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Abstract
In this paper we introduce a one-dimensional model of su(2)k anyons in which 
the number of anyons can fluctuate by means of a pairing term. The model 
can be tuned to a point at which one can determine the exact zero-energy 
ground states, in close analogy to the spin-1 AKLT model. We also determine 
the points at which the model is integrable and determine the behavior of the 
model at these integrable points.
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1. Introduction

Almost forty years ago, it was realized by Leinaas and Myrheim that in two-dimensional 
systems, the existence of particles with statistics interpolating between bosonic and fermionic 
statistics is a possibility [1]. It is widely believed that particles of this type are realized in the 
fractional quantum Hall systems [2, 3], even though the anyonic statistics of the quasi-particles 
has not yet been probed directly. Moore and Read proposed fractional quantum Hall states for 
which the quasi-particles have non-Abelian statistics [4]. It is believed that this Moore–Read 
state describes the /ν = 5 2 quantum Hall effect [5]. Interestingly, the one-dimensional p-wave 
superconductor studied by Kitaev [6] exhibits Majorana bound states, which are the one-
dimensional cousins of the non-Abelian anyons present in the Moore–Read state. Following 
the first theoretical proposal [7, 8] of how to realize Kitaev’s model, there are experimental 
indications that Majorana bound states might be realized experimentally [9–11].

In [12], the effect of interactions between non-Abelian anyons were studied by means of a 
one-dimensional model-Hamiltonian. Non-Abelian anyons, in particular so-called Fibonacci 
anyons, are used as building blocks for this model-Hamiltonian in the same way as spins 
are used in model-Hamiltonians such as the Heisenberg model in order to study magnetism. 
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In [13] different types of anyon models are explained, while [14] proposes an experimental 
realization of interacting Fibonacci anyons.

Various generalizations of the original model have already been considered. These include 
models with longer-range interactions [15], models on ladders [16–18], as well as models 
making use of different types of anyons [19–22]. In this paper, we consider a generalization of 
the dilute anyon model [23]—a model in which anyons are allowed to hop to empty neighbor-
ing sites. The type of term we add to this model is a pairing term that creates or annihilates 
pairs of anyons on neighboring sites. The anyons we use are of the type su(2)k, which is the 
same type as the excitations of the Read–Rezayi quantum Hall states [24].

The anyon model we study has a large number of parameters and, since the number of 
anyons is not considered to be fixed in our model, the size of the Hilbert space grows quickly 
with system size. We therefore can not characterize the phase diagram of our model in full 
detail, but we concentrate ourselves on two particular cases. In the first case, we tune the 
model to a point where the Hamiltonian becomes a sum of projectors. This allows us to deter-
mine the exact zero-energy ground states for the case when k, in su(2)k, is odd. In addition, 
we study the model at two integrable points where, in most cases, the model turns out to be 
critical. Most of these critical points are described by minimal-model conformal field theories.

The outline of this paper is as follows. In section 2, we introduce the notion of anyon mod-
els as the language we use to define our Hamiltonian. In section 3, we introduce the anyon 
model and its corresponding Hilbert space and finally present the Hamiltonian that we inves-
tigate in later sections. In section 4, we study the Hamiltonian at a special point where we can 
determine the exact zero-energy ground states as well as the number of these states. In sec-
tion 5, we determine for which values of the parameters the model is integrable and determine 
the behavior of the model at these integrable points. Section 6 is devoted to the conclusions. 
In appendix A, we give the explicit form of the F-symbols we use in this paper. In appendix B, 
we map our model-Hamiltonian, in the case of k  =  1, to a spin-1/2 Hamiltonian.

2. General theory of anyons

The mathematical framework that describes the anyons in a rigorous way is that of tensor 
categories. However, in this article we do not need this full machinery and we use a more 
concrete picture of anyons and anyon systems. We will be brief here and refer to [26–28] for 
more elaborate introductions into the subject.

We start introducing a finite set of labels, { }L = …a b c n, , , , , that contains the labels of 
all the anyon types present in the anyon model we consider. We call these labels the anyon 
‘charges’. One of the elements of this set is distinguished from others and plays the role of 
the vacuum. We label this element by 1. In addition, with each label a in the set, we associate 
another label in L, denoted by !a, that represents the dual of a. The dual to the vacuum is the 
vacuum itself, that is, ^ =1 1. For other anyons a, the dual might or might not be the original 
anyon, but we always have !! =a a. To define the notions of the vacuum and the dual anyon, we 
need to introduce the notion of fusion first.

The fusion of anyons is analogous to combining different spin multiplets by means of the 
tensor product. Thus, to specify the possible fusions, we need to specify what the possible 
‘fusion outcomes’ are for each pair of anyons a and b. Symbolically, we write this as

⨁
L

⊗ =
∈

a b N c,
c

ab
c

 (1)

where the fusion coefficients Nab
c  are non-negative integers. If ⩾N 1ab

c , this means that the 
overall charge of an anyon of type a and an anyon of type b can be an anyon of type c, while 
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this possibility is ruled out if =N 0ab
c . The labels c for which ⩾N 1ab

c  are called fusion chan-
nels of a and b and if the outcome of the fusion of a and b is c, then c is said to be the fusion 
channel of a and b. If >N 1ab

c , then this means that anyons a and b can be fused to the anyon-
type c in more than one way. The fusion of charges a and b that has given rise to charge c in 
the µth way, µ = … N1, 2, , ab

c , is usually depicted graphically as in figure 1 and it is called a 
fusion tree.

The anyon models we consider in this paper are multiplicity-free models, that is, they have 
the property that Nab

c  is either zero or one for all labels a, b, and c in L. We therefore can sim-
ply omit the label µ in the remainder of the paper.

We now specify the physical constraints on the fusion rules:

 (i) The vacuum 1 is the unique label such that δ=N a
c

ac1 , for all labels a and c in L, with δ 
denoting the Kronecker delta.

 (ii) The dual of a, namely !a, is the unique label such that !δ=Nab ba
1 , which means that a and 

!a can be fused to the vacuum.
 (iii) The fusion rules are associative in the sense that the set of all possible fusion outcomes of 

( )× ×a b c  is equal to the set of all possible fusion outcomes of ( )× ×a b c. In terms of 
the fusion coefficients, this means that

L L
∑ ∑=
∈ ∈

N N N N ,
e

ab
e

ec
d

f
bc
f

af
d

 (2)

  for any labels a, b, c, and d in L.
 (iv) Finally, we demand that fusion is ‘symmetric’ in the following sense:

!
!!
!!

= = =N N N N .ab
c

ba
c

bc
a

ab
c (3)

An anyon theory is said to be non-Abelian if there are labels a and b such that L∑ >∈ N 1c ab
c , 

otherwise, it is called Abelian. The Fibonacci anyon theory, described in the following, is an 
example of a non-Abelian and multiplicity-free anyon theory. The label set of this model is 

{ }L τ= 1, , where τ, known as the Fibonacci anyon, is the only non-trivial anyon of the model 
and the fusion rules are given by

τ τ τ
τ τ τ

⊗ =
⊗ = ⊗ =
⊗ = ⊕

1 1 1
1 1

1

,
,

.

From the last fusion rule it follows that the Fibonacci anyon is its own dual.
To be able to construct a model describing anyons that can interact with each other, we 

have to associate a Hilbert space with a collection of anyons. We do this in more detail in the 
following section. Here, however, we concentrate ourselves on up to four anyons in order to 
explain the so-called Pentagon equations. With two anyons a and b with fusion channel c, 
we associate the Hilbert space Hab

c  of dimension Nab
c . We can label the basis-elements of this 

a b

c

µ

Figure 1. Anyons a and b fuse to anyon c in the µth way.
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space by the diagrams depicted in figure 1, excluding the label µ for the reason mentioned 
earlier. For the case of three anyons a, b, and c, with the overall fusion channel d, we denote 
the associated Hilbert space by Habc

d . In this case, we can consider two different bases. Either 
a fuses with b first and then the outcome e fuses with c to give d, or b fuses with c first, to give 
f, which fuses with a to give d. These possibilities are shown in figure 2. The dimension of this 
Hilbert space is given by L L∑ = ∑∈ ∈N N N Ne ab

e
ec
d

f bc
f

af
d , where the equality follows from the 

associativity of the fusion rules.
The two different ways of describing the Hilbert space Habc

d  are related by a basis trans-
formation. The basis-transformation matrix describing this basis transformation is called the 
F-matrix and it is denoted by Fd

abc. Going between the fusion tree on the left to the fusion tree 
on right in figure 2, is called an F- move. When dealing with physical theories, the F-matrices 
are demanded to be invertible and unitary. Symbolically we write

d

a b c

e =
f

F abc
d; ef

d

a b c

f , (4)

where the sum runs through all possible labels f in the fusion channel of b and c such that d is 
in the fusion channel of a and f. The symbol Fd ef

abc
;  denotes the (e, f)th entry of the matrix Fd

abc 
and it is called an F-symbol.

As it stands, equation (4) just means that an F-matrix is a basis-transformation matrix and 
does not constrain the F-symbols any further. To determine the F-symbols, one needs to con-
sider the Hilbert space associated with four anyons. Two different bases for the Hilbert space 
Habc

d  are depicted by the following two fusion trees:

a b c d

e

v

u

,

a b c d

e

y

x .

One can describe the basis transformation between these two bases in two different ways, 
which have to be equivalent to one another. The first one involves two F-moves:

a b c d

e

v

u
F -move−−−−−→

a b c d

e

u y F -move−−−−−→

a b c d

e

y

x ,

d

a b c

e ,

d

a b c

f

Figure 2. Possible fusion trees for anyons a, b, and c fusing to d.
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and the second one involves three F-moves:

a b c d

e

v

u
F -move−−−−−→

a b c d

e

w

v
F -move−−−−−→

a b c d

e

x

w

F -move−−−−−→

a b c d

e

y

x .

This gives rise to the consistency conditions

∑=F F F F F ,e vy
ucd

e ux
aby

w
v uw
abc

e vx
awd

x wy
bcd

; ; ; ; ; (5)

which are known as Pentagon equations. Here the sum is over all labels w consistent with 
fusion rules. Although the Pentagon equations are obtained by considering only four anyons, 
Mac Lane’s coherence theorem [25] asserts that the Pentagon equations are all one needs to 
guarantee consistency in the case of more than four anyons. One should note that the Pentagon 
equations are just polynomial equations for F-symbols and it might be the case that there is no 
solution or there are several ones. It has been shown, however, that the number of inequivalent 
solutions is actually finite. See appendix A for the notion of gauge equivalence of F-symbols. 
In this paper, a set of labels with consistent fusion rules together with a particular solution of 
the Pentagon equations that leads to invertible F-matrices, is called an anyon system.

To completely describe an anyon system, one has to allow for the possibility of two anyons 
to be interchanged or braided. The braiding of two anyons should also be consistent with 
fusion rules. This consistency gives rise to a set of equations called the Hexagon equations. 
In this paper, we do not consider the braiding of anyons and refer the reader to [26–28] for 
more details.

3. Introducing the anyon model

In this section, we introduce the anyon model that we are interested in. We briefly specify the 
anyon system we are going to use, followed by a description of the associated Hilbert space. 
Finally, we introduce the Hamiltonian that we study in this paper.

3.1. The anyon system of the model

In this article, we are interested in the anyons with su(2)k fusion rules. These fusion rules have 
close resemblance to the ordinary SU(2) tensor products. To express the su(2)k fusion rules, 
one introduces a highest ‘spin’ k/2, meaning that there are k  +  1 anyon types 0, 1/2, 1, ..., k/2. 
Let Lk denote the set { / / }… k0, 1 2, , 2  of anyon types. Because of the presence of the ‘highest 
spin’, the ordinary SU(2) tensor-product rules have to be modified that results in the following 
multiplicity-free associative fusion rules:

!⊗ = | − |⊕ | − | + ⊕ ⊕ + − −i j i j i j i j k i j1 min , ,( ) { } (6)

for all i and j in Lk. As mentioned in the previous section, the fusion rules do not, in general, 
fix the F-symbols. Hence, we need to specify which set of the F-symbols we consider. For 
the su(2)k fusion rules, solutions to the Pentagon equations are known explicitly [29, 30]. In 
appendix A, we explicitly specify the form of the F-symbols we use to define the model.

Before we introduce the Hilbert space to our specific model, we first introduce the 
quant um dimension associated with an anyon type. The quantum dimension da associated 
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with a collection of anyons of type a, describes how the dimension of the Hilbert space corre-
sponding to this collection of anyons grows with the number of such anyons. This dimension 
grows as da

n, where n is the number of anyons of type a. One can show [26] that the quantum 
dimensions satisfy the following relation:

L
∑=
∈

d d N d ,a b
c

ab
c

c
k

 (7)

in resemblance with equation (1). In the case of su(2)k anyons, the quantum dimension dj(k) of 
anyons of type j, for every j in Lk, is given by:

( )
( )( )

π

π
=

+
+

+

d k
sin

sin
.j

j
k

k

2 1
2

1
2

 (8)

Since k remains fixed throughout the investigation of the model, we suppress k dependence 
from the notation for these numbers and denote them simply by dj. From equation (8), one can 
immediately see that /= −d dj k j2 , for all labels j.

3.2. The Hilbert space of the model

We want to model a physical system of anyons with su(2)k fusion rules in which the number 
of anyons can fluctuate. We do this in the simplest possible setting, namely, we consider a 
chain consisting of l sites in which each site can be either occupied with an anyon of type 1/2 
or be empty. Besides, we do not allow a site to be doubly occupied. A chain with all its sites 
occupied is called a dense chain and one with some empty sites is called a dilute chain.

First, one needs to introduce the Hilbert space of the model and we do this by introducing 
an orthonormal basis for it. To do so, we need a set of labels that keeps track of the occupa-
tion of the sites. We denote these labels by yi, with i running over all site numbers. So in our 
model, any yi can be either zero or 1/2, depending on whether the ith site is empty or occupied, 
respectively. Moreover, two consecutive x labels are either equal or differ by 1/2.

Consider the tree-like shape in figure 3 for a given configuration of y labels.
This tree is called a fusion chain of size l or with l sites, if the lower labels x—which are 
also assumed to be chosen from Lk—are consistent with fusion rules, that is, if xj is a fusion 
channel of the fusion of xj−1 with yj, for all ⩽ ⩽j l1 . The part indicated by the blue ellipse 
in figure 3 is called the ith part or, if we do not need to be explicit, a local part of the fusion 
chain. In this paper, we consider two types of chains— open chains, for which both labels x0 
and xl are fixed but arbitrary, and closed chains, for which we impose the periodic boundary 
condition =x xl0  on the fusion chains. In the latter case, figure 4 shows what we call the lth 
part of a closed chain.

Using the notion of the fusion chain, we can now introduce the Hilbert space of our models, 
one corresponding to open chains and one corresponding to closed chains. That y labels in our 
models are restricted to take on either 0 or 1/2 makes it possible to introduce a short notation 
for fusion chains, since knowing only x labels in a fusion chain, uniquely determines the y 
labels. In fact, if xi−1 and xi differ by 1/2, then yi  =  1/2, and if =−x xi i1 , then yi  =  0. Therefore, 
the fusion chain in figure 3 can be simply indicated by the following ket:

⟩| … …− + −x x x x x x x, , , , , , , , .i i i l l0 1 1 1 1 (9)

For closed chains, we can even simplify the notation further by dropping the last label 
=x xl 0:

B Majidzadeh Garjani and E Ardonne J. Phys. A: Math. Theor. 50 (2017) 135201
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⟩| … …− + −x x x x x x, , , , , , , .i i i l0 1 1 1 1 (10)

We declare, for given k and l, that the kets introduced in (9) and (10) constitute an ortho-
normal basis for the Hilbert spaces H ( )k l,op  and H ( )k l,cl  corresponding to open-chain and 
closed-chain models, respectively. The orthonormality of the basis-elements in each case is 
defined as

⟨ ⟩ ∏ δ… | … =′ ′ ′ν ν

ν

=
′x x x x x x, , , , , , ,

i
x x0 1 0 1

0
i i (11)

where ν is either l  −  1 or l, depending on whether the chain is closed or open, respectively.

3.3. The Hamiltonian of the model

Here we introduce the Hamiltonians ( )H k l,op  and ( )H k l,cl  of the anyon models corre sponding 
to open and closed chains, respectively. They act on Hilbert spaces H ( )k l,op  and H ( )k l,cl  
introduced above, correspondingly. In this section, we assume that k and l are fixed given 
numbers and do not write them explicitly. Both Hamiltonians that we consider in this paper, 
which we denote them simply by H, have the following form:

∑=
ν

=
H h: ,

i
i

1
 (12)

where ν is either l  −  1 or l, depending on whether it acts on open or closed chains, respec-
tively. Each hi, which we call the ith local Hamiltonian, is a sum of nine linear operators in 
its own. Each one of these linear operators is defined to act non-trivially only on the ith part 
of the chain, in a way that is explained in detail in section 3.3.1. In the remainder of this sec-
tion though, we describe the general aspects of each one of these terms and fix sum notations.

As mentioned, in the models we consider, each hi is a sum of nine terms. Four of these 
terms act diagonally by assigning energy according to whether the sites i and i  +  1 are occu-
pied or not. Thus, these terms act as a chemical potential, if both sites are not occupied simul-
taneously, and they act as an interaction term, if both sites are occupied simultaneously. We 

denote these terms by µhi, 00
, µhi,

0 1
2

, µhi, 1
2

0
, and µhi, 1

2
1
2

.

x0 x1 xi−1 xi xi+1 xl−1 xl

y1 y2 yi−1 yi yi+1 yi+2 yl−1 yl

Figure 3. A typical fusion chain.

yl y1

xl−1 xl = x0 x1

Figure 4. The lth part of a closed chain.
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The fifth term we consider, is an interaction term hi,J between two neighboring anyons that 
acts in a way similar to the Heisenberg interaction for spin-1/2 chains, that is, it assigns an 
energy that depends on the fusion channel of the two neighboring anyons.

The next two terms deal with hopping of the anyons. If an anyon is adjacent to an empty 
site, we consider the possibility of the anyon hopping to this empty site. The terms corre-
sponding to this process are denoted by hi,t and ′hi t,  for hopping to right and left, respectively. 
These types of terms were first considered in [23].

The last two terms, denoted by ∆hi,  and ′ ∆hi, , describe the creation and annihilation of two 
neighboring anyons. These are the new terms that we consider in our model. In the presence 
of these terms, the number of anyons can fluctuate.

3.3.1. Different terms in the local Hamiltonian hi. To specify how the local Hamiltonian hi acts, 
consider a typical fusion chain, closed or open, and focus on the ith part of this chain, which 
can be viewed as

m n

x y z
:= |x, y, z ,

where m and n are either zero or 1/2, and y and z are consistent with the fusion rules. We recall 
that the labels m and n are determined by the labels x, y, and z.

As mentioned in the pervious section, for each i, the local Hamiltonian hi is a sum of nine 
terms as follows:

= + + + + + + + +′ ′µ µ µ µ ∆ ∆h h h h h h h h h h ,i i i i i i J i t i t i i, , , , , , , , ,00 0 1
2

1
2

0 1
2

1
2

 (13)

where each term acts non-trivially only on the ith part of the chain and act as identity on other 
parts. Since, in this section, we always consider the ith part of the fusion chain and the ith local 
Hamiltonian, we suppress the subscript i everywhere. In order to specify the model, we now 
define how the different types of terms act on the local part of a fusion chain.

The diagonal terms.  The terms that assign an energy depending on the occupation of the 
neighboring sites, act diagonally. Explicitly, we write these terms as

⟩ ⟩µ| = |µh x x x x x x, , : , , ,0000 (14)

⟩ ⟩µ| = |µh x x y x x y, , : , , ,0 1
2

0 1
2

 (15)

⟩ ⟩µ| = |µh x y y x y y, , : , , ,1
2

01
2

0 (16)

⟩ ⟩µ| = |µh x y z x y z, , : , , .1
2

1
2

1
2

1
2

 (17)

Recall that, if two neighboring labels in the kets above are different, their values differ by 

1/2. This means, for instance, that µh
0 1

2
 assigns an energy µ01

2
 if the first site is empty and the 

second site is occupied and, otherwise, this term acts by zero. Similar considerations apply to 
the other terms.

We now turn our attention to the terms that act in a non-diagonal way and explain how they 
actually act in more detail.
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The interaction term.  In our models, for two anyons sitting on neighboring sites, we include 
an interaction term hJ that assigns an energy which depends on the fusion channel of the two 
anyons. This interaction term was introduced in the original paper [12]. In particular, we 
demand for this term to assign an energy J, in the case two neighboring 1/2 anyons fuse to 
zero, and to assign zero energy otherwise. Hence, in order to define hJ we need to go to a basis 
for which the fusion channel of the two 1/2 neighboring anyons is explicit. To explain all of 
this, it is more illustrative to use the fusion tree notation rather than the ket notation. This is 
illustrated in the following:

hJ

1
2

1
2

x

u

z
:= J δxzδu0

1
2

1
2

x

u

z
.

 (18)

Here, as demanded, δu0 takes care of assigning energy J to the zero channel only, and δxz takes 
care of the consistency of the last fusion tree with the fusion rules. The term hJ is defined to 
act by zero on any other configuration except the one mentioned above.

To know how hJ acts on a local fusion chain, we exploit equations (4) and (18) and we 
come up with the following:

hJ

1
2

1
2

x y z
= J

u

F
x 1

2
1
2

z; yu

1
2

1
2

x

u

z
δu0 = J F

x 1
2

1
2

z; y0

1
2

1
2

x
0
z

·xzδ xzδ
 

(19)

Switching back to the original basis by employing the inverse of an F-move and using the fact 
that the F-matrices we use are their own inverses, one gets

hJ

1
2

1
2

x y z
= Jδxz

v

F
x 1

2
1
2

z; y0 F
x 1

2
1
2

z; v0

1
2

1
2

x v z
. (20)

The operator hJ acts by zero on any other configuration of the local fusion chain other than 
the ones mentioned above. Plugging the F-symbols introduced in appendix A into the equa-
tion above, we have:

hJ

1
2

1
2

x y z
= Jδxz

v

dydv

dxd1/2

1
2

1
2

x v z
. (21)

Of course, considering fusion rules, the sum above has at most two terms in our model.

The Hopping terms.  The models we consider allow for the possibility for a 1/2 anyon to 
hop onto a neighboring site, provided this site is empty. We denote the strength of the hopping 
process by t. This hopping process was first considered in [12]. Explicitly, the hopping terms 
act as

⟩ ⟩| = |h x y y t x x y, , : , , ,t (22)

⟩ ⟩| = |′h x x y t x y y, , : , , .t (23)

B Majidzadeh Garjani and E Ardonne J. Phys. A: Math. Theor. 50 (2017) 135201
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Here, again, different letters in the kets refer to different labels and for all other ket configura-
tions, ht and ′ht are defined to act by zero.

The creation and annihilation terms.  Finally, we introduce the terms that allow for the 
number of anyons to fluctuate. This is achieved by considering the possibility for a process 
in which a pair of 1/2 anyons is created out of the vacuum on two neighboring empty sites as 
well as the possibility for a process in which a pair of 1/2 anyons sitting on neighboring sites 
are annihilated. We assume the same strength ∆ for both of these processes to guarantee the 
Hermiticity of the Hamiltonian.

The procedure of defining the creation term is along the lines that we had for interaction 
term. Hence, making explanations short, we have:

h

0 0

x x x
:=

1
2

1
2

x
0
x

=
u

F
x 1

2
1
2

x; 0u

1
2

1
2

x u x
.

 (24)

In the first step, we create a pair of 1/2 anyons out of the vacuum so that they are in the fusion 
channel zero. In the second step, we rewrite the obtained configuration in the basis we use to 
describe the Hamiltonians. Plugging the explicit form of the F-symbols, yields:

h∆

0 0

x x x
= ∆

u

du

dxd1/2

1
2

1
2

x u x
. (25)

Here again the sum above consists of at most two terms in our models.
The process conjugate to the creation of two anyons on neighboring sites is the annihilation 

of two anyons sitting on neighboring sites. The latter is possible only if the fusion channel of 
the two anyons is zero. Using similar arguments as for the creation term, we get:

h∆

1
2

1
2

x y z
= δxz∆

dy

dxd1/2

0 0

x x x
. (26)

It is straightforward to see that each hi is a symmetric operator and, consequently, H is 
 symmetric (in fact, Hermitian) and a physically acceptable Hamiltonian.

4. Ground states of the model Hamiltonians

In this section, we start with the analysis of the dilute anyon model we introduced in the 
previous section. Since the number of parameters in the model is rather large and also the 
size of the Hilbert space grows quickly with both k and system size l, we limit ourselves to 
special choices for the parameters and analyze those analytically, supported by numerical 
calculations.

A possible strategy, which has already been proven valuable in similar models, is to choose 
values for the parameters to make each local Hamiltonian hi a projector, that is, =h hi i

2 . 
Consequently, the eigenvalues of each hi is either zero or one. The efficiency of this strat-
egy is due to the fact that, if the local Hamiltonians hi are projectors, then a state ⟩ψ|  is the 
zero-energy ground state of the total Hamiltonian (12) if and only if ⟩ψ| =h 0i  for all i or, 
 equivalently, if and only if
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⋂( ) ( )=
ν

=

H hker ker ,
i

i

1
 (27)

for the kernel of these operators. In some cases, it is possible to find all the states ⟩ψ|  such 
that ⟩ψ| =h 0i  for all i. Two famous examples for which this has been done are the spin-1/2 
Majumdar–Ghosh model [31, 32], in which the projector projects onto the spin-3/2 states of 
three neighboring spin-1/2’s, and the spin-1 AKLT model [33, 34], in which the projector 
projects onto the spin-2 states of two neighboring spin-1’s.

Typically, if the Hamiltonian is a sum of projectors and one can find zero-energy ground 
states, the system is gapped. This has been proven in some cases. Because of the gap, these 
ground states typically describe the physics of the corresponding models even if one perturbs 
away from the point where the Hamiltonian is a sum of projectors. We note that it can of 
course happen that the ground state does not have zero energy. In these cases, one has to resort 
to other techniques to analyze the model.

Figuring out the values for the parameters to turn the local Hamiltonians into pro-
jectors is rather straightforward in our case. This stems from the fact that when a local 
Hamiltonian acts on the corresponding local piece ⟩| − +x x x, ,i i i1 1  of the fusion chain, it 
does not alter the outer labels xi−1 and xi+1. Therefore, we can consider the local subspaces 
{ / ⟩ / / ⟩}| ± | ± ±x x x x x x, , 1 2 , , 1 2, 1 2  and { ⟩ / ⟩ / ⟩}| | − | +x x x x x x x x x, , , , 1 2, , , 1 2,  separately. 
We note that the states / ⟩| − −x x x, 1 2, 1  and / ⟩| + +x x x, 1 2, 1  form one-dimensional sub-
spaces in their own.

The constraints on the parameters of the Hamiltonian can straightforwardly be solved. 
Moreover, in this paper we are interested in a non-zero value for the parameters J, t, and ∆. 
Out of the possible solutions, we pick the following set of values:

µ µ µ µ= = = = = = ∆ =t J
1
2

, 0 ,
1
2

,
1
2

,00 0 1
2

1
2

0 1
2

1
2

 (28)

which by assigning the same value 1/2 to parameters µ00, µ01
2
, µ 01

2
, and t, makes the model 

easier to handle.
Assigning these values to the parameters, we found that, for odd values of k, there are 

indeed zero-energy ground states. In the case of an open chain, we found that there are (k  +  1)
(k  +  2)(k  +  3)/6 zero-energy ground states, provided that the chain is sufficiently long, ⩾l k. 
For a closed chain, there are (k  +  1)/2 zero-energy ground states, if ⩾ +l k 1. In each case, for 
system sizes smaller than these thresholds, the number of zero-energy ground states depends 
on the system size l and decreases by increasing l until it saturates at the numbers mentioned 
above. At this point of the parameter space and for odd values of k, we were able to determine 
an explicit closed form for these zero-energy ground states. This is discussed separately for 
the open and closed cases in sections 4.1 and 4.2.

We should note that in the case of even k, it turns out that, if the system size is large enough, 
there are no zero-energy ground states. The reason for the difference in behavior of the model 
for k even and odd, lies in the fact that the structure of the fusion rules is different for these 
cases. As an example of this difference, we note that one has the fusion rule / /⊗ = −j k k j2 2 . 
Thus, if k is even, there is an anyon type, namely j  =  k/4, such that /⊗ =j k j2 , while this is 
not the case when k is odd.

4.1. Zero-energy ground states, open chain

In this section we first outline the general strategy that we followed to determine the zero-
energy ground states for the described model Hamiltonian in the case of a given odd k and a 
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sufficiently large open chain with the parameter values (28). For an open chain with l sites, 
the Hamiltonian is given by = ∑ =

−H hi
l

i1
1 . This is a sum over l  −  1 terms, where the first acts 

on the first three labels x0, x1, and x2, while the last term acts on the last three labels xl−2, xl−1, 
and xl of every given basis state ⟩| …x x x, , , l0 1 .

We start by considering the explicit form of these states for the cases k  =  1 and k  =  3, 
and explain the number of ground states for a given boundary condition. As becomes clear, 
the structure of the coefficients of the ground states are fairly simple for these special cases. 
Having understood the structure of ground states for k  =  1 and k  =  3, one can generalize and 
find the ground states for general odd k, which we present at the end of this section.

We decompose H op, the Hilbert space introduced in section 3.2 for an open chain, into 
(k  +  1)2 disjoint sectors with fixed boundary-labels as follows:

H H⨁
L

=
∈

,
a b

ab
op

,
op

k
 (29)

where H ab
op denotes the subspace of H op spanned by those basis fusion kets ⟩| …x x x, , , l0 1  in 

which x0  =  a and xl  =  b. The Hamiltonian does not alter the values of x0 and xl when it acts 
on the corresponding ket, so we can search for zero-energy ground states in each subspace 
H

ab
op separately. Below, when we write H and hi, we actually mean their restrictions to H ab

op.
To describe the general strategy, let ⟩ψ| ab  be a generic element of H ab

op, namely,

⟩ ⟩
{ }

{ }∑ψ| = | … −C a x x b, , , , ,ab

x
x

ab
l1 1

i

i (30)

where { }C x
ab

i
’s are, in general, complex numbers, { ⟩}{ }| … −a x x b, , , ,l x1 1 i  is the basis of H ab

op 
composed of fusion chains starting with label a and ending with label b, and the sum runs 
through all possible intermediate labels xi. For ⟩ψ| ab  to be a zero-energy ground state, it must 
be in the kernel of the Hamiltonian H. Consequently, by equation (27), it must reside in the 
kernel of all local Hamiltonians hi. To determine a set of appropriate coefficients { }C x

ab
i
 for the 

zero-energy ground state(s), one can act as follows. We first consider the relation ⟩ψ| =h 0ab
1 , 

which gives rise to some constraints on the coefficients { }C x
ab

i
. Typically, it relates several coeffi-

cients. We denote the generic state satisfying these relations ⟩ψ| ab
1 . One continues by consider-

ing that ⟩ψ| =h 0ab
2 1 , which gives rise to more constraints among the coefficients. Continuing 

this way, one finds that the number of states, satisfying the increasing number of constraints, 
decreases until it eventually saturates.

We start by looking at k  =  1 in which there are four different boundary conditions. By 
following the procedure outlined above, one can show explicitly that for each boundary 
condition, there is one zero-energy ground state. In addition, one finds that the coefficients 
describing these ground states take a simple form, namely ( ){ }

( / )= −C 1x
ab # 1 2

i
, where ( / )# 1 2  is 

the number of 1/2 labels present in the corresponding basis state ⟩| … −a x x b, , , ,l1 1 . The ground 
states thus take the following simple form:

⟩ ( ) ⟩
{ }

( / )∑ψ| = − | … −a x x b1 , , , , ,ab

x
l

# 1 2
1 1

i
 (31)

with the sum over all states in H ab
op. Because the coefficients appeared in all of these four 

ground states obey the same rule, we say that these states are all of the same type. As become 
clear shortly, for higher values of k, there are ground states of different type. We can summarize 
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the number of ground states for the different boundary conditions in terms of the following 
matrix:

( ) ⎡
⎣⎢

⎤
⎦⎥==M 1 1

1 1
,k 1 (32)

where the rows and columns correspond to the labels 0 and 1/2.
The case k  =  3 is more complicated than k  =  1. There are sixteen different boundary condi-

tions and the constraints imposed by the Hamiltonian are more complicated. We used the same 
line of arguments as for k  =  1, but we guided ourselves by diagonalizing the Hamiltonian for 
small system sizes. For system size ⩾l 3, there is a total of twenty zero-energy ground states. 
We observe that all these twenty ground states fall into two main types, as compared to only 
one type for k  =  1 case. There are ground states with the property that in their expansions in 
terms of basis states, all basis states contribute. In other words, the labels in ⟩| … −a x x b, , , ,l1 1  
are taken from the set {0, 1/2, 1, 3/2}. We call these, ground states of type one. The coeffi-
cients of this type of ground states turns out to take the following pattern:

( ){ }
[ ( / ) ( / )]

/
/ ( / )= − + − ×C d1 ,x

ab # 1 2 # 3 2
1 2

3 2 # 1,1 2
i (33)

where ( / )# 1 2  and ( / )# 3 2  are the number of labels in ⟩| … −a x x b, , , ,l1 1  that are 1/2 and 3/2, 
respectively, and ( / )# 1, 1 2  is the number of ordered pairs ( )+x x,i i 1  in this ket that are equal 
to (1, 1/2)—taking the cases i  =  0 and i  =  l  −  1 into account as well. We remind that d1/2 is 
the quantum dimension of the anyon type 1/2, which for k  =  3 is equal to the golden ratio 

( )/φ = +: 1 5 2, by equation (8).
There is another type of ground states, which we call ground states of type two, such that, 

in their expansions, only those basis states ⟩| … −a x x b, , , ,l1 1  contribute that have their labels in 
the set {1/2, 1}. The coefficients in this case, take the following pattern:

( ){ }
( / )

/
( / )

= −
×

C d1 .x
ab # 1 2

1 2

1
2

# 1,1 2

i
 (34)

From the structure of the two types of ground states, we can deduce the number of zero-
energy ground states for each boundary condition. The ground state of the first type is present 
for all sixteen boundary conditions, while the ground state of the second type only occurs if 
both labels a and b belong to the set {1/2,1}. We indicate this by the matrix

( )

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

==M

1 1 1 1
1 2 2 1
1 2 2 1
1 1 1 1

,k 3 (35)

where the rows and columns correspond to the labels 0, 1/2, 1, and 3/2 in this order.
Having understood the structure of the zero-energy ground states for k  =  1 and k  =  3, we 

now consider a generic odd k. Guided by numerical diagonalization of small system sizes, we 
found the ground states for odd k in general. For large enough system size, namely for ⩾l k, 
the number of zero-energy ground states of the system is (k  +  1)(k  +  2)(k  +  3)/6 that can be 
viewed as (k  +  1)/2 different types, according to the labels present in the basis states appearing 
in their expansions.

For a ground state of type one, the labels xi of the basis states ⟩| …x x x, , , l0 1  with non-zero 
coefficients all belong to the set { / ( )/ ( )/ / }… − −k k k0, 1 2, 1, , 2 2, 1 2, 2 . In other words, all 
basis states have non-zero coefficients in this case. For a ground state of type two, all the labels 
xi belong to the set { / ( )/ ( )/ }… − −k k1 2, 1, , 2 2, 1 2 , that is, any basis state with at least one 
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label xi equal to zero or k/2 has zero coefficient. In general, for a state of type n, the labels of 
basis states with non-zero coefficient belong to the following set:

{ }( ) ( )!− + − + − −n n k n k n1
2

,
1

2
, ,

1
2

,
1

2
. (36)

To explicitly express the coefficients of the basis states in each type of these ground states, 
we introduce a piece of notation first. For fixed odd k and integer n, ⩽ ⩽ ( )/+n k1 1 2, and for 

( )/= + … +i n n k, 1, , 1 2, we define D(k, n, i) by

( )
     
     

/
/

( )/ ( )/
/

/
/

( )/ ( )/

/
/

( )/ ( )/
/

/
/

( )/ ( )/
⎪
⎪⎧⎨
⎩

=
−

−
−
−

−
− −

− − − −

−
−

−
− −

+ − − + +

D k n i
d d d d d d i n

d d d d d d i n
, ,

, if is odd,

, if is even.

k i i i n k n i

k i i n i k n i

1 2
1 2

1 4
1

1 2
1 2

2
1 2

1 4 4

1 2
1 2

1 4
1

1 2
1 2

2
1 2

2 4 1 4

 

(37)

Now let ⟩ψ|  be a type-n ground state and let ⟩| …x x x, , , l0 1  be a basis state that appears in the 
expansion of ⟩ψ|  with constraints on xi’s explained above. The coefficient of this basis state in 
the expansion of ⟩ψ|  is

( ) [ ( )]
( )/
∏− θ

=

+
D k n i1 , , ,m

i n

k 1 2
i (38)

where m is the number of half-integers in ⟩| …x x x, , , l0 1 ,

( ⩽ ⩽ ( )/ )⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠θ = − + − + − −i i k i k i

n i k: #
2

,
1

2
#

1
2

,
2

, 1 2 ,i (39)

and

( )/ ⎜ ⎟⎛
⎝

⎞
⎠θ = + −

+
k k

: #
1

4
,

1
4

.k 1 2 (40)

Here ( )r s# ,  refers to the number of pairs ( )+x x,i i 1  composed of labels in ⟩| …x x x, , , l0 1  that are 
equal to the ordered pair (r, s). This completes the description of the explicit form of the zero-
energy ground states.

We mention that the number of zero-energy ground states follows the same pattern as for 
k  =  1 and k  =  3. Explicitly, the entries mij of the matrix M(k), analog to matrices (32) and (35), 
encoding the number of ground states are given by

{ }⎡
⎣⎢

⎤
⎦⎥= + − | − | | − |m k k i k j

1
2

2 max 4 , 4 ,ij (41)

where i and j run over the values / /… k0, 1 2, , 2.

4.2. Zero-energy ground states, closed chain

In this section, we deal with the ground states of the closed chain. Interestingly, we find 
that the number of zero-energy ground states differs from the open case. As in the previous 
section, k has to be odd, otherwise, no zero-energy ground states exist, if the system is large 
enough.

For a closed chain, we have that =x xl 0, therefore, as mentioned earlier, we label the states 
in the Hilbert space by the kets ⟩| … −x x x, , , l0 1 1 . In terms of the Hilbert space of the open chain, 
we have
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H H⨁
L

=
∈

.
a

aa
cl op

k
 (42)

The Hamiltonian is now a sum over l terms = ∑ =H hi
l

i1 —including one more term com-
pared to the Hamiltonian for the open case. This additional term acts on the label =x xl0 , 
which is not left invariant by the Hamiltonian anymore.

To find the zero-energy ground state ⟩ψ|  of the closed chain, we take all the ground states of 
the open chain with the boundary conditions = =x x al0 . On these states, we need to impose 
an additional constraint, namely, ⟩ψ| =h 0l . This additional constraint reduces the number of 
zero-energy ground states. The result is that there is exactly one ground state for each ‘type’ of 
ground state that was introduced in the previous section. In this case, the unique zero-energy 
ground state of type n, denoted by ⟩|GSn , can be explicitly written as

〉 ( ) [ ( )] 〉
{ }

( )/⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∏| = − | …θ

=

+

−D k n i x x xGS 1 , , , , , ,n
x

m

i n

k

l

1 2

0 1 1
i

i (43)

where the sum is over all possible labels chosen from the set (36). As is apparent in the 
formula above, the form of the coefficients are exactly the same as for the open case, 
but this time m refers to the number of half integers in ⟩| … −x x x, , , l0 1 1 , and although θi, 

( )/= + … +i n n k, 1, , 1 2, is defined as mentioned in equations (39) and (40), but this time 
( )r s# ,  refers to the number of ordered pairs ( )+x x,i i 1  in ⟩| … −x x x, , , l0 1 1  equal to (r, s), where 

we use the identification =x xl 0.

5. Integrability of the model

In the previous section, we studied the model for the parameters chosen in such a way that the 
Hamiltonian becomes a sum of projectors. This allowed us, for odd k, to find the zero-energy 
ground states of the model. In this section, we investigate if the parameters in the model can 
be chosen such that the model becomes integrable. We refer to [35] for an introduction on the 
Yang–Baxter equation and transfer matrices.

We start by briefly recalling the situation for the dense anyon chain where all l sites are 
occupied, that is, yi  =  1/2 for all i. In this case, the only types of terms that survive in the 

Hamiltonian are the ‘interaction’ terms hJ and µh 1
2

1
2
. Letting µ= =J 11

2
1
2

, µh 1
2

1
2
 acts as the iden-

tity operator and hi,J acts as a projector that assigns an energy  +1 to two neighboring anyons, 
if they fuse to the zero channel, and assigns energy zero, if they fuse to the one channel. 
Therefore, up to an overall shift, = ∑ =H hi i J, 1. It is straightforward to see that the operators 
ei, = …i l1, 2, , , defined by /= =e d hi i J1 2 , 1 satisfy the Temperley–Lieb algebra, namely,

   
   

[ ]   ⩾

/=
=
= | − |

±

e d e i
e e e e i
e e i j

, for all ,
, for all ,

, 0, for 2.

i i

i i i i

i j

2
1 2

1 (44)

It is instructive to give a pictorial representation of the Temperley–Lieb algebra. Consider a 
chain of l sites, corresponding to the l spin-1/2 anyons of the dense anyon model and, for each 
site, draw a vertical line as is depicted on the left in figure 5. This picture is associated with the 
identity operator acting on the l sites. The picture associated with the operator ei is depicted 
on the right panel of figure 5. The operator ei is represented in a similar way, except that now 
sites i and i  +  1 are connected by a line at the top and a line at the bottom.
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Multiplying two operators corresponds to gluing the picture of the operator sitting on the left 
on top of the picture of the operator sitting on the right. Two additional rules also apply. Firstly, 
two pictures are the same if they can continuously be deformed into one another. Secondly, a 
closed loop corresponds to a factor of d1/2. Actually, the first rule ensures =±e e e ei i i i1 , for all i, 
and [ ] =e e, 0i j , for ⩾| − |i j 2, and the second rule ensures the relation /=e d ei i

2
1 2 .

We now recall briefly how the Temperley–Lieb algebra can be used to show that the dense 
anyon model is integrable. For more details the reader is referred to [12].

First, one constructs a one-parameter family of matrices Ri(u), called R- matrices, such that 
each one of them satisfies the Yang–Baxter equation:

( ) ( ) ( ) ( ) ( ) ( )+ = ++ + +R u R u v R v R v R u v R u .i i i i i i1 1 1 (45)

From the R-matrices, one in turn constructs a new one-parameter family of matrices T(u):

( ) ( )∏=T u R u: ,
i

i (46)

called the transfer matrices. It follows from equation (45) that [T(u),T(v)]  =  0, for all values 
of the parameters u and v. Using the transfer matrix T(u), one defines a Hamiltonian H through

( ) ( )= − +T u e ,u H o u2 (47)

from which one obtains the following explicit form for the Hamiltonian H:

( ) ( ) ( )∑= − = − =
=

−

=

H
T u
u

R u
R u

u
d ln

d
0

d
d

.
u i

i
i

u0

1

0

 (48)

By its definition, the Hamiltonian H commutes with the transfer matrices and, hence, has a 
large number of conserved quantities, implying that the model is integrable.

Turning back to the case of the dense anyon model, consider the one-parameter family of 
matrices Ri(u) defined by

( ) ( )⎛
⎝⎜

⎞
⎠⎟

π=
+
− +R u

k
u u e1sin

2
sin .i i (49)

Here, the index i has a similar meaning as in the Hamiltonian, namely, it indicates where the 
corresponding matrix acts, and k is the same as in su(2)k. Using only the algebraic properties 
of the operators ei given in (44), one can show that the Ri(u) matrices, given by (49), satisfy 
the Yang–Baxter equation. Therefore, from the recipe outlined above, one gets the following 
Hamiltonian:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑= − = −π π

+ +
=H

d
e h1 1

2
tan

1
2

1 2
tan

1
2

.
k i

i

k i
i J

2 1 2 2

, 1( ) ( )/
 (50)

This Hamiltonian, up to a shift and a negative overall scale factor, is simply the Hamiltonian 
= ∑ =H hi i J, 1, which describes the dense anyon chain. Hence, as mentioned above, it should 

1 =

1 2 i i + 1 l − 1 l

, ei =

1 2 i i + 1 l − 1 l

Figure 5. Graphical representations of the identity operator 1 and the operator ei.
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be possible to solve the model. Although doing this turns out to be complicated, however, 
the solution was obtained by Andrews, Baxter, and Forrester, who solved the associated two-
dimensional statistical mechanics model [36].

We now turn our attention to the dilute anyon model and start by describing the algebraic 
structure that we need to construct R-matrices that satisfy the Yang–Baxter equation in this 
case. This structure was introduced by Warnaar et al [37]. Here we follow their presentation.

In the dilute model, sites can be empty. We represent an empty site by a dashed line. 
Compared to the dense anyon model, where the only operators considered were the identity 
operator and e, the presence of empty sites for the dilute anyon model provides us with the 
possibility to consider additional operators. We introduce these operators by means of their 
pictorial representation. For ease of presentation, we give these pictures for a system of two 
sites only. For a larger system, one should think that the strands correspond to sites i and i  +  1 
and any operator with index i acts as the identity operator on other sites. The operators we 
need are depicted in figure 6.

The first four operators e0, er, el, and elr correspond to the identity. The operators e− and 
e+ move an occupied site one place to the left and right, respectively. The operators ea and ec 
correspond to the annihilation and creation of particles at neighboring sites. Finally, e is the 
same as before.

Multiplication of the various operators is determined as mentioned earlier, namely, by 
stacking pictures on top of one another, acting from right to left. Hence, the product β αe e  
means that we stack the picture of βe  on top of the picture of αe . One should note that multi-
plication of two operators is, by definition, non-zero only if the dashed and solid lines corre-
sponding to their pictorial representations match, in the sense that if at some site i from the 
picture below a dashed (solid) line is terminated, the line originated from the same site i in 
the picture above must be a dashed (solid) line as well, for all i. For example, =α +e e 0 for all 
α≠ −r, ; in addition, =− +e e el and =+ +e e er . We again have the rule that pictures which can 
continuously be deformed into each other are equivalent and a closed full loop corresponds 
to a factor d1/2. Moreover, in this case, a closed dashed loop can be removed without any fac-
tor or better to say, with a factor d0  =  1. With the rules above, one can establish the relations 
=e e ea a0  and =e e ec c0 , that is, e0 acts as the identity on ‘matching operators’. The same is true 

for el, er, and elr. Other non-trivial relations with two operators are /=e e d ea c 1 2 0, /=e e d ea a1 2 , 
=e e ec a , and /=ee d ec c1 2 .

Following a case-by-case-check strategy, we verified that the above-mentioned algebraic 
relations for αe  operators are realized by the terms present in the Hamiltonian, provided that 
one makes the following identifications:

( ) /
/

/
/

/

µ µ µ µ= = = =

= + = ∆ = ∆ =′

µ µ µ µ

− + ∆
−

∆
− −

h e h e h e h e

h t e e h d e h d e h J d e

, , , ,

, , , .

r l lr

t a c J

00 0 0 1
2

1
2

0 1
2

1
2

1 2
1 2

1 2
1 2

1 2
1

00 0 1
2

1
2

0 1
2

1
2 

(51)

e0 = , er = , el = , elr = , e− = , e+ =

ea = , ec = , e =

Figure 6. The nine different types of operators corresponding to the dilute anyon model.
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With the algebraic structure in place, we use the results of [37] to construct R-matrices that 
satisfy the Yang–Baxter equation. Consider the following family of matrices:

λ λ λ λ λ λ
λ λ
λ λ λ

= + + + + +
+ + + + +
+ + + + +

+ −

R u u u e u e e
u e e u u e e

u u e u u e

; : sin 2 cos 3 sin cos 3 sin 2 cos 3
sin 2 sin sin cos 3
sin 2 cos 3 sin cos ,

i i i l i r

i a i c i i

i lr i

,0 , ,

, , , ,

,

( ) [ ( ) ( ) ( ) ( )] ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

 
(52)

where we reinstated the subscript i on the operators, denoting on which site the operator 
acts. One can verify—using only the algebraic properties of the αei, ’s—that these R-matrices 
satisfy the Yang–Baxter equation  (45), provided that ( ) /λ− = d2 cos 4 1 2. On the other 
hand, in our Hamiltonian describing the dilute anyon system, from equation  (8), we get 

[ /( )]/ π= +d k2 cos 21 2 . This puts a constraint on λ, namely, λ π=± + ± +k k2 1 4 2( )/[ ( )].
Since the terms in the Hamiltonian satisfy the algebraic relations of the operators αe , one 

can use the same procedure as outlined above for the dense anyon model to find a Hamiltonian 
that commutes with a set of commuting transfer matrices. Using the R-matrices introduced 
by equation  (52), the coefficients of the various terms in the Hamiltonian can be obtained 
from equation  (48) and identifications (51). The result, up to the overall scaling factor 

( ) ( )λ λ− sin 2 cos 3 , is as follows:

( ) ( ) ( ) ( )

( ) ( ) ( )/ /
/

µ λ µ µ λ λ µ λ

λ λ λ

= = = − =

= = ∆ =t J d d

cos 3 , sin 2 sin 3 , cos 5 ,

cos 3 , cos , sin 2 ,

00 0 1
2

1
2

0 1
2

1
2

1 2 1 2
1 2

 (53)

where λ can take the values ( )/[ ( )]π± + ± +k k2 1 4 2 . As mentioned earlier, the system is 
integrable at the points corresponding to these values for λ.

As relations in (53) show, the only coefficient that is odd in λ is ∆, which corresponds to 
the term in the Hamiltonian that creates and annihilates pairs of anyons. Numeric indicates 
that the sign of this term does not change the spectrum of the model. This means that, instead 
of investigating all four values for λ, we can concentrate ourselves on only two of them, 
namely, ( )/[ ( )]λ π= + +k k: 3 4 21  and ( )/[ ( )]λ π= + +k k: 1 4 22 , provided that we consider 
both the Hamiltonian as defined by the coefficients as given in (53), as well as minus that 
Hamiltonian, which of course also commutes with the transfer matrix.

Based on the original paper [37], for the dilute loop model under consideration there, the 
points corresponding to these values of λ are all critical points. There, using the equivalence 
to the O(n) model [38, 39], the authors have quoted the values of the central charge c corre-
sponding to these critical points. Expressed in terms of the parameter k that is used in this 
paper, these central charges are given, for each value of λ, in the following tables:

λ
π

π

λ
π

π

+
+

−
+ +

+
+

−
+ +

− +
+

+ −
+ +

− +
+

+ −
+ +

c
k
k k k
k
k k k

c
k
k k k
k
k k k

3
4 2

1
6

2 3
1

4 2
1

6
1 2

3
4 2

1
2

1
6

1 2
1

4 2
1
2

1
6

2 3

( )
( ) ( )( )
( )
( ) ( )( )

( )
( ) ( )( )
( )
( ) ( )( )

These central charges point in the direction of minimal-model CFTs. Even though the central 
charges are known in the setting of the dilute loop models studied in [37], it is still interest-
ing to investigate the situation for the anyon model we introduced. This is because the central 
charge, on its own, does not in general fully determine the corresponding CFT. We mention 
that Zhou and Batchelor [40] studied these models using the Bethe Ansatz.
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5.1. Identifying the critical points

In this section, we study the dilute anyon Hamiltonian at the integrable points that were identi-
fied in the previous section. Let H1 and H2 denote the dilute anyon Hamiltonian corresponding 
to integrable points λ λ= 1 and λ λ= 2, respectively. As mentioned earlier, to investigate all 
four integrable points determined in the previous section, it suffices to consider the spectra of 
all four Hamiltonians ±H1 and ±H2. In each case, using exact diagonalization for small system 
sizes, we obtain the low-lying part of the spectrum numerically. Since the dimension of the 
Hilbert space increases rapidly with both system size and k, we limit ourselves to k  =  1, 2, 3.

For a one-dimensional critical system that can be described in terms of a conformal field 
theory, the energy of the states, as a function of the system size l to order 1/l, takes the fol-
lowing form:

( ) !π π= − + + +E E l
vc
l

v
l

h n
6

2
2 ,s i (54)

where the non-universal constants Es and v are the energy per site and the velocity. The con-
stant c denotes the central charge of the conformal field theory, hi’s are the scaling dimensions 
of the fields of the CFT, and n is a non-negative integer. For the primary fields n  =  0, while 
positive n’s give the states corresponding to the descendants at level n. We refer to the [41, 42] 
for an introduction on CFT.

In the case of physical (Hermitian) Hamiltonians, the corresponding CFT is unitary. This 
means that the scaling dimension h0  =  0 of the identity field is the smallest scaling dimension. 
In addition, the possible values of the central charge and the possible scaling dimensions are 
highly constrained. Therefore, the strategy to identify which CFT (if any) describes the spec-
trum at a given integrable point is as follows.

For a given system size, we obtain the low-lying part of the spectrum. We then shift and 
rescale the obtained spectrum in order to eliminate the non-universal constants in energies 
given by equation (54). For the ground state of the system, one has hi  =  n  =  0. Hence, the 
ground-state energy is given by = − πE E ls

vc
l0 6

. We shift the levels by setting the ground-state 
energy to zero. The energy E1 of the lowest excited level corresponds to the field with the low-
est non-zero scaling dimension, which we denote by hlow. We rescale the spectrum such that 
E1  =  1. After this shift and rescaling, the energies are given by

= +
E

h n
h

2
2

,i

low
 (55)

which does not depend on Es and v and, therefore, it can be compared with the predictions for 
various conformal field theories. Once the CFT has been identified, one can rescale the energy 
such that =E h21 low and the generic energies take the form E  =  2hi  +  n. This rescaling will be 
used in the plots of the various energy spectra in the next section. One should note that CFT 
does not predict at which momenta the primary fields occur, however, each time n increases 
by one, the momentum of a state changes by one, in units of /π l2 , as well. In the next section, 
we specify at which momenta the various primary fields occur.

In the case of the dense anyon models, the minimal-model CFTs play an important role. 
From the central charges that we quoted in the previous section, we expect that this will also 
be the case for the dilute anyon models we consider. We therefore give the central charge and 
scaling dimensions of the (unitary) minimal-model CFTs.

The unitary minimal models Mm are labeled by a parameter m that takes integers 
greater  than or equal to three. The central charge of these minimal models are given by 
c  =  1  −  6/[m(m  +  1)]. The primary fields of Mm, denoted by φr s, , are labeled by two integers 
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r and s with ⩽ ⩽r m1  and ⩽ ⩽ −s m1 1. The labels (r,s) and (m  +  1  −  r,m  −  s) correspond 
to the same field, so Mm has m(m  −  1)/2 primary fields. The scaling dimension hr,s of φr s,  is 
given by

[ ( ) ]
( )

= − + −
+

h
mr m s

m m
1 1

4 1
.r s,

2

 (56)

5.1.1. The integrable point λ1. We start by considering the low-lying part of the spectrum of 
the Hamiltonian H1, for k  =  1,2,3, and relatively small system sizes. We find that the spectra, 
for each value of k, can be described in terms of the simple minimal model M +k 2 and, conse-
quently, λ1 is a critical point. More explicitly, for k  =  1, the system is described by the Ising 
CFT, for k  =  2, the system is described by the tri-critical Ising CFT, and so on. We mention 
that in [43], the CFT describing H1 for k  =  2 was already identified as the tri-critical Ising 
CFT. Our findings are consistent with this result.

As an illustration, in the left panel of figure 7, we display the spectrum of H1 for k  =  3 and 
l  =  14 as a function of the momentum K.

The crosses denote the energy levels, while the horizontal lines, drawn for ease of com-
parison, denote the CFT predictions of M5 for states with an energy E  <  3.5. The black lines 
denote primary fields, while the red, the blue, and the green lines denote descendants at orders 
1, 2, and 3, respectively. We observe that, even for this moderate system size, the numerically 
obtained spectrum matches the CFT prediction well. We observe that all the primary fields 
occur at momentum K  =  0, which is also the case for k  =  1 and k  =  2. We expect this to be 
true for higher k’s as well. We continue with the low-lying part of the spectra of  −H1, again for 
k  =  1, 2, 3. This time, we could identify the corresponding CFT as a product of two minimal 
models. For k  =  1, the CFT is just M3, namely, the Ising CFT. We find that, for k  =  2, the CFT 
is the product of two Ising CFTs and, for k  =  3, it is the product of the Ising and tri-critical 
Ising CFTs. Hence, λ− 1 is also a critical point. In general, the CFT describing this critical 
point is M M× +k3 1, where we identify M2 with the completely trivial CFT, that is, the one 
containing just the vacuum state.

We display the spectrum of  −H1, for k  =  3 and l  =  14, in the right panel of figure  7. 
Despite the rather small system size, we observe a good match with the M M×3 4 CFT and 
the fact that some of the primary fields occur at momentum π=K  that effectively reduces the 
system size.

To describe, in general, the momenta of the states corresponding to the primary fields, we 
label the fields of the M M× +k3 1 CFT by ( ( ))r s1, , , ( ( ))σ r s, , , and ( ( ))ψ r s, , , where the first 
label corresponds to the fields of M3 and the second label (r,s) corresponds to the fields of 
M +k 1. So, ⩽ ⩽ +r k1 1 and ⩽ ⩽s k1 . We observed that the states corresponding to all the 
primary fields ( ( ))r s1, ,  and ( ( ))ψ r s, ,  occur at K  =  0, while all the primary fields ( ( ))σ r s, ,  
occur at π=K .

5.1.2. The integrable point λ2. For the second integrable point, we could determine whether 
or not a CFT describes the low-lying part of the spectrum for H2 and we could also identify 
the corresponding CFT for the cases for which such a CFT exists, but we did not succeed in 
identifying a CFT for  −H2 in general.

By considering the low-lying part of the spectrum of H2 for k  =  1, we found that the spec-
trum does not allow for a description by a CFT in this case. We comment on this below when 
we discuss the spectrum of  −H2. For k  =  2, we again find that the spectrum of H2 is described 
by the simple minimal model M3, namely, the Ising CFT. In figure 8, we give the spectrum 
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for this model for a system with 16 sites. We observe that, roughly up to energies ≈E 7, this 
spectrum follows the CFT prediction, which is remarkably high for a system of this size. For 
k  =  3, the spectrum is described well by the minimal model M4.

Based on these observations, the general picture that results is as follows. For ⩾k 2, the 
low-lying part of the spectrum of H2 is well described by the minimal model M +k 1. Hence, 
λ2 is a critical point, if ⩾k 2, and it is not a critical point, if k  =  1. As was the case for the 
low-lying part of the spectrum of the critical point of H1, we observe that all the states that 
correspond to the primary fields have momentum K  =  0.

Finally, we turn our attention to the case  −H2. In this case, as indicated above, we had 
problems identifying the correct CFT describing the critical behavior. We focus our attention 
on the case k  =  1. Even though the spectrum has features that are reminiscent of a spec-
trum described by a CFT, we could not find an obvious match. In principle, there are many 
causes that can make identifying the CFT hard. One possible reason is the presence of large 
finite-size effect. To gain insight in the situation, we studied the k  =  1 Hamiltonian for gen-
eral parameters in more detail. In particular, in appendix B, we map this Hamiltonian onto a 
Hamiltonian for a spin-1/2 chain.

For periodic boundary conditions, the spin-1/2 Hamiltonian one obtains, splits into two 
sectors. In both sectors, the number of down spins is even and the only difference between 
the two sectors lies in the boundary conditions. One sector has periodic boundary conditions, 
while the other sector has anti-periodic boundary conditions. Using the parameters corre-
sponding to the integrable point λ2, that is, considering H2, we find that the corresponding 
spin-Hamiltonian takes the form:

( )∑ σ σ σ σ σ σ= − +=
+

=
+ + +H ,k

i

l

i
x

i
x

i
y

i
y

i
z

i
z

1
1

1 1 1 (57)

[( ) ( ) ]∑ σ σ σ σ σ σ= − − +δ
=
−

=
+ + +H 1 .k

i

l

i
x

i
x

i
y

i
y

i
z

i
z

1
1

1 1 1
il (58)

See equations (B.5) and (B.6) in appendix B. Apart from the difference in the sectors and 
the minus sign of the σ σ +i

y
i
y

1 term, this is just the ordinary spin-1/2 Heisenberg model. We 
note that swapping the sign of the σ σ +i

y
i
y

1 term, merely results in a change of the sign of all the 
energies, hence, we find that H2 corresponds to −HHeisenberg, where σ σ= ∑ ⋅ +H i i iHeisenberg 1. 
We are interested in identifying the low-lying part of the spectrum of  −H2 that, for k  =  1, cor-
responds to the low-lying part of the spectrum of HHeisenberg.

Figure 7. (Left) The spectrum of H1, k  =  3 and l  =  14, and the CFT predictions of 
the M5 minimal model. (Right) The spectrum of  −H1, k  =  3 and l  =  14, and the CFT 
predictions of the ( )M×Ising 4  conformal field theory.
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It is known that the finite-size spectra of the Heisenberg model exhibit large finite-size 
effects, see for instance [44]. This is the reason that it is hard to determine the correct CFT 
by means of exact diagonalization of small systems. Luckily, one can perturb the Heisenberg 
model in such a way that one does not open a gap in the system and, in the meantime, effec-
tively reduces the finite-size effect. This can be achieved by adding a Heisenberg term with a 
next-nearest-neighbor coupling:

( )∑ σ σ σ σλ= ⋅ + ⋅+ +H .
i

i i i i1 2 (59)

The reader is referred to [44] for details. Increasing λ from λ = 0 to λ ≈ 0.241 167c , gradu-
ally reduces the finite-size effects. For λ λ> c, the system becomes gapped and enters the 
Majumdar–Ghosh phase [31, 32].

Based on this, we can reduce the finite-size effects by studying the dilute anyon model that 
includes both nearest-neighbor and next-nearest-neighbor terms. We did this for the k  =  1 
anyon model, which corresponds to the Heisenberg spin-1/2 chain by taking the parameters 
for the nearest-neighbor terms to be µ = 00 , µ µ= = −11 2 , t  =  1, ∆ = 0, and J  =  1. For the 
notations used for these parameters, see the last two lines of the forth paragraph of appendix 
B. The low-lying part of the spectrum of this model corresponds to the low-lying part of the 
spectrum of  −H2. The parameters of the next-nearest-neighbor terms are obtained from the 
nearest-neighbor ones by multiplying them with λc.

In figure  9, we show the spectrum of this model for a system of size l  =  20. The 
energy levels are denoted by the crosses. For comparison, we also include the states of 
the model without the next-nearest-neighbor terms, which are denoted by small dots. 
One observes that the effect of adding the next-nearest-neighbor terms does change the 
spectrum significantly.

From the spectrum including the next-nearest-neighbor terms, we can identify the CFT 
that describes the critical behavior of the  −H2 model with k  =  1. The CFT is a compacti-
fied boson with c  =  1 and has eight primary fields whose scaling dimensions are /=h p 16p

2 , 
where = ± ± ±p 0, 1, 2, 3, 4. The momenta of the states corresponding to the primary fields 
are given by / ( )π πp 2 mod 2 . In figure 9, for states with ⩽E 2.5, we also indicate the CFT 

Figure 8. The spectrum of the model Hamiltonian H2 for k  =  2 and the CFT predictions 
of the Ising CFT. The full blue lines indicate the energies corresponding to the primary 
fields and the dashed red lines correspond to the descendants.
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primary fields (black lines), first descendants (red lines), and second descendants (blue lines). 
We find that the numerically obtained energies match this CFT spectrum well.

To provide further evidence that we correctly identified the CFT, we give the prediction of 
the multiplicities of the states for this CFT and the closely related one, namely, the four-state 
Potts CFT. In the case of particular twisted boundary conditions, this CFT describes the criti-
cal behavior of the spin-1/2 Heisenberg model [45]. The four-state Potts CFT also has c  =  1 
and can be viewed as the ‘orbifold’ of the compactified boson CFT with eight primary fields. 
The multiplicities can be obtained from the characters of these CFTs [46]. These multiplicities 
together with the numerically obtained multiplicities for  −H2 with k  =  1 are given in table 1. 
We find perfect agreement with the u(1)8 CFT, while the 4-state Potts CFT , even for the 
lowest-lying states, does not give the right multiplicities.

Given that it was hard to determine the CFT describing the critical behavior of the model 
Hamiltonian  −H2 for k  =  1, it is not surprising that it is hard to figure out the CFT for higher 
values of k. We leave this for future work.

We close the discussion on the integrable point λ2 by commenting on the observation that 
the spectrum of the model Hamiltonian H2 for k  =  1 is not described by a CFT. By using the 
mapping to the spin model, we found that this spectrum is described by the ferro-magnetic 
spin-1/2 Heisenberg model. It is known that this model is gapless, but the excitations, so-
called spin waves, have a quadratic dispersion instead of the linear dispersion that is predicted 
by CFT.

To conclude this section, we mention that we were able to identify the CFT that describes 
the spectra of the Hamiltonians H1 and  −H1 for ⩾k 1, and the Hamiltonian H2 for ⩾k 2. Not 
surprisingly, in each case, the central charge of the CFT matches the central charges obtained 
in [37] for the dilute loop models. For the Hamiltonian  −H2, the analysis is hampered by large 
finite-size effects. Nevertheless, we determined the CFT describing this model, for k  =  1, as 
compactified boson CFT with central charge equal to one. Again, the central charge matches 
the value obtained for the dilute loop model. However, it was not clear that which CFT with 
central charge equal to one would be the right description. Other possibilities would have 
been the product of two Ising CFTs or the 4-state Potts CFT. In light of this, it is interesting to 
investigate this model for higher values of k in more detail.

Figure 9. The spectrum of the model Hamiltonian  −H2 for k  =  1 with next-nearest-
neighbor terms (crosses) as well as with only nearest-neighbor terms (dots). The CFT 
predictions for the u(1)8 CFT are indicated by the black lines (primary fields), the red 
lines (first descendants), and the blue lines (second descendants).
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6. Conclusion

In this paper we introduced a one-dimensional anyon model with the feature that the number 
of anyons, the spin-1/2 anyon of su(2)k, is allowed to fluctuate. This is achieved by adding 
a pairing term that creates and annihilates pairs of anyons on neighboring sites. This term is 
analogous to the pairing term that creates Cooper pairs in mean-field description of supercon-
ductors, such as the Kitaev chain model of a one-dimensions p-wave superconductor.

We studied the model at five special points. At the first point, the model is a sum of projec-
tors. For k odd, there are exact zero-energy ground states which indicates that the model is 
gapped. For even k, there are no such exact zero-energy ground states and it would be interest-
ing to study the model in more detail to determine if the model is also gapped at this point.

At the other four points, the system is integrable for all values of k. At these points, corre-
sponding to four different choices of the parameters, the model is gapless and we were able 
to determine the CFT description in three out of the four cases. In the remaining case, large 
finite-size effects were the cause that exact diagonalization of small system sizes does not 
yield enough information to determine the CFT. For k  =  1, however, the Hamiltonian maps to 
a particular version of the spin-1/2 Heisenberg for which one can reduce the finite-size effects 
by adding next-nearest-neighbor terms. It would be interesting to see if one can reduce the 
finite-size effects in a similar way for higher values of k.

As is already noted in [12], the anyon models are closely related to two-dimensional sta-
tistical-mechanics-models, namely the so-called ‘restricted solid on solid models’ (RSOS), 
which were introduced by Andrews, Baxter and Forrester [36]. Using this connection, it is 
possible to obtain information about the critical point of the anyon models. RSOS models 
have attracted much attention over the years and various generalizations have been consid-
ered, see for instance [37, 47, 48]. Much more recently [49], a generalized RSOS model was 
constructed to solve an integrable point of the anyon models considered in [15]. It would 
be interesting to see if the techniques introduced by Andrews, Baxter and Forrester can by 
employed to shed light on the critical point for which we could not identify the CFT for arbi-
trary k.

Finally, we mention that we did not embark on a more detailed numerical study of the 
model, but we hope that the behavior at the special points mentioned above can be a guide for 
such a study.
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Table 1. The multiplicities predicted by the u(1)8 and 4-state Potts CFTs, as well as the 
numerically obtained multiplicities for  −H2 for k  =  1.

E 0 1/8 1/2 1 9/8 3/2 2 17/8 5/2

u(1)8 1 2 2 2 6 4 9 18 14
4-state Potts 1 3 1 0 9 2 5 27 7
−H2 for k  =  1 1 2 2 2 6 4 9 18 14
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Appendix A. The F-symbols

The form we use for F-symbols in this article deviates slightly from the ‘standard form’. 
In this appendix, we explicitly give the F-symbols for the su(2)k fusion rules that we use in 
this paper. In particular, it is convenient for our purposes that the F-symbols we use in the 
Hamiltonian are all positive.

We denote the standard form of the F-symbols by 
∼
F , which is derived in [29, 30], and we 

give it here for completeness:

(
)

( ) ( ) ( ) ( ) ( ) ⌊ ⌋ ⌊ ⌋
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.

d ef
abc a b c d

q q

n m

M
n q

q q q

q q q q

;

 (A.1)
Here for any real number r, the so-called q-number ⌊ ⌋r q, is defined by

⌊ ⌋
/ /

/ /
⎛
⎝⎜

⎞
⎠⎟

π=
−
−

=
+

−

−r
q q
q q

q
k

, : exp
2 i

2
,q

r r2 2

1 2 1 2 (A.2)

and for a non-negative integer n, the q-factorial n !q⌊ ⌋  is defined by

!= − =n n n! 1 1 , 0 ! : 1.q q q q q⌊ ⌋ ⌊ ⌋ ⌊ ⌋ ⌊ ⌋ ⌊ ⌋ (A.3)

Moreover, for labels a, b, and c from { / / }… k0, 1 2, , 2 , with ⩽ +a b c, ⩽ +b c a, ⩽ +a b c, and 
+ + =a b c 0 mod 1( ),

( )
⌊ ⌋ ⌊ ⌋ ⌊ ⌋

⌊ ⌋
∆ =

+ − − + − + +

+ + +
a b c

a b c a b c a b c

a b c
, , :

! ! !

1 !
.q q q

q
 (A.4)

Finally, summation-limits m and M are defined by

{ }= + + + + + + + +m a b e c d e b c f a d fmax , , , , (A.5)

{ }= + + + + + + + + +M a b c d a c e f b d e fmin , , . (A.6)

These values for summation-limits guarantees that the arguments of q-factorials appeared in 
equation (A.1) to be non-negative integers. The quantum dimensions dj relate themselves to 
the notion of q-numbers through the relation ⌊ ⌋= +d j2 1j q. For the solutions given by equa-
tion (A.1), the 

∼
F -matrices are their own inverses.

The F-symbols that appear in the Hamiltonian of our model take the form 
∼

±F x x
x
; ,01

2

1
2

1
2 . From 

equation (A.1), one finds:

( / )
/

/ /

/ /

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥=

−
< <∼ − +

+ −

F
d d

d d

d d
x k

1
, 0 2 ,x

x

x

x x

x x

1
2

1
2

1 2

1 2 1 2

1 2 1 2

 (A.7)

where the rows correspond to e  =  x  −  1/2, x  +  1/2 and the columns to f  =  0, 1, respectively.
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In general, the F-symbols have the following gauge freedom. If a set of F-symbols 
∼
F d ef

abc
;  is 

a solution to the Pentagon equations, then the set of F-symbols Fd ef
abc

;  defined by

= ∼
F

u u

u u
F ,d ef

abc f
bc

d
af

e
ab

d
ec d ef

abc
; ; (A.8)

where uc
ab are arbitrary constants and are called gauge factors, is an equivalent solution—

equivalent in the sense that although the new set of F-symbols change the explicit form of the 
Hamiltonian in general, but the new Hamiltonian has the same spectrum as the previous one.

In this paper, all gauge factors have been assigned either  −1 or  +1. We have assigned  −1 
to gauge factors of the forms ua

a0 and +ua
a ,1

2
1
2, if a is a half-integer, and also to gauge factors of 

the form ua
a1, if a is an integer. In all other cases, the gauge factors have taken to be  +1. One 

can check that in this gauge, all the F-symbols that appear in the Hamiltonian are positive. 
More explicitly, we have:

/

/ /

/ /

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥=

−

− +

+ −

F
d d

d d

d d

1
.x

x

x

x x

x x

1
2

1
2

1 2

1 2 1 2

1 2 1 2

 (A.9)

Again the rows correspond to e  =  x  −  1/2, x  +  1/2 and the columns to f  =  0, 1, respectively.

Appendix B. Alternative formulation of the k  =  1 chain

In this appendix, we write the anyon chain model for k  =  1 in terms of a spin-1/2 model. In 
this way, we hope to get insight in the critical behavior at the second critical point that we 
identified. The spin-1/2 model obtained in this way is a version of the XYZ model in a magn-
etic field, whose phase diagram has been investigated, see for instance [50, 51].

First, we consider the chain with open boundary conditions and start by comparing the 
Hilbert spaces of the anyon chain and a spin-1/2 chain, both with l sites. We know that the 
Hilbert space of a spin-1/2 chain with l sites has dimension 2l. For the anyon chain with l 
sites, each of the sites can be occupied with an anyon or be empty, namely, yi  =  0, 1/2 for 
= …i l1, , . In addition, we have to take the labels of the fusion chain, xi’s, into account. For 

k  =  1, the fusion rules are Abelian and, thus, all the labels xi, with = …i l1, 2, , , are specified, 
once x0 is specified. Therefore, if we allow for all possibilities, the Hilbert space of the anyon 
chain has dimension 2l+1. We note, however, that the anyon chains with x0  =  0 and x0  =  1/2 
are completely equivalent. Therefore, we simply consider the chain with x0  =  0 and rewrite 
this chain in terms of a spin-1/2 chain.

To map the anyon chain to a spin chain, we first need to find a correspondence between the 
anyon and spin degrees of freedom. For the open chain, it turns out that the simplest possible 
correspondence, in which an empty site yi  =  0 corresponds to a spin-up ⟩| ↑i  and an occupied 
site yi  =  1/2 corresponds to a spin-down ⟩| ↓i , works.

With these conventions in place, we can start to write the Hamiltonian for the anyon chain 
in terms of the Hamiltonian for the spin chain. We deal with the terms that act diagonally 
first. For k  =  1, this includes the ‘chemical-potential’ terms as well as the ‘interaction term’ 
hJ. Note that, for k  =  1, the interaction term hJ acts diagonally. In fact, it acts in exactly the 

same way as the term µh 1
2

1
2
 does, namely, it assigns energy only if two neighboring sites are 

occupied. Hence, we can easily take the hJ term into account by combining it with the term 
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µh 1
2

1
2
. For simplicity, we consider the case µ µ µ= =:1 0 01

2
1
2

, where the subscript 1 denotes that 

only one of the two sites is occupied. In this notation, we also have µ µ=:0 00 and µ µ=:2 1
2

1
2
.

The diagonal term in the anyon chain acting on ( )+y y,i i 1  assigns an energy µ0, if 
( ) ( )=+y y, 0, 0i i 1 , assigns an energy µ1, if ( ) ( / )=+y y, 0, 1 2i i 1  or (1/2, 0), and assigns an energy 
µ + J2 , if ( ) ( / / )=+y y, 1 2, 1 2i i 1 . The most general spin-term acting on the neighboring sites 
i and i  +  1 takes the form α σ σ β σ β σ γ+ + +′+ + 1i

z
i
z

i
z

i
z

1 1 . Matching the coefficients gives 
( )/α µ µ µ= − + + J2 40 1 2 , ( )/β β µ µ= = − −′ J 40 2 , and ( )/γ µ µ µ= + + + J2 40 1 2 . At 

the cost of introducing two terms that act on the first and last sites, we can separate the σ σ +i
z

i
z

1 
term, which acts on neighboring sites, from the other ones. This gives the diagonal part Hd of 
the Hamiltonian:

( ) ( )

∑ ∑
µ µ

σ
µ µ µ

σ σ

µ µ
σ σ µ µ µ

=
− −

+
− + +

−
− −

+ − − + + +

= =

−

+H
J J

J l
J 1

2

2

4

4
1

4
2 .

d
i

l

i
z

i

l

i
z

i
z

z
L
z

1

0 2

1

1
0 1 2

1

0 2
1 0 1 2

 

(B.1)

Finally, we need to consider the off-diagonal terms in the Hamiltonian, namely, the hop-
ping and ‘superconducting’ terms. The hopping term, which hops an anyon from site i to i  +  1 
or vice-versa, takes the form σ σ σ σ+−

+
+ +

+
−

i i i i1 1, in terms of the spin raising and lowering opera-
tors, or, equivalently, takes the form / ( )σ σ σ σ++ +1 2 i

x
i
x

i
y

i
y

1 1 , in terms of spin operators. Similarly, 
the term that creates or annihilates a pair of anyons on two neighboring sites, takes the form 
σ σ σ σ++

+
+ −

+
−

i i i i1 1 or / ( )σ σ σ σ−+ +1 2 i
x

i
x

i
y

i
y

1 1 . Thus, the final form of the spin Hamiltonian that is 
equivalent to the open k  =  1 anyon chain has the following form:

( ) ( )

⎛
⎝⎜

⎞
⎠⎟

∑

∑

µ µ
σ

µ µ µ
σ σ σ σ σ σ

µ µ
σ σ µ µ µ

=
− −

+
− + +

+ +∆ + −∆

−
− −

+ + − + + +

=
=

=

−

+ + +

H
J

J t t

J l
J 1

2

2

4 2 2

4
1

4
2 .

k
i

l

i
z

i

l

i
z

i
z

i
x

i
x

i
y

i
y

z
L
z

1,spin
1

0 2

1

1
0 1 2

1 1 1

0 2
1 0 1 2

 

(B.2)

We now turn our attention to the anyon chain with periodic boundary conditions. The main 
difference with the open case is that the relation between the anyon and spin Hilbert spaces 
is a bit more complicated. The Hilbert space of the periodic spin system is identical to the 
Hilbert space of the open spin system and has dimension 2l. In the case of the anyon chain with 
periodic boundary conditions, there is a constraint on the number of anyons in the system. 
Namely, because of the fusion rules, the number of anyons in the system, that is, the number 
of yi labels that take the value 1/2, has to be even. This gives us 2l−1 possible assignments for 
the yi labels. However, for each assignment to the yi labels, there are now two distinct assign-
ments for the xi labels consistent with fusion rules. The xi labels take the values 0 and 1/2 and 
the relation between the consistent assignments for the xi labels sends 0 to 1/2 and vice-versa. 
Thus, the total dimension of the Hilbert space is again given by 2l, just as for the spin system.

To relate the degrees of freedom between the anyon and spin system, we run into a problem. 
In the open case, we identified an empty anyon site with a spin-up and a filled anyon site with 
a spin-down. In the periodic case, we can only have an even number of anyons, which corre-
sponds to an even number of spin-downs in the spin system. For a spin chain of length l, there 
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are only 2l−1 such states which means that we have twice as many anyon states compared to the 
number of spin states. To deal with this problem, we first take a closer look at the anyon system.

As we stated above, in the anyon chain with periodic boundary conditions, the number 
of anyons has to be even, giving 2l−1 assignments for the yi labels. We can divide the corre-
sponding assignments for the xi labels in two classes, namely, those with x0  =  0, and those 
with x0  =  1/2. One should note that the choice of x0, as the label to make the distinction, is 
arbitrary and one could have well chosen any other label. We denote these two sets of states 
by ⟩ψ| =j x, 00  and ⟩/ψ| =j x, 1 20 , where j labels the 2l−1 states in each set. For any given j, the state 

⟩/ψ| =j x, 1 20  can be obtained from ⟩ψ| =j x, 00  by sending xi to 1/2  −  xi, that is, by the exchange 
↔ /0 1 2 for each xi.

We note that the Hamiltonian can change the value of x0 by hopping an anyon ‘over the 
boundary’ or by creating or annihilating a pair of anyons on sites 1 and l. Thus, the Hamiltonian 
mixes the two sets of states ⟩ψ| =j x, 00  and ⟩/ψ| =j x, 1 20 . It is possible, however, to go to a basis in 
which the Hamiltonian becomes block-diagonal, with two blocks of size 2l−1 each. As we now 
discuss, the basis in which this happens is

〉 ( 〉 〉) 〉 ( 〉 〉)/ /ψ ψ ψ ψ ψ ψ| = | + | | = | − |+
= =

−
= =:

1
2

, :
1
2

.j j x j x j j x j x, 0 , 1 2 , 0 , 1 20 0 0 0

 

(B.3)

To see that in this basis the Hamiltonian splits up in two blocks, we note the following. Only 
the term in the Hamiltonian that hops an anyon ‘over the boundary’—denoted here by ht,l—
and the terms that create or annihilate a pair of anyons ‘over the boundary’—denoted here 
by ∆h l,  and ′∆h l, , respectively—can change the label x0. In addition, all the other terms act 
in the same way on ⟩ψ| =j x, 00  and ⟩/ψ| =j x, 1 20 . The action of ht,l on ⟩ψ| =j x, 00  gives one state with 
x0  =  1/2, say ⟩/ψ| =′t j x, 1 20 . Then, we have that ⟩ ⟩/ψ ψ| = |= =′h tt l j x j x, , 1 2 , 00 0 . Thus, we find that 

⟩ ⟩ψ ψ| = |+ +h tt l j j,  and ⟩ ⟩ψ ψ| = − |− +h tt l j j, . Indeed, the term ht,l does not mix the sectors ⟩ψ| +j  
and ⟩ψ| −j . Furthermore, ht,l acts on ⟩ψ| −j  with an additional minus sign. Exactly the same reason-
ing applies to ∆h l,  and ′∆h l,  terms.

We can use the decomposition of the anyon Hamiltonian into the two blocks mentioned 
above to find the corresponding spin Hamiltonian. In both blocks, the number of anyons is even 
and the only difference in the form of the Hamiltonian is the additional sign in the hopping, cre-
ation, and annihilation terms going across the boundary. This means that we can map the anyon 
Hamiltonian to a spin system in the following way. We consider a spin system with an even 
number of spin-downs, that is, a spin system with a Hilbert space of dimension 2l−1. The spec-
trum that corresponds to the spectrum of the anyon Hamiltonian acting on the space ⟩ψ| +j  can 
be found in the same way as we did in the open case, resulting in the following Hamiltonian:

( )

( )

⎡
⎣⎢

⎤
⎦⎥

∑ µ µ σ µ σ σ σ σ

µ µ µ
σ σ σ σ

= − + + +∆ + −∆

+
+ − +

− − +

=
+

=
+ +

+ +

H
t t

J

1

1

2 2
2

4
,

k
i

l

i
z

i
x

i
x

i
y

i
y

i
z

i
z

i
z

i
z

1
1

0 1 1 1 1

2 1 0
1 1

 
(B.4)

which by collecting the σi
z terms, becomes:

∑
µ µ

σ σ σ σ σ

µ µ µ
σ σ

µ µ µ

=
− −

+ +∆ + −∆

+
+ − +

+
+ + +

=
+

=
+ +

+

H
J t t

J J
1

2 2 2
2

4

2

4
.

k
i

l

i
z

i
x

i
x

i
y

i
y

i
z

i
z

1
1

0 2
1 1

2 1 0
1

0 1 2

(
) 

(B.5)
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The anyon spectrum in the space ⟩ψ| −j  corresponds to the spectrum of the following spin 
Hamiltonian:

(
)

( ) ( )∑
µ µ

σ σ σ σ σ

µ µ µ
σ σ

µ µ µ

=
− −

+ − +∆ + − −∆

+
+ − +

+
+ + +

δ δ
=
−

=
+ +

+

H
J t t

J J
1

2
1

2
1

2
2

4

2

4
,

k
i

l

i
z

i
x

i
x

i
y

i
y

i
z

i
z

1
1

0 2
1 1

2 1 0
1

0 1 2

il il

 

(B.6)

which also acts on the space in which all states have an even number of spin-downs and whose 
only difference with the Hamiltonian =

+Hk 1 is the change in boundary conditions. We note that 
there is no additional sign for the term σ σl

z z
1, because it acts diagonally.

In conclusion, we found that the k  =  1 anyon Hamiltonian can be written in terms of the 
XYZ spin-1/2 Hamiltonian with a magnetic field in the z direction. In the case of an open anyon 
chain, there are boundary terms, while in the periodic case, the spectrum corresponds to two 
versions of a spin model. Both versions have an even number of spin-downs but have different 
boundary conditions. For concreteness, we give the explicit form of the spin-1/2 Hamiltonian 
in the sector with periodic boundary conditions. For the two critical points we have:

⎛
⎝⎜

⎞
⎠⎟∑ σ σ σ σ σ= − + + −= + +H

3 2
4

3 2
4

,k
i

i
x

i
x

i
y

i
y

i
z

1,c1 1 1 (B.7)

( )∑ σ σ σ σ σ σ= − += + + +H ,k
i

i
x

i
x

i
y

i
y

i
z

i
z

1,c2 1 1 1 (B.8)

and for the case that the Hamiltonian takes the form of a sum over projectors:

∑σ σ== +H .k
i

i
x

i
x

1,proj 1 (B.9)

In the case of =Hk 1,c2 and =Hk 1,proj, we discarded the unimportant shift, and rescaled the 
energy with a positive factor. We note that the term σ σ +i

z
i
z

1 is not present in the Hamiltonians 
=Hk 1,c1 and =Hk 1,proj. Therefore, they can be solved analytically by means of a Jordan–Wigner 

transformation. The Hamiltonian =Hk 1,c2 can be solved by using the Bethe ansatz.
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