We rotate the Hamiltonian 
with the unitary matrix π τ= −U sexp i /4 x x( ( ) ), giving us a 
structure like (B.3) but now with = + ∆A k v ks si ix yF( ) . One 
may then, as above, define z(k) which in this case turns out 
to be = +∆ = +z k v ksgn 1F

2 2 2( ) ( )  for all vF, k and finite 
∆. As was the case in appendixA, k-space is not compact. 
Regardless of this issue, z(k) can never wind.

Thus we can conclude that both the full and linear s-wave 
superconductors are trivial, and hence that the zero modes 
these models exhibit are not topologically protected.

Appendix C. Origin of the term i†∂ θξ ∂ ξµν
ν µε

Starting from the original Lagrangian (19), we present an 

argument for how the kinetic term θξ ξ∂ ∂
π
µν
ν µi1

2
ε †  can appear 

in an effective Lagrangian. Although, as already emphasized 
in the main text, several of the steps in the below derivations 
are based on unproven assumptions, the emergence of the 
kinetic term is far from obvious, and this indicates that a more 
rigorous proof along these lines might be possible.

The starting point is the partition function,

∫ ∫θ ψ ψ= ψ ψ θZ g, , e .xi d , ,2
D L[ ] [ ¯ ] ( ¯ ) (C.1)

The strategy is to change fermionic variables in such a way 
that the high energy part of the spectrum can still be bosonized 
and integrated out, as in the previous section, while the the 
low lying fermion spectrum will be captured by a Lagrangian 
like (33). To this end, we shall use the following identity,

a

a

, e

e

e ,

x a p

x a j H a p

j

i d

i d 1
2

Tr ln

i

2

2

[ ] [ ]

[ ]

† [ ( ¯ ) ]

( )

[ ]

†

∫
∫

∫

∫

ξ ξ

=

=

µ
ξ ξ ψγ ψ

µ

− −

+ +

µ
µ µ ξ

µ
µ

µ
µ

µ

D D

D

H

F

 (C.2)

where = − ∂p ix x, ψγ ψ=µ µj ¯  and ξH  is an Hamiltonian that 
we shall assume to be quadratic in the fields and H is the cor-
responding operator acting on the Nambu spinors.

To derive the last line in (C.2) we first calculate the lowest 
order by expanding the logarithm and evaluating the trace 
(which is over both space and Nambu indices). The resulting 
integrals are not convergent in the ultraviolet since there is no 
time derivative, so we must introduce a cutoff energy scale 
Λ. The resulting effective theory is only to be applied below 
this scale. Note that there is no gauge invariance related to the 
auxiliary field a since it does not couple to a conserved cur-
rent. Taking for ξH  the expression (35) a straight forward cal-
culation gives + = + +…µ

µH a p c a c aTr ln 0 0
2

1 1
2( )  where we 

omitted all higher derivative terms. The explicit expressions 
for the coefficients in terms of δ, M2 and Λ are not particularly 
illuminating. Substituting this in the second line of (C.2) and 
integrating over a, we retain the third line with

j c j c j .0 0
2

1 1
2[ ] ˜ ˜= + +…µF (C.3)

Before inserting the identity (C.2) in the path integral (C.1), 
we perform the chiral rotation,

ψ ψϑ γe xi
2 5→ ( ) (C.4)

under which the Lagrangian (19) becomes,

ψ π ψ= ∂ − −j g xi .kL ¯( ( )) (C.5)

Putting this together, we get the following representation for 
the partition function,

∫θ ξ ξ ψ ψ= µ
ξ ξ ψ ψ θZ g a, , , e ,S ai , , , , ;D D D[ ] [ ] [ ] [ ¯ ]† [ ¯ ]†

 (C.6)

[ ¯( )

˜ ( ) ˜ ( ) ]†
∫ ψ π ψ

ψγ ψ ψγ ψ ξ ξ

= ∂ − − −

+ + − ∂ −µ
µ ξH

S x j a m

c c a

d i

i ,

k
2

0 0
2

1 1
2

 (C.7)

where we put g(x)  =  m to connect to the previous discussion 
about the kink solutions. Next we make a shift π−µ µ µa a jk→ , 
to rewrite the action as

∫ ξ ξ π ξ ξ= − ∂ + ∂ −µ
µ

µ
µ ξS x a j id i ,f k

2 L H[ ]† † (C.8)
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where

ψ ψ ψγ ψ ψγ ψ= ∂ − − + +a m c cif 0 0
2

1 1
2L ¯( ) ˜ ( ) ˜ ( ) (C.9)

is very similar to the massive Thirring model. The ψ-field can 
now be integrated to give an effective Lagrangian, for the µa  
field. Using the gauge invariance of (C.9) we get

= − +…a
m

F
1

eff 2
2( )

˜
L (C.10)

where µνF  is the field strength for the potential µa  and m̃ a 
dimensional constant that depends both on m and, via the 
coefficients c0˜  and c1̃, on δ, M2 and Λ. Finally, we can integrate 
the vector field µa  to get the desired effective action for the 
ξ-field,

b b j
1
2

ib k( )†θ ξ ξ= ∂ + ∂ − − +…ξθ
µν
ν µ µ ξ µ

µεL H (C.11)

where we also used the constraint (27) to express µjk  in terms of 
θ, and where the dots indicate both neglected higher derivative 
terms in the quadratic action, and interaction terms resulting 
from integrating the µa  field. All the steps glossed over above 
can be performed, at least to low order in perturbation theory. 
The main question is however not technical, but rather what 
principle should be used to determine ξH . A possible approach 
is to choose the parameters in ξH  so to minimize the size of 
the leading corrections due to higher derivative terms and 
induced interactions.

References

 [1] Kitaev A 2001 Phys.—Usp. 44 131
 [2] Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 

Phys. Rev. B 78 195125
 [3] Kitaev A 2009 AIP Conf. Proc. 1134 22
 [4] Ryu S, Schnyder A P, Furusaki A and Ludwig A W W 2010 

New J. Phys. 12 065010
 [5] Altland A and Zirnbauer M R 1997 Phys. Rev. B 55 1142
 [6] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 

105 077001
 [7] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 

105 177002

 [8] Choy T-P, Edge J M, Akhmerov A R and Beenakker C W J 
2011 Phys. Rev. B 84 195442

 [9] Nadj-Perge S, Drozdov I K, Bernevig B A and Yazdani A 2013 
Phys. Rev. B 88 020407

 [10] Pientka F, Glazman L I and von Oppen F 2014 Phys. Rev. B 
89 180505

 [11] Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, 
MacDonald A H, Bernevig B A and Yazdani A 2014 
Science 346 602

 [12] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M 
and Kouwenhoven L P 2012 Science 336 1003

 [13] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and 
Xu H Q 2012 Nano Lett. 12 6414

 [14] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and 
Shtrikman H 2012 Nat. Phys. 8 887

 [15] Bagrets D and Altland A 2012 Phys. Rev. Lett. 109 227005
 [16] Liu J, Potter A C, Law K T and Lee P A 2012 Phys. Rev. Lett. 

109 267002
 [17] Ojanen T 2013 Phys. Rev. B 87 100506
 [18] Lucignano P, Tafuri F and Tagliacozzo A 2013 Phys. Rev. B 

88 184512
 [19] Wakatsuki R, Ezawa M, Tanaka Y and Nagaosa N 2014 Phys. 

Rev. B 90 014505
 [20] Fu L and Kane C L 2009 Phys. Rev. B 79 161408
 [21] Ryu S and Hatsugai Y 2002 Phys. Rev. Lett. 89 077002
 [22] Tewari S and Sau J D 2012 Phys. Rev. Lett. 109 150408
 [23] Su W, Schrieffer J and Heeger A 1979 Phys. Rev. Lett. 42 1698
 [24] Takayama H, Lin-Liu Y and Maki K 1980 Phys. Rev. B 

21 2388
 [25] Wen X-G 1995 Adv. Phys. 44 405
 [26] Hansson T, Oganesyan V and Sondhi S 2004 Ann. Phys., NY 

313 497
 [27] Cho G Y and Moore J E 2011 Ann. Phys., NY 326 1515
 [28] Chan A, Hughes T L, Ryu S and Fradkin E 2013 Phys. Rev. B 

87 085132
 [29] Goldstone J and Wilczek F 1981 Phys. Rev. Lett. 47 986
 [30] Wong C L M and Law K T 2012 Phys. Rev. B 86 184516
 [31] Nakosai S, Budich J C, Tanaka Y, Trauzettel B and Nagaosa N 

2013 Phys. Rev. Lett. 110 117002
 [32] Fradkin E, Nayak C, Tsvelik A and Wilczek F 1998 Nucl. 

Phys. B 516 704
 [33] Hansson T H, Karlhede A and Sato M 2012 New J. Phys. 

14 063017
 [34] Stone M and Gaitan F 1987 Ann. Phys., NY 178 89
 [35] Fradkin E 2013 Field Theories of Condensed Matter Physics 

2nd edn (Cambridge: Cambridge University Press)
 [36] Jackiw R and Rebbi C 1976 Phys. Rev. D 13 3398
 [37] Hansson T H, Kvorning T, Nair V P and Sreejith G J 2015 

Phys. Rev. B 91 075116

J. Phys.: Condens. Matter 27 (2015) 405701


