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Abstract
We study the local height probabilities in a composite height model, derived
from the restricted solid-on-solid model introduced by Andrews, Baxter and
Forrester, and their connection with conformal field theory characters. The
obtained conformal field theories also describe the critical behavior of the
model at two different critical points. In addition, at criticality, the model is
equivalent to a one-dimensional chain of anyons, subject to competing two-
and three-body interactions. The anyonic-chain interpretation provided the
original motivation to introduce the composite height model, and by obtaining
the critical behavior of the composite height model, the critical behavior of
the anyonic chains is established as well. Depending on the overall sign of
the Hamiltonian, this critical behavior is described by a diagonal coset-model,
generalizing the minimal models for one sign, and by Fateev–Zamolodchikov
parafermions for the other.

PACS numbers: 05.30.Pr, 05.05.+q, 11.25.Hf, 02.30.Ik

1. Introduction

Ever since the advance of conformal field theory (CFT) in the seminal paper by Belavin,
Polyakov and Zamolodchikov [1], it has played an extremely important role in the study
of critical behavior in two-dimensional statistical mechanics models, and one-dimensional
quantum systems alike. Not only were the foundations of CFT laid out in [1], in addition,
an infinite series of conformal field theories were introduced, the so-called minimal models.
These CFTs describe an infinite number of possible critical points. Roughly at the same time,
Andrews, Baxter and Forrester [2] studied a generalization of the eight-vertex model, in which
the degrees of freedom are heights, living on the square lattice. These heights can take a
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finite set of r − 1 values, where r is a parameter characterizing the model. Because of this
constraint, these models are also called ‘restricted-solid-on-solid’ (RSOS), or simply ‘height’
models. These models were shown to exhibit various gapped phases, separated by critical
points. Shortly afterwards Huse [3] realized that the critical points found by Andrews, Baxter
and Forrester are described by the family of unitary minimal models obtained by Friedan, Qiu
and Shenker around the same time [4]. One can certainly say that CFT took a flying start! Here
we study aspects of a similar connection between critical points in composite height models,
as well as in anyonic quantum chains, and CFTs.

Specifically, we study the local height probabilities (LHPs), to be defined below, of
generalized RSOS models [5] inspired by an anyonic quantum chain with competing two- and
three-body interactions, which was introduced in [6]. Originally [7], the anyonic chains were
motivated as simple models for interacting anyons in topological phases, hosting the anyons
constituting the chain as their elementary excitations. Indeed, the local degrees of freedom
of the anyon chain related to the height model we study here are non-Abelian su(2)k anyons
and—exactly as for a Heisenberg chain of su(2) spins—the anyon Hamiltonian assigns an
energy cost depending on to which representation the two or three neighboring anyons are
‘fused’. In contrast to spin chains, however, only the k +1 integrable representations of su(2)k

can appear and, crucially, the Hilbert space of the chain is not a local tensor product of the single
anyon degrees of freedom. Previous studies have revealed that the anyonic chains have very
rich phase diagrams, even richer than in the original spin models, with novel phases protected
or broken by ‘topological symmetries’ [6, 7]. Here we study two integrable critical points of
the anyon model with competing two- and three-body interactions, identified in [5]. These
integrable points of the anyon chain are directly obtained from an ‘anyonic’ representation of
the Temperley–Lieb algebra and are equivalent with the critical points of a classical, integrable
‘composite’ RSOS height model also introduced in [5]. This mapping is crucial, since the non-
local form of the Hilbert space of the anyon chain reduces the utilizability of Bethe ansatz
techniques (but see [8, 9]).

The RSOS height model is defined on a square lattice with the heights li being local
degrees of freedom on each vertex i, subjected to the constraints 1 ! li ! r − 1 with
|li − l j| = 1 for adjacent vertices i, j, and r = k + 2 for su(2)k anyons, and is a composite
of the original integrable RSOS models of Andrews, Baxter and Forrester (ABF) [2]. The
various critical points of the ABF model, separating the ordered phases, were subsequently
identified in [3], and shown to provide realizations of the minimal models studied in the
seminal papers [1, 4]. This type of multi-critical behavior also applies to the composite model.
The study of the critical, as well as off-critical behavior of the model goes via the so-called
local height probabilities, which are the probabilities for a central site to have a certain height,
given the boundary conditions. As with the original ABF model, the off-critical LHPs of the
height model exhibit properties related to CFT characters and can be calculated exactly with
the corner transfer matrix method [10–12]. This off-critical CFT structure of the LHPs is
governed by the same theory that describes the critical points of the lattice model; the former
arises from integrable perturbations of the latter. In particular, for a finite lattice size, the LHPs
are composed of finitized forms of CFT characters from which one can obtain the characters
by taking the thermodynamic limit.

Thus the two integrable points of the anyon chain are related to two different regimes of
the height model, regimes II and III in the notation of [2, 5], not just the critical points to
which they terminate. Therefore LHPs allow one to determine the (extended) critical behavior
of the anyon chain once the off-critical CFT has been identified, which is the aim of the current
paper.
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The central objects of interest in our paper are fermionic generating functions, quantities
usually called universal chiral partition functions (UCPFs) [13], or fundamental fermionic
forms [14, 15], which we want to reproduce the LHPs in closed form and relate to finitized
forms of CFT characters.

As with the first proofs of the connection with the ABF model and the M(r − 1, r)
minimal models, our strategy of proof is based on the recurrence properties of the polynomial
UCPFs and LHPs, this strategy is sometimes referred to in the literature as Schur’s method.
In the thermodynamic limit, our formulas give fermionic characters of the coset CFT
su(2)1×su(2)1×su(2)r−4

su(2)r−2
in the regime III and Zr−2 parafermions in the regime II, corresponding

to the two integrable points under study. Based on numerical checks [5, 6], these CFTs were
earlier identified as the critical behavior of the anyonic chain. The parafermion theory and
characters are well known and appear also in the ABF models; we recover the fermionic forms
of these characters [16–20]. The fermionic characters we obtain for the coset theory are new
to the best of our knowledge.

Finally, the fermionic forms of the LHPs of the composite model studied here open
an arena of q-identities related to the coset theories su(2)1×su(2)1×su(2)r−4

su(2)r−2
. This is exactly like

the q-identity and CFT character results obtained for the minimal models from the ABF-
type models [2, 14, 15, 17, 18, 21–27] and provides another motivation to study the composite
height model. The UCPFs that we obtain in the regime III for the coset theory are characterized
by the fact that they have two ‘real’ fermions and r − 5 ‘pseudo’ particles, instead of just one
‘real’ fermion appearing in the ABF type expressions [22, 24–26]. Given that one would
be able to obtain the bosonic forms of the characters, giving interesting Bose–Fermi type
identities, one could possibly also obtain new types of Rogers–Ramanujan and q-identities
[2, 9, 14, 15, 21, 26]. As already mentioned, the dual finitized characters obtained for the
regime II are Zr−2 parafermions, as in the ABF case, with all fermions ‘real’. In fact, this type
of behavior seems to be rather generic, as our calculations in section 6.2 suggest.

This paper is organized as follows. In section 2 we briefly introduce and recollect the
composite height model from [5] and set out the stage and notation for the various quantities
related to the LHPs. As in the height model of ABF, the composite model is parametrized by
an integer r that sets the maximum of the height variables, with r " 5 for the anyonic chains.
In the paper [5], a fermionic form for the central quantity Xm in the LHPs for the simplest case
r = 5 was introduced, where m is the lattice size of the height model, based on numerical
checks. In section 3, we prove this equality analytically and then proceed for the r = 6 case in
section 4. In both cases, the proof is obtained using the recurrence properties of the LHPs and
the fermionic generating functions related to those with respect to the lattice size, exactly as in
the original ABF model. In section 5, based on the structure for r = 5, 6, we give the general
form of our fermionic UPCFs related to the LHPs, a conjecture we claim valid for any r and
supported by numerical checks for r > 6 and correct central charges. While we could apply
the same the strategy of proof for bigger r, the computations become quickly cumbersome
and not very illuminating. In sections 6 and 7, we finally study the thermodynamic limit of
the UPCFs and give the explicit connection with CFT characters, respectively. We end by
discussing our results and giving some future directions of study.

2. Local height probabilities in a composite height model

The height model we study in this paper is most easily explained in terms of the original height
model introduced by ABF [2]. We will first introduce this model, and subsequently explain
how the composite height model can be constructed from it.
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Figure 1. The six different type of plaquettes occurring in the ABF model.

2.1. Definition of the height models

The ABF model consists of heights which are assigned to the vertices of the square lattice.
The heights l can take the values l = 1, 2, . . . , r − 1, where r is an integer satisfying r " 3.
Different values of r correspond to different models; the case r = 5 is equivalent to the
hard hexagon model, as explained in [2]. Heights at neighboring vertices have to satisfy the
constraint that they differ by one. This constraint leads to six different types of plaquettes on
the square lattice, as depicted in figure 1. The two plaquettes labeled by αl (and similarly for
βl) will be assigned the same weight, so that one obtains an isotropic model. ABF showed
that this model can be solved for a two-parameter family of weights. We will denote these
parameters by p and u. The first parameter −1 ! p ! 1 resembles a temperature, and drives
a phase transition at p = 0. The parameter u is related to the ‘anisotropy’ of the lattice, and
is the variable appearing in the Yang–Baxter equation below. The behavior of the model will
not depend on the magnitude of u, only its sign. For a description of the various phases of the
ABF model, we refer to the original paper [2], and the paper by Huse [3], who studied the
connection between the critical points of the model and CFT. We will come back to the various
phases of the composite height model after we explained how the model can be solved.

The weights for which the ABF model can be solved explicitly are given in terms of
elliptic functions. To specify them, we introduce the following notation. First, p will be related
to the modulus m2 of the theta functions via p = e−π K′ (m)

K(m) , where K(m) is the complete elliptic
integral of the first kind and K′(m) = K(1 − m). The parameter r enters the weights via
η = K(m)

r , while the values of the heights l enter as wl = 2ηl.
Introducing the elliptic functions H(u) = θ1(

uπ
2K(m)

, p) and &(u) = θ4(
uπ

2K(m)
, p), we

define h(u) = H(u)&(u), where we have suppressed the dependence on p (or m), as is
customary. The θi are the Jacobi theta functions. Explicitly, one finds the following expression
for h(u),

h(u) = 2p
1
4 sin

(πu
2K

) ∞∏

n=1

(
1 − 2pn cos

(πu
K

)
+ p2n

)
(1 − p2n)2 . (1)

We can now introduce the two-parameter family of plaquette weights as follows

αl(u) = h(2η − u)

h(2η)
βl(u) = h(u)

h(2η)

(h(wl−1)h(wl+1))
1
2

h(wl )

γl(u) = h(wl + u)

h(wl )
δl(u) = h(wl − u)

h(wl )
.

(2)

As a first step in solving their model, ABF noted that the weights (2) satisfy the Yang–
Baxter equation, which implies that the row-to-row transfer matrices for different values of
u commute with each other. We will explain in a bit more detail how the model was solved
below, after we introduced the composite height model considered in [5].
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Figure 2. The plaquettes of the ABF model.
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Figure 3. The plaquette weights of the composite model, where the symbols ± denote the
corresponding shifts of u in (3).

Inspired by the work of Ikhlef et al [28, 29] on loop models, a composite model was
constructed in the following way. First, we denote the weights associated with a plaquette by
W (u; l1, l2, l3, l4) as depicted in figure 2.

By taking four of these (2 × 2) plaquettes, one can from a composite (3 × 3) plaquette,
with the weight (see figure 3)

W̃ (u; l1, l2, l3, l4, l5, l6, l7, l8) =
∑

l

W (u; l1, l2, l, l8)W (u + K; l2, l3, l4, l)

×W (u; l, l4, l5, l6)W (u − K; l8, l, l6, l7). (3)

We note that the parameter u of two of the sub-plaquettes has been shifted. Without this shift,
the composite model would be equivalent to the original model. It is a straightforward exercise
to show that the plaquette weights W̃ of the composite model satisfy the Yang–Baxter equation,
by only making use of the fact that the plaquette weights W of the original model satisfy the
Yang–Baxter equation, namely
∑

l

W (u; l1, l, l5, l6)W (u + v; l2, l3, l, l1)W (v; l3, l4, l5, l)

=
∑

l

W (v; l2, l, l6, l1)W (u + v; l, l4, l5, l6)W (u; l2, l3, l4, l). (4)

2.2. A glimpse on the corner transfer matrix method

We now briefly discuss how these height models can be solved. One makes use of the corner
transfer matrix (CTM) method, which was explained in detail in chapter 13 of Baxter’s book
[30] (see also [31] for a recent account). The application of the CTM method to solve the ABF
model is detailed in [2], while [5] deals with the composite model.

The key objects in the CTM method are four corner transfer matrices. In contrast to the
row-to-row transfer matrix, the corner transfer matrices do not add merely one row to the
lattice, but instead an entire quadrant, or corner. If we denote the CTMs of the four different
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Figure 4. The CTM A of the composite model, with the boundary conditions (b, c, d, e) as specified
in the text.

corners by A, B, C and D, the partition function of the model is given by Z = Tr(ABCD).
Using the CTM method, one can calculate a quantity called the local height probability (LHP).
In particular, Pa denotes the probability for the central height, say l1 (at the corner of the four
CTMs) to take the value a. This probability can be written as

Pa = 1
Z

Tr(SaABCD), (5)

where Sa is the diagonal matrix, with diagonal entries 1 if the central height l1 = a, and zero
otherwise.

To make this discussion a bit more explicit, we display the CTM A explicitly in figure 4.
The rows and columns of A are labeled by (l1, l2, . . . lm) and (l′1 = l1, l′2, . . . , l′m) respectively.
The central height l1 is fixed to be a, while the heights lm+1, l′m+1, lm+2, l′m+2, etc, at the
boundary are fixed to ground state values of the model. By analyzing the weights of the model,
one can show [5] that the ground states are in fact diagonal, in this case along the SW–NE
direction, and are fixed by the boundary conditions (b, c, d, e) as indicated in the figure. The
different ground state ‘patterns’ (b, c, d, e) are discussed in detail in section 2.4, following [5].
The CTM method allows one to calculate the local height probabilities Pa, and these depend
on the boundary conditions (b, c, d, e). The matrices B, C and D are obtained in a similar way
as A, by subsequent rotations of the diagram over π/2. From the definition of A, it is clear that
the ‘size’ of the quadrant m, equal to twice the number of the top-row plaquettes plus one, has
to be odd.

We do not explain the calculation of the LHPs in full detail, but merely state the main
ingredients (following [2, 5]) of this calculation and of course the result, which is an expression
for the height probabilities. These local height probabilities are the starting point for the current
paper, and the goal is to prove that the LHPs are equal to (finitized) characters in CFT.

The first essential ingredient of the CTM method is to make use of the Yang–Baxter
equation, to show that the CTMs A etc can be written in a special, diagonal form, see [30]
for the details. One starts by formally equating the product limm→∞ B(u)C(v), which covers
half of the lattice, to the limit limn→∞ T (u, v)n using the inhomogenous row-to-row transfer
matrix T (u, v), the latter limit also then covering half of the lattice with the anisotropies u, v

in the two quadrants [30]. The Yang–Baxter equation can be shown to ensure that B(u)C(v)
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only depends on the difference u − v. In the end, one obtains the following form for the CTMs

A(u) = Q1M1 e−uHQ−1
2

B(u) = Q2M2 euHQ−1
3

C(u) = Q3M3 e−uHQ−1
4

D(u) = Q4M4 euHQ−1
1 , (6)

where H, Qi and Mi (with i = 1, 2, 3, 4) do not depend on u, commute with the matrices Sa,
and in addition H and Mi are diagonal.

To relate these diagonal forms of the corner transfer matrices to the height probabilities,
one has to calculate the form of the CTMs for particular values of u. In the case of the composite
model, one has to use an identity relating particular sums of products of elliptic functions to
a single product. The details can be found in [5] but we summarize the results here. By the
periodicity properties of the elliptic weights, one only needs to consider u in the two following
regimes

D1 : 0 < u < 2η + K = (2 + r)η, D2 : 2η − K = (2 − r)η < u < 0. (7)

One can show that, up to scalar multiples,

A(0) = Q1M1Q−1
2 = 1, (8)

which allows one to write

A(u) = Q2 e−uHQ−1
2 , (9)

so the diagonal form of A(u) is equal to an exponential. The height probability Pa is then given
by

Pa(b, c, d, e) = Tr(SaM1M2M3M4)

Tr(M1M2M3M4)
. (10)

and will depend in addition on the boundary conditions (b, c, d, e). The product M1M2M3M4

can be computed by considering different limits of the corner transfer matrices. First, in the
limit u → 0 in the domain D1 and up to irrelevant scalar factors, one has

A(0) = C(0) = 1, (11)

and secondly, when u → (2 + r)η, one has

B(u = (2 + r)η) = D(u = (2 + r)η) = Ṽ1, (12)

where

(Ṽ1)l,l′ =
√

h(2ηl1)δ(l, l′). (13)

Therefore,

A(0)B((2 + r)η)C(0)D((2 + r)η) = M1M2M3M4 e2(2+r)η = Ṽ 2
1 . (14)

Similarly in the domain D2, where the weights effectively only change their signs,

A(0)B((2 − r)η)C(0)D((2 − r)η) = M1M2M3M4 e2(2−r)η = Ṽ 2
1 . (15)

These give the height probability as

Pa(b, c, d, e) =
Tr
(
SaṼ 2

1 e−2tηH)

Tr
(
Ṽ 2

1 e−2tηH
) , t =

{
2 + r, u ∈ D1,

2 − r, u ∈ D2
. (16)

The final step in the calculation is determining the diagonal form of the CTMs. To do this,
one first employs the ‘conjugate modulus transformation’, which gives an expansion of the
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weights around p = 1, instead of p = 0 in the original formulation of the weights. The result
of this calculation is that the CTMs are diagonal in the limit p → 1. In calculating the matrix
elements, the first observation is that the elliptic weights of the model are quasi-periodic in u
with the period 2iK′, so the elements of H are integer multiplets of π/K′,

Hl,l′ = πN(l)δ(l, l′)
K′ , (17)

where N(l) is an integer function. In particular, A takes the form Al,l′ = (e−uH)l,l′ =
g−1

l1
wφ(l)δl,l′ , where l = (l1, . . . , lm) and l′ = (l′1, . . . , l′m) label the rows and columns of

A; w = e−2π u
K′ , and gl1 = w

(2l1−r)2

16r . Finally φ(l) ≡ N(l)/2 is given by

φ(l) =
m+1

2∑

j=1

j
( |l2 j+3 − l2 j−1|

4
+ δl2 j−1,l2 j+1δl2 j+1,l2 j+3δl2 j,l2 j+2

)
. (18)

Having found the diagonal form of A in the limit p → 1, one uses the last essential
ingredient of the method, to find the diagonal form for all (positive) p. The function φ(l)
takes integer or half-integer values. Because the weights of the model depend continuously
on p, it is reasonable to assume that H does not change discontinuously with p. This in turn
implies that the function φ(l) is in fact independent of p, and the diagonal form of A which
was determined for p = 1, is in fact valid for 0 ! p ! 1. With this diagonal form for A, one
can give an explicit expression for the local height probabilities Pa.

2.3. The local height probabilities and the function Xm(a; b, c, d, e; q)

The local height probabilities can finally be written in the following from

Pa(b, c, d, e) = S−1vaXm(a; b, c, d, e; xt ). (19)

va = x(2−t)(2a−r)2/(16r)E(xa, xr) (20)

S =
∑

a

vaXm(a; b, c, d, e; xt ) (21)

x = e−4πη/K′ = e− 4π
r K/K′

. (22)

with boundary conditions l1 = a and lm+1, lm+2, . . . = b, c, d, e and m is the lattice size. The
variables p and x both lie in the range 0 ! x, p ! 1, but when p → 0, we have x → 1, and
vice versa. The function E(z, x) is the triple product

E(z, x) =
∞∏

n=1

(1 − xn−1z)(1 − xnz−1)(1 − xn). (23)

The height probabilities take different forms dependent on the parameter u, which enter the
expressions for the probabilities via t, as indicated in (16). In the case that u > 0, which we
call ‘regime III’, following the notation in [2], t = r + 2, i.e. t is greater than zero. In the case
u < 0, ‘regime II’, we have that t = 2 − r, i.e. t is less than zero. For more details on the
regimes, we refer to [2, 5].

The function Xm(a; b, c, d, e; q) is defined as

Xm(a; b, c, d, e; q) =
∑

l=(a,l2,...,lm,b,c,d,e)

qφ(l), (24)
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where φ(l) is the function defined in (18). The boundary conditions were l1 = a and
lm+1 = b, . . . , lm+4 = e, and the lattice size m is odd in the composite model. The heights are
diagonal in the limit p → 1, and from the definition one can see that

Xm(a; b, c, d, e; q) = q
m+1

2

(
|b−1−e|

4 +δb−1,cδc,eδb,d

)
Xm−2(a; b − 2, b − 1, b, c; q)

+ q
m+1

2

(
|b−1−e|

4 +δb−1,cδc,eδb,d

)
Xm−2(a; b, b − 1, b, c; q) (25)

+ q
m+1

2

(
|b+1−e|

4 +δb+1,cδc,eδb,d

)
Xm−2(a; b, b + 1, b, c; q)

+ q
m+1

2

(
|b+1−e|

4 +δb+1,cδc,eδb,d

)
Xm−2(a; b + 2, b + 1, b, c; q)

and the states appearing on the right-hand side (RHS) only depend on b, c. Again, by assuming
continuity in p, this recursion relation is valid for all p. Also, due to the symmetries of the
plaquette weights of the model, Xm satisfies [2, 5]

Xm(r − a; r − b, r − c, r − e; q) = Xm(a; b, c, d, e; q). (26)

2.4. Phases of the composite height model

From the expressions of the local height probabilities (or better, the partition function), we
can extract the phase diagram of the model. Here, we will concentrate on the case p " 0, for
which the expressions for the LHPs of the previous section are valid.

In this section, we give the ground states in the gapped region 0 < p < 1. These ground
states will play an important role in making the connection between the LHP for p = 0 and
the CFT characters.

We start by considering the case u > 0, i.e. regime III. The ground states are those
configurations which contribute maximally to the partition function. As was the case for the
LHP, the dependence on the regime is via the parameter t, which is positive in regime III.
This in turn implies that to find the ground state configurations, the function φ(l) has to be
minimized (see [5] for more details). The first term in φ(l) vanishes when l2 j+3 = l2 j−1,
which is a necessary condition in a ground state. We recall that neighboring heights have to
differ by one. The first way in which second term in φ(l) also vanishes is when l2 j = l2 j+2

and l2 j+1 = l2 j−1 ± 2. These type of ground state patterns will be denoted by G+
1 (when

l2 j+1 = l2 j−1 + 2) and G−
1 (when l2 j+1 = l2 j−1 − 2). The second term in φ(l) also vanishes

for l2 j+1 = l2 j−1 and l2 j = l2 j−1 + 1 = l2 j+2 + 2 (these ground states are denoted by G+
2 ), or

for l2 j = l2 j−1 − 1 = l2 j+2 − 2 (these ground states are denoted by G−
2 ). This exhausts the

possible ground state patterns for u > 0. These ground state patterns are depicted, together
with the other possible patterns to be discussed below, in figure 5.

Turning our attention to the case u < 0 or regime II, we have that the parameter t is
negative, which implies that the ground states maximize the function φ(l) (see [5]). We start

9
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by noting that the first term in the sum in φ(l) can not be one for all values of j, because
the heights take their values in the finite range l = 1, 2, . . . r − 1. The second term in the
sum can however always be one, which is thus the case for the ground states. We find that
l2 j−1 = l2 j+1 = l2 j+3 and l2 j = l2 j+2 = l2 j−1 ± 1 are the necessary conditions. These u < 0
ground state patterns are denoted by G±

3 .
Before discussing the transition point p = 0, we first mention that, if one considers four

consecutive heights, there are only two patterns left, which are not part of a ground state pattern.
These are (b, b+ 1, b+ 1, b+ 3), which we will denote by NGS+ and (b, b− 1, b− 2, b− 3),
denoted by NGS−. These patterns will play a role in the study of the local height probabilities
in connection with the critical point at p = 0.

At the point p = 0, we find that all configurations contribute to the partition function,
which means that one has to consider the local height probabilities in their entirety. In [5], it
was observed that the local height probabilities are related to (finitized) characters of certain
conformal field theories. This behavior, as alluded to in the introduction, has been observed in
various other cases as well [10–12], not in the least for the ABF model.

Let us be a bit more precise about the connection between the expressions for the LHPs
and CFT. It turns out that the functions Xm(a; b, c, d, e; q) appearing in the expression for the
LHP Pa(b, c, d, e) correspond to a character of a CFT, if the boundary condition (b, c, d, e)

is part of a ground state pattern we discussed above. The CFT is the one describing the
critical behavior at the phase transition to the phase exhibiting the ground state pattern under
consideration.

In particular, in [5], an explicit expression for the function Xm(a; b, c, d, e; q) for r = 5
was conjectured, which equals the finitized characters of a particular CFT. In the following,
we prove this conjecture, thereby establishing the connection between the model for r = 5,
and the CFT. In [5], the connection with the Gepner parafermions associated with su(3)2

was made. This parafermionic coset su(3)2/(u(1)4 × u(1)12) is equivalent with the diagonal
coset su(2)1 × su(2)1 × su(2)1/su(2)3, which is only one member of an infinite series of
equivalences, which starts with the equivalence of the Z2 parafermions, su(2)2/u(1)4 and the
first minimal model, i.e. the Ising model. In addition, we provide an explicit form for the
functions Xm(a; b, c, d, e; q) for arbitrary r, and prove the result also for r = 6. We argue that
these functions are the finitized characters of a set of coset models, similar to the ‘minimal
models’ describing the u > 0 critical point of the ABF model.

Before we start the discussion of the general properties of the functions Xm(a; b, c, d, e; q)

in the next subsection, we note that the number of independent height probabilities, given the
boundary conditions which correspond to ground state patterns, is (r −1)(r −3) in the regime
u > 0, and (r − 1)(r − 2)/2 in the regime u < 0. Here, the reflection symmetry (26) was
already taken into account to reduce the number of independent functions Xm(a; b, c, d, e; q).

2.5. Recursion relations for Xm(a; b, c, d, e; q)

We continue by describing some general properties of the functions Xm(a; b, c, d, e; q),
before we deal more explicitly with the cases r = 5 and r = 6 in the following sections,
where we give an explicit expression for these functions, and prove that they are equivalent to
the functions Xm, by showing that they obey the same recursion relations, and have identical
boundary conditions.

The possible boundary conditions (b, c, d, e) for the LHP are only constrained by the fact
that neighboring heights have to differ by one, and are all given in figure 5.

The different states labeled G±
1 , G±

2 , G±
3 and NGS± appear in the recursion for Xm as

described below.

10
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Although in establishing the connection between the LHPs and CFT, we are mainly
interested in the boundary conditions corresponding to ground states, the recursion relations
force us to consider the non ground state patterns as well, because they are generated by the
recursion relations automatically.

Due to the relation (26), we need to consider only half of the patterns in figure 5. We
will focus on the patterns with an increasing second height. Starting from an G+

1 boundary
condition, relevant for u > 0, one finds

Xm(a; b, b + 1, b + 2, b + 1; q) = q
m+1

4 Xm−2(a; b − 2, b − 1, b, b + 1; q)︸ ︷︷ ︸
NGS+

+ q
m+1

4 Xm−2(a; b, b − 1, b, b + 1; q)︸ ︷︷ ︸
G−

2

+ Xm−2(a; b, b + 1, b, b + 1; q)︸ ︷︷ ︸
G+

3

+ Xm−2(a; b + 2, b + 1, b, b + 1; q)︸ ︷︷ ︸
G−

1

. (27)

Here the first term vanishes for b ! 2 and the second in the case b = 1. The third term is a
ground state pattern for u < 0 and the first term is a non-ground state pattern.

For the ground states in G+
2 , we get

Xm(a; b, b + 1, b, b − 1; q) = Xm−2(a; b − 2, b − 1, b, b + 1; q)︸ ︷︷ ︸
NGS+

+ Xm−2(a; b, b − 1, b, b + 1; q)︸ ︷︷ ︸
G−

2

+q
m+1

4 Xm−2(a; b, b + 1, b, b + 1; q)︸ ︷︷ ︸
G+

3

+ q
m+1

4 Xm−2(a; b + 2, b + 1, b, b + 1; q)︸ ︷︷ ︸
G−

1

. (28)

Again, some terms do not necessarily contribute and the first term is not a ground state pattern.
The set of patterns relevant for the u < 0 LHP lead to a recursion of the form

Xm(a; b, b + 1, b, b + 1; q) = q
m+1

4 Xm−2(a; b − 2, b − 1, b, b + 1; q)︸ ︷︷ ︸
NGS+

+ q
m+1

4 Xm−2(a; b, b − 1, b, b + 1; q)︸ ︷︷ ︸
G−

2

+q
m+1

2 Xm−2(a, b, b + 1, b, b + 1; q)︸ ︷︷ ︸
G+

3

+ q
m+1

2 Xm−2(a; b + 2, b + 1, b, b + 1; q)︸ ︷︷ ︸
G−

1

. (29)

Finally, the non-ground state pattern NGS+ satisfies the recursion

Xm(a; b, b + 1, b + 2, b + 3; q) = q
m+1

2 Xm−2(a; b − 2, b − 1, b, b + 1; q)︸ ︷︷ ︸
NGS+

+ q
m+1

2 Xm−2(a; b, b − 1, b, b + 1; q)︸ ︷︷ ︸
G−

2

+q
m+1

4 Xm−2(a; b, b + 1, b, b + 1; q)︸ ︷︷ ︸
G+

3

+ q
m+1

4 Xm−2(a; b + 2, b + 1, b, b + 1; q)︸ ︷︷ ︸
G−

1

. (30)

It is clear that not only does the recursion relation generate non ground state patterns,
it also mixes the different ground state patterns relevant for the two different regimes u > 0

11
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and u < 0. This implies that we will have to establish the recursion relations for all types of
boundary conditions.

To make our work easier, we start by establishing some relations between the different
functions Xm(a; b, c, d, e; q), which reduces the number of cases we have to check explicitly.
These relations originate in the fact that the states appearing in the recursion only depend on
b, c. Using the definition of Xm(a; b, c, d, e; q), one can see that changing the boundary height
e → e ± 2 as follows, see figure 5,

(b, b + 1, b + 2, b + 1) # (b, b + 1, b + 2, b + 3)

(b, b + 1, b, b + 1) # (b, b + 1, b, b − 1)

leads to the relations

Xm(a; b, b + 1, b + 2, b + 3; q) = q
m+1

4 Xm(a; b, b + 1, b + 2, b + 1; q) (31)

Xm(a; b, b + 1, b, b + 1; q) = q
m+1

4 Xm(a; b, b + 1, b, b − 1; q) , (32)

where the second equation is only valid for b > 1. The first equation relates the non ground
state pattern NGS+ to the u > 0 ground state pattern G+

1 . The second equation relates the
u < 0 ground state pattern G+

3 to the u > 0 ground state pattern G+
2 , for b > 1. The case b = 1

can be dealt with by relating the pattern to the u > 0 pattern G+
1 by changing the boundary

height d instead, namely (b, b+1, b+2, b+1) # (b, b+1, b, b+1), as follows (see figure 5)

Xm(a; 1, 2, 1, 2; q) = q
m+1

2 Xm(a; 1, 2, 3, 2; q). (33)

We note that this relation only holds for b = 1, and can not be used to reduce the number
of independent functions Xm(a; b, c, d, e; q) even further. In conclusion, we find that all the
functions Xm(a; b, c, d, e; q) corresponding to non ground state patterns and u < 0 ground state
patterns can be related to u > 0 ground state patterns, and we are thus left with (r − 1)(r − 3)

independent functions, corresponding to, say, the G+
1 and G−

2 patterns.

3. Explicit expressions for r = 5

We start our search for explicit expressions for the functions Xm(a; b, c, d, e; q) with the case
r = 5. For this case, an explicit functional expression was obtained in [5] based on numerical
evidence, but the equivalence was not proven. We provide the proof in this section.

3.1. The function y(k; l2, l3, l4; q) for r = 5

For r = 5, the functions Xm(a; b, c, d, e) for the different boundary conditions are related to
the functions [5]

y(k; l2, l3, l4; q) =
∑

m1,m2"0

′
q

1
2 (m2

1+m2
2−m1m2−m1δl4 ,3−m2δl4 ,2)

[ k+m2+δl3 ,1+δl4 ,3

2
m1

][ k+m1+δl2 ,1+δl3 ,2+δl4 ,2

2
m2

]

(34)

where l4 = 1, . . . , 4, l2, l3 = 1, 2 and
[m

n

]
≡
[m

n

]
q

is the q-binomial coefficient [32]. First, we

define (q)m =
∏m

j=1(1 − q j) for integer m > 0 and (q)0 = 1. We then define the q-binomials,
non-zero for integer m, n, as

[
m
n

]

q
=






(q)m

(q)n(q)m−n
if 0 ! n ! m integers,

0 otherwise
. (35)

12
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The prime on the summation in (34) indicates constraints on the parities of m1, m2 but with
the above definition of the q-binomials, they are in fact superfluous and will be therefore left
implicit. This, however, will not be the case for the constraints for r > 5.

The relations between the Xm and y(k) are schematically [5]

Xm(a; b, c, d, e; q) ∼ y
(

m − 1
2

, l2, l3, l4; q
)

, (36)

where the odd integer m is the lattice size of the composite height model and l2, l3, l4 are
determined by the configurations (a; b, c, d, e).

Given this correspondence, the recursion for Xm(a; b, c, d, e; q) implies a recursion
schematically of the form

y
(

m − 1
2

; l2, l3, l4; q
)

∼ q(m+1)/4y
(

m − 1
2

− 1; l′2, l′3, l′4; q
)

+ · · ·

+ y
(

m − 1
2

− 1; l′′2 , l′′3 , l′′4 ; q
)

+ · · · , (37)

or more conveniently in terms of the integer k = m−1
2 ,

y(k; l2, l3, l4; q) ∼ q
k+1

2 y(k − 1; l′2, l′3, l′4; q) + · · · + y(k − 1; l′′2 , l′′3 , l′′4 ; q) + · · · (38)

for the functions y(k; l2, l3, l4; q). From now on, we will display the dependence on the size
of the lattice through the (integer valued) variable k instead of the odd integers m.

As in the original paper of ABF, we now set out to prove that the functions
X2k+1(a; b, c, d, e; q) and y(k; l2, l3, l4; q) satisfy the same recursion relations and have
identical boundary conditions and thus have to agree identically. This verifies the critical
properties of the anyon model, since the functions y(k; l2, l3, l4; q) are—conjecturally for
general r—finitized forms of CFT characters of the coset su(2)1×su(2)1×su(2)r−4

su(2)r−2
, as in the original

case of RSOS height probabilities and minimal models M(r − 1, r) studied by ABF and by
many authors in subsequent papers cited in the introduction. However, due to the composite
nature of the height model, the corresponding recursions are more complicatedly related, as
we will see. Unfortunately, we have not been able to obtain a functional form that would
directly satisfy the recursion of X2k+1 and need to proceed in a more oblique way in terms of
the more general functions y(k1, k2; l2, l3, l4; q), presented in the next subsection. The reason
behind this is that the recursion for X2k+1(a; b, c, d, e; q) gives a sum in terms of X2k−1, but
all with different boundary conditions, while the recursion for y(k1, k2; l2, l3, l4; q) leads to a
sum of functions with the same values of the l2, l3, l4, but with different values for k1, k2.

We first deal with the simplest case r = 5, corresponding to the diagonal coset su(2)1 ×
su(2)1 × su(2)1/su(2)3 (or, equivalently, the su(3)2/(u(1)4 × u(1)12) Gepner parafermions)
in the regime u > 0 and Z3 parafermions for u < 0, as initiated in the paper [5]. In section 4,
we prove the correspondence for r = 6 and give the general conjecture for arbitrary r in
section 5.

3.1.1. Recursion for y(k; l2, l3, l4; q). The function y(k; l2, l3, l4; q) satisfies a recursion
relation in k, based on the recursion for q-binomial coefficients which follows directly from
the definition [32]
[

m
n

]
= qn

[
m − 1

n

]
+
[

m − 1
n − 1

]
=
[

m − 1
n

]
+ qm−n

[
m − 1
n − 1

]
, for m " n " 1. (39)

In order to have a closed recursion for y(k; l2, l3, l4; q), we define a closely related function,
which we will also denote by y and hope that no confusion arises,

13
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y(k1, k2; l2, l3, l4; q) =
∑

m1,m2"0

′
q

1
2 (m2

1+m2
2−m1m2−m1δl4 ,3−m2δl4 ,2)

[ k1+m2+δl3 ,1+δl4 ,3

2
m1

]

×
[ k2+m1+δl2 ,1+δl3 ,2+δl4 ,2

2
m2

]
. (40)

Clearly y(k; l2, l3, l4; q) = y(k, k; l2, l3, l4; q).
Then, using the latter recursion in (39) for k1 or k2, leads to

y(k1, k2; l2, l3, l4; q) = q
k1+δl3,1−1

2 y(k1 − 2, k2 + 1; l2, l3, l4; q) + y(k1 − 2, k2; l2, l3, l4; q).

(41)

= q
k2+δl3,2+δl2,1−1

2 y(k1 + 1, k2 − 2; l2, l3, l4; q) + y(k1, k2 − 2; l2, l3, l4; q).

(42)

This is very similar to the recursion for a closely related function Y (k1, k2; q) studied in
[33]. Similarly, we can use the recursion in both k1 and k2 to arrive at

y(k1, k2; l2, l3, l4; q) = q
k1+k2+δl2 ,1

2 y(k1 − 1, k2 − 1, l2, l3, l4; q) + y(k1 − 2, k2 − 2, l2, l3, l4; q)

+ q
k1+δl2 ,1+δl3 ,2−1

2 y(k1 − 2, k2 − 1, l2, l3, l4; q)

+ q
k2+δl3 ,1−1

2 y(k1 − 1, k2 − 2, l2, l3, l4; q). (43)

But, as explained above, the recursion with fixed indices l2, l3, l4 is not really enough
since in the recursion for X2k+1, the boundary conditions will change, so the values for
l2, l3, l4 will change correspondingly. We therefore derive a set of relations for the functions
y(k1, k2; l2, l3, l4; q), which allow us to change the values of the li.

3.1.2. Identities for y(k1, k2; l2, l3, l4; q). To derive the necessary identities, we start from
the explicit definition of y(k1, k2; l2, l3, l4; q) in equation (40). The variables l2 and l3 (both
taking the values l2, l3 = 1, 2) only appear in the q-binomials. The same is true for l4 if
it takes the values l4 = 1, 4. We can therefore relate the functions y(k1, k2) for the two
different values of l2 (keeping l3, l4 fixed), by shifting the values of k1, k2, and similarly for l3
(with l2, l4 fixed). To relate the functions with the values l4 = 2, 3, we need to swap the values
of k1 and k2 and shift them, where the shifts depend on the values of l2, l3. In particular, we
find (suppressing the variable q, as we will frequently do as well below)

y(k1, k2; 1, l3, l4) = y(k1, k2 + 1; 2, l3, l4)

y(k1, k2; l2, 1, l4) = y(k1 + 1, k2 − 1; l2, 2, l4)

y(k1, k2; l2, l3, 1) = y(k1, k2; l2, l3, 4)

y(k1, k2; 1, 1, 2) = y(k2, k1; 1, 1, 3)

y(k1, k2; 1, 2, 2) = y(k2 + 2, k1 − 2; 1, 2, 3)

y(k1, k2; 2, 1, 2) = y(k2 − 1, k1 + 1; 2, 1, 3)

y(k1, k2; 2, 2, 2) = y(k2 + 1, k1 − 1; 2, 2, 3).

(44)

There are no further relations needed with l4 since l4 = a (see section 5.1) and the reflection
a → r − a is the only change possible we can make in the recursion for X2k+1.

In view of the relations (44), there are two independent functions, say,

y(k1, k2; 1, 1, 1) and y(k1, k2; 1, 1, 2),
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which in particular satisfy the following identities

y(k1, k2; 1, 1, 1) = y(k2, k1; 1, 1, 1)

y(k1, k2; 1, 1, 2) = y(k2, k1; 1, 1, 3).

In the following, we show that in fact y(k1, k2; 1, 1, 2) = y(k1, k2; 1, 1, 3) identically,
without swapping the arguments k1, k2. From the point of view of the definition,
equation (40), this is a rather nontrivial equation, because one can not simply relate terms
in the sum of y(k1, k2; 1, 1, 2) to terms in the sum of y(k1, k2; 1, 1, 3); all the products of
q-binomials get mixed. This is in contrast to the identities in equation (44), which could be
obtained by trivial relabelings. Below, we derive similar equations for the other possible values
of l2 and l3.

The recursion for y(k1, k2; l2, l3, l4) does not involve the variable l4. Using the recursion,
it is easy to see that the initial conditions y(0, 0; l2, l3, l4), y(0, 1; l2, l3, l4), y(1, 0; l2, l3, l4)
and y(1, 1; l2, l3, l4) specify the values of the function y(k1, k2; l2, l3, l4) uniquely. In fact, one
can see that

(l2, l3) = (1, 1) (1, 2) (2, 1) (2, 2)
y(0, 0; l2, l3, 2) = y(0, 0, l2, l3, 3) = 1 q1/2 1 1
y(1, 0; l2, l3, 2) = y(1, 0, l2, l3, 3) = 1 + q 1 + q q1/2 1
y(0, 1; l2, l3, 2) = y(0, 1, l2, l3, 3) = 1 + q 1 + q 1 q1/2

y(1, 1; l2, l3, 2) = y(1, 1, l2, l3, 3) = 2q1/2 + q3/2 1 + q + q2 1 + q 1 + q.

This shows that the functions y(k1, k2; l2, l3, 2) and y(k1, k2; l2, l3, 3) are in fact identical.
Similar relations for l4 = 1, 4 are trivially true by changing the symmetric summation

variables. So we see that, for r = 5,

y(k1, k2; l2, l3, l4) = y(k1, k2; l2, l3, r − l4). (45)

These relations are analogous to the identity (26) for the height probability X2k+1(a; b, c, d, e).
Using these with the last four relations in (44) gives the following, nontrivial relations

y(k1, k2; 1, 1, 2) = y(k2, k1; 1, 1, 2)

y(k1, k2; 1, 2, 2) = y(k2 + 2, k1 − 2; 1, 2, 2)

y(k1, k2; 2, 1, 2) = y(k2 − 1, k1 + 1; 2, 1, 2)

y(k1, k2; 2, 2, 2) = y(k2 + 1, k1 − 1; 2, 2, 2).

(46)

With help of equation (45), these equations also hold for l4 = 3. In addition, by making use
of the relations in equation (44) and shifting l2 and l3 when necessary, we find that they also
hold for l4 = 1, and hence for l4 = 4. Thus, we have

y(k1, k2; 1, 1, l4) = y(k2, k1; 1, 1, l4)

y(k1, k2; 1, 2, l4) = y(k2 + 2, k1 − 2; 1, 2, l4)

y(k1, k2; 2, 1, l4) = y(k2 − 1, k1 + 1; 2, 1, l4)

y(k1, k2; 2, 2, l4) = y(k2 + 1, k1 − 1; 2, 2, l4).

(47)

It is important to note that the functional form of the identities we derived does not depend
on the value of l4. This will be very useful in the following, because the form of the recursion
relations for y(k1, k2, l2, l3, l4) does not depend on l4 either. In establishing the connection
between X2k+1(a; b, c, d, e) and y(k1, k2, l2, l3, l4), the cases which only differ in the values
of l4 (or a, which is the corresponding variable in the functions X2k+1) can be dealt with
simultaneously.
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3.2. The identifications between X2k+1 and y(k)

We are now ready to state the relations between the functions X2k+1(a; b, c, d, e; q)

and y(k1, k2; l2, l3, l4; q). Note that due to the properties discussed in section 2.5, these
identifications have slightly different but equivalent form for the states with u < 0 as compared
to [5]. Using these identifications, we can show that the recursions for the functions y(k1, k2)

at special values of the arguments imply those of the functions X2k+1 and that the initial
conditions agree. Thus we are able to give the functions X2k+1 in a closed form.

We have two independent ground state patterns G+
1 and G−

2 . For the ground states G−
2 the

identifications are

X2k+1(1; 2, 1, 2, 3; q) = y(k, k; 1, 1, 1; q)

X2k+1(3; 2, 1, 2, 3; q) = y(k, k; 1, 1, 3; q)

X2k+1(2; 3, 2, 3, 4; q) = y(k, k; 1, 2, 2; q)

X2k+1(4; 3, 2, 3, 4; q) = y(k, k; 1, 2, 4; q) (48)

and for the ground states G+
1

X2k+1(2; 1, 2, 3, 2; q) = y(k, k; 2, 1, 2; q)

X2k+1(4; 1, 2, 3, 2; q) = y(k, k; 2, 1, 4; q)

X2k+1(1; 2, 3, 4, 3; q) = y(k, k; 2, 2, 1; q) + q
k+1

2 y(k − 1, k − 1; 1, 1, 1; q)

X2k+1(3; 2, 3, 4, 3; q) = y(k, k; 2, 2, 3; q) + q
k+1

2 y(k − 1, k − 1; 1, 1, 3; q). (49)

These are all the (r − 1)(r − 3) = 8 independent functions X2k+1(a; b, c, d, e; q) for r = 5.
From these identifications, all the ground state patterns specified in [5] are obtained

using the properties of X2k+1 and y. In particular, the identities we derived here show that
the identification of ground states G+

1 # G+
3 is consistent with the somewhat different

identification of ground states in terms of the function y(k1, k2; l2, l3, l4) in [5] for r = 5,
because we always have that k1 = k2 = k in the expressions for the height probabilities.

We are now ready to show that the identifications made above are correct. We will
first show that assuming that the identification is correct for X2k−1, this implies that the
identification is also correct for X2k+1. To do this, we also make use of the recursion relations
for X2k+1(a; b, c, d, e; q) and the functions y(k1, k2; l2, l3, l4; q), as well as the various relations
between the latter. We will complete the proof by showing that the initial conditions also agree.

3.2.1. Recursions for G−
2 . To show that the identifications are indeed as given above, we

frequently make use of the various relations between the functions y(k1, k2; l2, l3, l4; q) as
given in section 3.1.2. For clarity, we repeat these relations when we use them, with one
exception. We frequently use equation (45) to swap l4 ↔ 5 − l4, without mentioning this
explicitly.

We start by considering the cases G−
2 , namely the recursion for X2k+1(1; 2, 1, 2, 3) implies

X2k+1(1; 2, 1, 2, 3) = q
k+1

2 X2k−1(1; 2, 1, 2, 1) + X2k−1(1; 2, 3, 2, 1) + X2k−1(1; 4, 3, 2, 1)

(50)

or writing the RHS in terms of the functions y,

X2k+1(1; 2, 1, 2, 3) = q
k+1

2 qk/2y(k − 1, k − 1; 1, 1, 1) + y(k − 1, k − 1; 1, 2, 4)

+ qk/2y(k − 1, k − 1; 2, 1, 4).
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Now, y(k − 1, k − 1; 1, 2, 4) = y(k − 2, k; 1, 1, 1) and y(k − 1, k − 1; 2, 1, 4) = y(k − 1, k −
2; 1, 1, 1), so in total

X2k+1(1; 2, 1, 2, 3) = q
k+1

2 qk/2y(k − 1, k − 1; 1, 1, 1) + y(k − 2, k; 1, 1, 1)

+ qk/2y(k − 1, k − 2; 1, 1, 1).

Using the recursion y(k+1, k−2; 1, 1, 1) = q
k+1

2 y(k−1, k−1; 1, 1, 1)+y(k−1, k−2; 1, 1, 1),
we get

X2k+1(1; 2, 1, 2, 3) = qk/2y(k + 1, k − 2; 1, 1, 1) + y(k − 2, k; 1, 1, 1) = y(k, k; 1, 1, 1),

where we first used the relation y(k1, k2; 1, 1, 1) = y(k2, k1; 1, 1, 1), followed by the
recursion relation for y(k, k; 1, 1, 1). We have thus shown that indeed X2k+1(1; 2, 1, 2, 3) =
y(k, k; 1, 1, 1), based on the identification for 2k − 1 and the recursion relations. The case
X2k+1(3; 2, 1, 2, 3) = y(k, k; 1, 1, 3) follows automatically, because all the relations we used
are independent of the actual value for l4 or a.

The only G−
2 case left to consider is X2k+1(2; 3, 2, 3, 4). The recursion for

X2k+1(2; 3, 2, 3, 4) is

X2k+1(2; 3, 2, 3, 4) = q
k+1

2 X2k−1(2; 1, 2, 3, 2) + q
k+1

2 X2k−1(2; 3, 2, 3, 2)

+ X2k−1(2; 3, 4, 3, 2). (51)

Writing the RHS in terms of y gives

X2k+1(2; 3, 2, 3, 4) = q
k+1

2 y(k − 1, k − 1; 2, 1, 2) + q
k+1

2 qk/2y(k − 1, k − 1; 1, 2, 2)

+y(k − 1, k − 1; 1, 1, 3).

Transforming everything to equal indices l2, l3, l4, we get

X2k+1(2; 3, 2, 3, 4) = q
k+1

2
(
y(k, k − 3; 1, 2, 2) + qk/2y(k − 1, k − 1; 1, 2, 2)

)

+ y(k, k − 2; 1, 2, 2).

Now, equation (46) implies

y(k1, k2; 1, 2, 2) = y(k2 + 2, k1 − 2; 1, 2, 2).

Using this and the recursion gives

X2k+1(2; 3, 2, 3, 4) = q
k+1

2 y(k + 1, k − 2; 1, 2, 2) + y(k, k − 2; 1, 2, 2)

which again just the recursion for y(k, k; 1, 2, 2) = X2k+1(2; 3, 2, 3, 4). The recursion for
X2k+1(4; 3, 2, 3, 4) follows similarly independent of l4 = a, using the identity (47).

3.2.2. Recursions for G+
1 . For the ground states G+

1 , the first recursion for X2k+1(2; 1, 2, 3, 2)

leads to

X2k+1(2; 1, 2, 3, 2) = X2k−1(2; 3, 2, 1, 2) + X2k−1(2; 1, 2, 1, 2). (52)

In terms of the function y, the RHS is

X2k+1(2; 1, 2, 3, 2) = y(k − 1, k − 1; 2, 2, 3) + qk/2y(k − 2, k − 2; 1, 1, 3)

+qky(k − 1, k − 1; 2, 2, 2)

or

X2k+1(2; 1, 2, 3, 2)= y(k − 2, k; 2, 1, 2)+ qk/2y(k − 2, k − 1; 2, 1, 2)+ qky(k − 2, k; 2, 1, 2).

Now (46) implies that

y(k1, k2; 2, 1, 2) = y(k2 − 1, k1 + 1; 2, 1, 2)
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and we get, using the recursion once,

X2k+1(2; 1, 2, 3, 2) = y(k − 2, k; 2, 1, 2) + qk/2y(k − 2, k + 1; 2, 1, 2) (53)

which is again just the basic recursion. The recursion for X2k+1(4; 1, 2, 3, 2; q) follows
similarly.

The recursion for X2k+1(1; 2, 3, 4, 3; q) leads to

X2k+1(1; 2, 3, 4, 3) = q
k+1

2 X2k−1(1; 2, 1, 2, 3) + X2k−1(1; 2, 3, 2, 3) + X2k−1(1; 4, 3, 2, 3).

(54)

Writing this in terms of y is

X2k+1(1; 2, 3, 4, 3) = q
k+1

2 y(k − 1, k − 1; 1, 1, 1) + qk/2y(k − 1, k − 1; 1, 2, 1)

+ y(k − 1, k − 1; 2, 1, 4).

This is simply

X2k+1(1; 2, 3, 4, 3) = q
k+1

2 y(k − 1, k − 1; 1, 1, 1) + qk/2y(k − 1, k; 2, 2, 1)

+ y(k, k − 2; 2, 2, 1).

Now equation (47) implies

y(k1, k2; 2, 2, 1) = y(k2 + 1, k1 − 1; 2, 2, 1),

using this and the recursion gives back y(k, k; 2, 2, 1) + q
k+1

2 y(k − 1, k − 1; 1, 1, 1) =
X2k+1(1; 2, 3, 4, 3). The recursion X2k+1(3; 2, 3, 4, 3) is identical.

Since G+
1 and G−

2 give all the independent states and recursions for X2k+1, we have shown
that the recursion for y(k1, k2; l2, l3, l4) implies the recursion for X2k+1(a; b, c, d, e).

3.2.3. Initial conditions. To establish the equality of the functions X2k+1(a; b, c, d, e) and
the functions y(k, k, l2, l3, l4), we still have to verify the initial conditions. We first show that
knowing the functions y(k1, k2; l2, l3, l4) for k1, k2 = 0, 1 for all values of the li fixes the
functions completely, by means of the recursion relations. We include the argument in detail
here, because we will need it in the discussion of the case r = 6.

It follows from the recursion relations that if we know the functions y for all (k1, k2) with
k1 + k2 ! n, where n " 2, we can construct all the functions with k1 + k2 = n + 1. In the
following, we will suppress the dependence on l2, l3, l4. Namely, the function y(i, n − i + 1),
where i ! n/2, can be obtained from y(i, n− i−1) and y(i+1, n− i−1), which we both know
by assumption. Similarly, we can obtain y(n−i+1, i) from y(n−i−1, i) and y(n−i−1, i+1).

From the knowledge of the functions y(0, 0), y(0, 1), y(1, 0) and y(1, 1), we first obtain
y(0, 2) and y(2, 0) from the recursion. The argument above shows that we now can obtain all
the functions.

It is now a simple matter to check that the initial conditions for the functions
X2k+1(a; b, c, d, e), namely X1(a; b, c, d, e) and X3(a; b, c, d, e), indeed correspond to
y(0, 0; l2, l3, l4) and y(1, 1; l2, l3, l4).

Below, we give these initial conditions for the independent set of functions X2k+1, namely
those corresponding to the ground state patterns for u > 0. For the ground state patterns of
type G−

2 , we have

(a, b) (1, 2) (2, 3) (3, 2) (4, 3)

X1(a; b, b − 1, b, b + 1) q1/2 q1/2 1 1
X3(a; b, b − 1, b, b + 1) 1 + q2 1 + q + q2 2q1/2 + q3/2 q1/2 + q3/2
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The results for the ground state patterns of type G+
1 read

(a, b) (1, 2) (2, 1) (3, 2) (4, 1)

X1(a; b, b + 1, b + 2, b + 1) q1/2 1 1 0
X3(a; b, b + 1, b + 2, b + 1) q1/2 + q3/2 1 + q 1 + 2q q1/2

This shows that the initial conditions are identical and completes the proof.

4. Explicit expressions for r = 6

We continue by considering the case r = 6. The form of the functions
y(A,B,C)(k1, k2, k3; l2, l3, l4; q) will be motivated in section 5, where we give a conjectural
form for the functions y for general r.

4.1. The function y(A,B,C)(k1, k2, k3; l2, l3, l4; q) for r = 6

For r = 6, the ‘finitized CFT characters’ related to the functions X2k+1(a; b, c, d, e; q) take
the form
y(A,B,C)(k1, k2, k3; l2, l3, l4; q) =

∑

(m1,m2,m3 )∈(2Z!0)3+(A,B,C) mod 2

q
1
2 (m2

1+m2
2+m2

3−(m1+m3)m2−m1δl4 ,4−m2δl4 ,3−m3δl4 ,2)

×
[ k1+m2+δl3 ,1+δl4 ,4

2
m1

][ k3+m1+m3+δl3 ,2+δl4 ,3

2
m2

][ k2+m2+δl2 ,1+δl3 ,3+δl4 ,2

2
m3

]
, (55)

where the summations are restricted such that the mi have the same parities as (A, B,C), which
now have to be explicitly specified in contrast to the case r = 5. We will only consider these
functions for (l2 + l3 + l4) mod 2 = 1. The properties of this function derived below are valid
under this condition.

We start by noting that the condition (l2 + l3 + l4) mod 2 = 1 implies that for the function
yr=6 to be non-zero, one needs that k1 = k2 mod 2. This follows from the requirement
that the arguments of the q-binomials have to be integers. Thus, one requires that both
B = (k1 + δl3,1 + δl4,4) mod 2 and B = (k2 + δl2,1 + δl3,3 + δl4,2) mod 2. Inspection
shows that to satisfy both equations, one needs k1 = k2 mod 2. In addition, one needs that
A +C = (k3 + δl3,2 + δl4,3) mod 2, so there are two, a priori independent, functions for every
l2, l3, l4, given by the two different choices for A and C.

Again, the height probabilities X2k+1 are related to these more general functions with
k1 = k2, k3 = 0. The variable k3 is introduced in y(A,B,C)(k1, k2, k3) to obtain a recursion
that closes. When we state the relation between the functions X2k+1(a; b, c, d, e; q) and
y(A,B,C)(k, k, 0; l2, l3, l4; q) below, we will specify the required values of (A, B,C) explicitly.

4.1.1. Recursion for y(ABC)(k1, k2, k3; l2, l3, l4; q). The recursion for this function, following
from (39) is, with * = l2, l3, l4 to shorten the notation,

y(A,B,C)(k1, k2, k3; *; q) = q
k1+δl3 ,1−1

2 y(A+1,B,C)(k1 − 2, k2, k3 + 1; *; q)

+ y(A,B,C)(k1 − 2, k2, k3; *; q)

= q
k2+δl3 ,3+δl2 ,1−1

2 y(A,B,C+1)(k1, k2 − 2, k3 + 1; *; q)

+ y(A,B,C)(k1, k2 − 2, k3; *; q)

= q
k3+δl3 ,2−1

2 y(A,B+1,C)(k1 + 1, k2 + 1, k3 − 2; *; q)

+ y(A,B,C)(k1, k2, k3 − 2; *; q). (56)
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As was the case for r = 5, we need to establish several identities for the functions
y(A,B,C)(k1, k2, k3; l2, l3, l4; q), which allow us to change the values of l2, l3, l4, in order to
make connection with the recursion for X2k+1, as given in equation (25), which does not keep
the li constant throughout the recursion.

4.1.2. Identities for y(A,B,C)(k1, k2, k3; l2, l3, l4; q). The relations we need in order to prove
the equivalence between the X2k+1 and y(A,B,C)(k1, k2, k3) can be derived in the same way as
for r = 5. However, we need to keep track of the parities (A, B,C), complicating matters
slightly. As explained above, we only consider the cases obeying (l2 + l3 + l4) mod 2 = 1.

Similar to the situation for r = 5, the relations can be grouped into several classes. We first
deal with the relations which can be obtained from the definition (55) by shifting the values
of the ki, and if necessary changing the summation variables m1 ↔ m3. All these relations are
therefore trivial in nature.

The first class of relations relates the functions which only differ in the values of l2 and
l3. For l4 odd, we have (dropping the q dependence)

y(A,B,C)(k1, k2, k3; 1, 1, l4) = y(A,B,C)(k1 + 1, k2 + 1, k3 − 1; 2, 2, l4)

= y(A,B,C)(k1 + 1, k2 − 1, k3; 1, 3, l4). (57)

In the case l4 even, we find

y(A,B,C)(k1, k2, k3; 1, 2, l4) = y(A,B,C)(k1 − 1, k2 + 1, k3 + 1; 2, 1, l4)

= y(A,B,C)(k1, k2, k3 + 1; 2, 3, l4). (58)

We continue by relating the functions y with l4 and r − l4, by changing the summation
variables m1 ↔ m3, which also swaps the values of k1 and k2. For l4 odd, this gives

y(A,B,C)(k1, k2, k3, 1, 1, l4) = y(C,B,A)(k2, k1, k3, 1, 1, r − l4)

y(A,B,C)(k1, k2, k3, 2, 2, l4) = y(C,B,A)(k2, k1, k3, 2, 2, r − l4)

y(A,B,C)(k1, k2, k3, 1, 3, l4) = y(C,B,A)(k2 + 2, k1 − 2, k3, 1, 3, r − l4). (59)

For l4 even, we find

y(A,B,C)(k1, k2, k3, 1, 2, l4) = y(C,B,A)(k2 + 1, k1 − 1, k3, 1, 2, r − l4)

y(A,B,C)(k1, k2, k3, 2, 1, l4) = y(C,B,A)(k2 − 1, k1 + 1, k3, 2, 1, r − l4)

y(A,B,C)(k1, k2, k3, 2, 3, l4) = y(C,B,A)(k2 + 1, k1 − 1, k3, 2, 3, r − l4). (60)

We now relate the functions y(A,B,C)(k1, k2, k3; l2, l3, l4) with l4 and r−l4, but without changing
the summation variables m1 ↔ m3. This can be done trivially in the case l4 = 1, 5, but in the
other cases, the relations are nontrivial, because they completely scramble the contributions
from the products of the binomials, and hence can not be obtained by reshuffling the terms
in the sums in equation (55). Instead, these relations are obtained by using that the recursion
relations for y are independent of l4, and checking the initial conditions. The initial conditions
sometimes give rise to constraints for the ki. We always assume that k1, k2 " 0, and give the
constraint on k3 explicitly.

y(A,B,C)(k1, k2, k3, l2, l3, 1) = y(A,B,C)(k1, k2, k3, l2, l3, 5)

y(A,B,C)(k1, k2, k3, l2, l3, 3) = y(A+1,B,C+1)(k1, k2, k3, l2, l3, 3) for k3 + δl3,2 " 0

y(A,B,C)(k1, k2, k3, l2, l3, 2) = y(A+1,B+1,C+1)(k1, k2, k3, l2, l3, 4) for k3 + δl3,2 " 0. (61)

Finally, we combine these identities with the preceding ones, to obtain expressions relating
the functions y with the same values of l2, l3, l4, but with the values of k1 and k2 swapped. In
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particular, for l4 odd we have
y(A,B,C)(k1, k2, k3, 1, 1, l4) = y(C+δl4 ,3,B,A+δl4 ,3 )(k2, k1, k3, 1, 1, l4) for k3 " 0

y(A,B,C)(k1, k2, k3, 2, 2, l4) = y(C+δl4 ,3,B,A+δl4 ,3 )(k2, k1, k3, 2, 2, l4) for k3 " −1

y(A,B,C)(k1, k2, k3, 1, 3, l4) = y(C+δl4 ,3,B,A+δl4 ,3 )(k2 + 2, k1 − 2, k3, 1, 3, l4) for k3 " 0. (62)
For l4 even, we finally obtain
y(A,B,C)(k1, k2, k3, 1, 2, l4) = y(C+1,B+1,A+1)(k2 + 1, k1 − 1, k3, 1, 2, l4) for k3 " −1

y(A,B,C)(k1, k2, k3, 2, 1, l4) = y(C+1,B+1,A+1)(k2 − 1, k1 + 1, k3, 2, 1, l4) for k3 " 0

y(A,B,C)(k1, k2, k3, 2, 3, l4) = y(C+1,B+1,A+1)(k2 + 1, k1 − 1, k3, 2, 3, l4) for k3 " 0. (63)
This exhausts the relations that we need to prove the equivalence between the functions X2k+1

and y(A,B,C)(k1, k2, k3).

4.2. The identifications between X2k+1 and y(A,B,C)(k1, k2, k3)

As was the case for r = 5, it suffices to give the identifications for an independent set of
X2k+1. We again specify the cases corresponding to the ground state patterns G−

2 and G+
1 . We

henceforth drop commas from the boundary conditions, b, c, d, e → bcde, the parities of the
summation variables A, B,C → ABC and the labels l2, l3, l4 → l2l3l4 to lighten the notation.

For the patterns in G−
2 , the identifications are

X2k+1(1; 2123) = y(AAA)(k, k, 0; 111)

X2k+1(3; 2123) = y(AAC)(k, k, 0; 113)

X2k+1(5; 2123) = y(ABA)(k, k, 0; 115)

X2k+1(2; 3234) = y(ABB)(k, k, 0; 122) (64)

X2k+1(4; 3234) = y(AAC)(k, k, 0; 124)

X2k+1(1; 4345) = y(ABA)(k, k, 0; 131)

X2k+1(3; 4345) = y(ABB)(k, k, 0; 133)

X2k+1(5; 4345) = y(AAA)(k, k, 0; 135).

In the case of patterns of type G+
1 , they read

X2k+1(2; 1232) = y(AAA)(k, k, 0; 212)

X2k+1(4; 1232) = y(ABA)(k, k, 0; 214)

X2k+1(1; 2343) = y(ABB)(k, k, 0; 221) + q
k+1

2 y(BBB)(k − 1, k − 1, 0; 111)

X2k+1(3; 2343) = y(ABA)(k, k, 0; 223) + q
k+1

2 y(BBA)(k − 1, k − 1, 0; 113)

X2k+1(5; 2343) = y(AAC)(k, k, 0; 225) + q
k+1

2 y(CAC)(k − 1, k − 1, 0; 115)

X2k+1(2; 3454) = y(ABA)(k, k, 0; 232) + q
k+1

2 y(BAA)(k − 1, k − 1, 0; 122)

+ q
2k+1

2 y(BBB)(k − 1, k − 1, 0; 212)

X2k+1(4; 3454) = y(AAA)(k, k, 0; 234) + q
k+1

2 y(BBA)(k − 1, k − 1, 0; 124)

+ q
2k+1

2 y(BAB)(k − 1, k − 1, 0; 214). (65)

We still need to specify the parities (A, B,C) for the functions y, in order to completely
determine the identification. These read as follows

A = (k + l3 + δl4,5 + δl3,2) mod 2

B = (k + l3 + δl4,4 + δl3,3) mod 2

C = (k + l3 + δl4,3 + δl4,5) mod 2. (66)
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It follows that all the parities are reversed whether considering k even or odd. The notation for
the parities in the equations (65) and (64) requires some explanation. Clearly we need at most
two different labels for the parities. The parity A of the first function y(A,B,C)(k, k, 0; l2, l3, l4)
for size k is used as a reference, and is always denoted by A. This parity is obtained from
equation (66). If the parity for B, also given by equation (66), happens to be the same as A,
this is also denoted A. Otherwise, it is denoted as B. Finally, for the parity C, the notation is
such that it is denoted by A if A = B = C, denoted by B if A *= B = C, and denoted by C if
A = B *= C. When the value of k is lowered, as occurs for the G+

1 patterns, see equation (65),
the notation of the parities is with respect to those of size k. This notation is convenient to
keep track of the parities, when we prove (in the next section) the connection between X2k+1

and the y(A,B,C)(k, k, 0), as given in (65) and (64), and write the parities with respect to the
function for size k as described above.

The identifications given above deal with all the (r − 1)(r − 3) = 15 independent
configurations for the functions X2k+1 for r = 6. The relations for the functions X2k+1 for the
ground state patterns related to u < 0, and the non ground state patterns, can be obtained by
making use of the relations given in the equations (32), (33) and (31).

4.2.1. Recursion for states G+
1 . Here we show how to deal with a representative state in G+

1 ,
the rest of the recursions are collected in the appendix. The strategy is the same as for r = 5,
namely we assume that the identification is correct for 2k − 1, and show that this implies the
identification for 2k + 1, by using the recursions for X2k+1 and y(A,B,C)(k1, k2, k3) as well as
the various relations between the functions y. The recursion for X2k+1(3; 2343) is

X2k+1(3; 2343) = q
k+1

2 X2k−1(3; 2123) + X2k−1(3; 2323) + X2k−1(3; 4323). (67)

In terms of y(ABC)(k1, k2, k3; l2, l3, l4) the RHS is

X2k+1(3; 2343) = q
k+1

2 y(BBA)(k − 1, k − 1, 0; 113) + q
k
2 y(BAA)(k − 1, k − 1, 0; 133)

+ y(BAB)(k − 1, k − 1, 0; 223) + q
k
2 y(AAB)(k − 2, k − 2, 0; 113).

We use

y(ABC)(k1, k2, k3; 133) = y(ABC)(k1, k2 + 2, k3 − 1; 223),

y(ABC)(k1, k2, k3; 113) = y(ABC)(k1 + 1, k2 + 1, k3 − 1; 223),

except for the first term which is included in X2k+1(3; 2343), to get

X2k+1(3; 2343) = q
k+1

2 y(BBA)(k − 1, k − 1, 0; 113) + y(BAB)(k − 1, k − 1, 0; 223)

+ q
k
2 y(BAA)(k − 1, k + 1,−1; 223) + q

k
2 y(AAB)(k − 1, k − 1,−1; 223).

Where the term the second term on the RHS is

y(BAB)(k − 1, k − 1, 0; 223) = y(BAB)(k − 1, k − 1,−2; 223) + y(BBB)(k, k,−2; 223),

so

X2k+1(3; 2343) = q
k+1

2 y(BBA)(k − 1, k − 1, 0; 113) + y(BAB)(k − 1, k − 1,−2; 223)

+ y(BBB)(k, k,−2; 223) + q
k
2 y(BAA)(k − 1, k + 1,−1; 223)

+ q
k
2 y(AAB)(k − 1, k − 1,−1; 223).

Combining the second and last terms gives

X2k+1(3; 2343) = q
k+1

2 y(BBA)(k − 1, k − 1, 0; 113) + y(BAB)(k + 1, k − 1,−2; 223)

+ y(BBB)(k, k,−2; 223) + q
k
2 y(BAA)(k − 1, k + 1,−1; 223)
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and further, using the properties in (62) and (59),
y(ABC)(k1, k2, k3; 223) = y(A+1BC+1)(k1, k2, k3; 223) = y(CBA)(k2, k1, k3; 223), k3 " −1,

in the last term gives

X2k+1(3; 2343) = q
k+1

2 y(BBA)(k − 1, k − 1, 0; 113) + y(BAB)(k + 1, k − 1,−2; 223)

+ y(BBB)(k, k,−2; 223) + q
k
2 y(BAA)(k + 1, k − 1,−1; 223).

This is just

X2k+1(3; 2343) = q
k+1

2 y(BBA)(k − 1, k − 1, 0; 113) + y(BAB)(k + 1, k + 1,−2; 223)

+ y(BBB)(k, k,−2; 223)

= q
k+1

2 y(BBA)(k − 1, k − 1, 0; 113) + y(BBB)(k, k, 0; 223)

= q
k+1

2 y(BBA)(k − 1, k − 1, 0; 113) + y(ABA)(k, k, 0; 223),

as desired. The recursions for the same patterns but different a = l4, i.e. X2k+1(1; 2343) and
X2k+1(5; 2343), are similar and omitted. The remaining recursions for patterns in G+

1 are
collected in the appendix.

4.2.2. Recursion for states G−
2 . Here we show an example recursion for a state in G−

2 . We
start with
X2k+1(3; 2123) = q

k+1
2 X2k−1(3; 2121) + X2k−1(3; 2321) + X2k−1(3; 4321). (68)

In terms of the functions y(ABC)(k1, k2, k3; l2, l3, l4), the RHS is

X2k+1(3; 2123) = q
k+1

2 q
k
2 y(CCA)(k − 1, k − 1, 0; 113) + y(CAA)(k − 1, k − 1, 0; 133)

+q
k
2 y(CAC)(k − 1, k − 1, 0; 223) + qky(AAC)(k − 2, k − 2, 0; 113).

Using
y(ABC)(k1, k2, k3; 223) = y(ABC)(k1 − 1, k2 − 1, k3 + 1; 113),

y(ABC)(k1, k2, k3; 133) = y(ABC)(k1 − 1, k2 + 1, k3; 113),

this is
X2k+1(3; 2123) = q

k+1
2 q

k
2 y(CCA)(k − 1, k − 1, 0; 113) + y(CAA)(k − 2, k, 0; 113)

+q
k
2 y(CAC)(k − 2, k − 2, 1; 113) + qky(AAC)(k − 2, k − 2, 0; 113).

We use y(ABC)(k1, k2, k3; 113) = y(CBA)(k2, k1, k3; 113) from (59) and combine it with the
recursion,
y(AAC)(k − 2, k − 2, 2; 113) = q1/2y(CCA)(k − 1, k − 1, 0; 113)+ y(AAC)(k − 2, k − 2, 0; 113),

and get
X2k+1(3; 2123) = qky(AAC)(k − 2, k − 2, 2; 113) + y(CAA)(k − 2, k, 0; 113)

+qk/2y(CAC)(k − 2, k − 2, 1; 113).

Using

y(CAC)(k, k − 2, 1; 113) = y(CAC)(k − 2, k − 2, 1; 113) + q
k
2 y(AAC)y(k − 2, k − 2, 2; 113),

we get

X2k+1(3; 2123) = q
k
2 y(CAC)(k, k − 2, 1; 113)+ y(CAA)(k − 2, k, 0; 113) = y(AAC)(k, k, 0; 113),

where we used y(CAA)(k−2, k, 0; 113) = y(AAC)(k−2, k, 0; 113) (recall that the parity A *= C)
and the recursion for y. Thus, the identification X2k+1(3; 2123) = y(AAC)(k, k, 0; 113) follows
from the identifications for 2k − 1 and the recursion for y, as we intended to show.

The recursions for X2k+1(1; 2123) and X2k+1(5; 2123) with different a = l4 are very
similar and therefore omitted. The recursions for the other patterns in G−

2 are given in the
appendix.
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4.2.3. Initial conditions. We have now proven the recursions for the independent states in
G+

1 and G−
2 are implied by the recursion for the function yr=6 and it remains to check that the

initial conditions agree.
We show that to specify the functions yr=6 completely, it suffices to know them for all

the values of ki ∈ {0, 1}. The others then follow by making use of the recursion relations. The
argument is very similar to the one we gave for the case r = 5.

We start by giving the recursion relations in symbolic form,

(k1, k2, k3) → (k1 − 2, k2, k3) + (k1 − 2, k2, k3 + 1),

and similarly for k1 ↔ k2, which occur symmetrically in the recursion. The value of k3 can be
lowered by using

(k1, k2, k3) → (k1, k2, k3 − 2) + (k1 + 1, k2 + 1, k3 − 2).

It is straightforward to show that from the initial values, we can obtain all functions yr=6

where the ki satisfy k1 +k2 +k3 ! 3. We start by constructing (k1, k2, k3) = (2, 0, 0), (0, 2, 0)

and (0, 0, 2), by using the functions for the values (0, 0, 0), (0, 0, 1) and (1, 1, 0), which
we know by assumption. We can also construct (3, 0, 0), (0, 3, 0) and (0, 0, 3), by using
the values for (1, 0, 0), (1, 0, 1), (0, 1, 0), (0, 1, 1) and finally (0, 0, 1), and (1, 1, 1). The
functions for these values also give us the functions at the values (2, 1, 0) and (1, 2, 0).

Above, we constructed yr=6 for (0, 0, 2), which together with (0, 0, 1) gives us yr=6 for
(2, 0, 1) and (0, 2, 1). Finally, we construct yr=6 for the ki values (1, 0, 2) and (0, 1, 2) by
using (1, 0, 0), (0, 1, 0) and the newly constructed (1, 2, 0) and (2, 1, 0). Thus, we now know
yr=6 for all ki with k1 + k2 + k3 ! 3.

We continue by showing that knowing the function yr=6 for k1 + k2 + k3 ! n allows us
to construct the function for all ki values satisfying k1 + k2 + k3 = n + 1. We start by using
the first recursion, or its equivalent by swapping k1 ↔ k2, to construct yr=6 for the values
(i, n − i + 1, 0), by using (i, n − i − 1, 0) and (i, n − i − 1, 1) or by using (i − 2, n − i + 1, 0)

and (i − 2, n − i + 1, 1), whichever is applicable. We can similarly construct (i, n − i, 1) by
using either (i, n − i − 2, 1) and (i, n − i − 2, 2) or (i − 2, n − i, 1) and (i − 2, n − i, 2).

From now on, we can exclusively use the second recursion, to construct the remaining
functions. We start by constructing (i, n−i−1, 2) from (i, n−i−1, 0) and (i+1, n−i, 0) (which
was just constructed above). We then continue to subsequently construct (i, n − i − j + 1, j),
for j = 3, . . . , n+1, from (i, n− i− j +1, j −2) and (i+1, n− i− j +2, j −2), which have
been constructed earlier. This concludes the proof that we can construct the function yr=6 for
all values of (k1, k2, k3) from the knowledge of the functions for the values ki ∈ {0, 1} and the
recursion relations.

The initial conditions are now straightforward to check, namely the functions
y(ABC)(0, 0, 0; l2, l3, l4), y(ABC)(1, 1, 0; l2, l3, l4) and X1(a; b, c, d, e), X3(a; b, c, d, e) agree.
Explicitly, the initial conditions read

(a, b) (1, 2) (1, 4) (2, 3) (3, 2) (3, 4) (4, 3) (5, 2) (5, 4)

X1(a; b, b − 1, b, b + 1) q1/2 0 q1/2 1 q1/2 1 0 1
X3(a; b, b − 1, b, b + 1) 1 + q2 q3/2 1 + q + q2 2q1/2 + q3/2 1 + q + q2 2q1/2 + q3/2 q q1/2 + q3/2

for ground state patterns of type G−
2 , while for the ground state patterns of type G+

1 , we have

(a, b) (1, 2) (2, 1) (2, 3) (3, 2) (4, 1) (4, 3) (5, 2)

X1(a; b, b + 1, b + 2, b + 1) q1/2 1 q1/2 1 0 1 0
X3(a; b, b + 1, b + 2, b + 1) q1/2 + q3/2 1 + q q1/2 + 2q3/2 1 + 2q q1/2 1 + 2q q1/2
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This finally completes the proof of the correspondence between the functions
X2k+1(a; b, c, d, e) and y(ABC)(k, k, 0; l2, l3, l4) for r = 6, as given in section 4.2.

5. Conjectural expression for the local height probabilities: general case

In the previous two sections, we proved the equality between the explicit expressions (in terms
of finitized CFT characters), and the functions X2k+1, in the cases r = 5 and r = 6. Now we
present a general conjecture for X2k+1 for any r " 5. We start this section by motivating the
form of our conjecture.

The form of the fermionic formula for general r closely resembles the fermionic formula
for the height probabilities of the original ABF model, which were first conjectured in
[17, 18], and subsequently proven in several papers [22, 24–26].

The structure of these fermionic characters is that of the UCPF, which can be interpreted
as a sum of states of several species of fermions [13]. This formalism has been developed in the
nineties by several groups, focusing on different aspects of the problem, such as the statistical
mechanics models in which these UPCFs appear [34], representation theory [16–18], or the
connection with CFT [35, 36].

For an introduction and more references, see the note [13]. Here, we would like to mention
in particular the paper [37], in which the role of various types of particles which can appear
in a UCPF is explained. By making use of the connection with the central charge, we can find
the ‘particle content’ of the UCPF, which in turn dictates its detailed form.

In the UCPFs which describe the local height probabilities on the one hand, and the
characters of the CFT describing the critical behavior on the other, two different types of
particles appear, namely ‘real’ particles and so-called ‘pseudo’ particles, which in effect have
zero-energy and do not propagate. Their presence does however effect the possible energies
for the ‘real’ particles. In addition, the presence of ‘pseudo’ particles has an effect on the
central charge associated with the UCPFs, which is why we bring up the notion of ‘pseudo’
particles here.

We start by considering a set of particles, satisfying Haldane exclusion statistics [38], with
the statistics parameters encoded in the matrix K, where the elements Ki j denotes the mutual
statistics between particles of type i and j. The matrix K plays a central role in the UCPF.
The one-particle distribution functions λi for an ideal gas of fractional statistics particles were
derived in [39–41],

(λi − 1
λi

)∏

j

λ
Ki j

j = zi, (69)

where zi = e−βεi is the fugacity of the species i. Introducing λtot =
∏

i λi(z), where all the
λi are evaluated at the same fugacity z, we can derive the central charge of the associated
CFT by making use of the relation between the central charge and the specific heat. For the
details, we refer to [37]. In short, the central charge associated with a system of exclusion
statistics particles characterized by K (assuming that all particles are real for now) is obtained
by calculating the specific heat. Specifically, one finds one has to solve the system of equations

ξi =
∏

j

(1 − ξ j)
Ki j . (70)

The solution {ξi} is then used to calculate the central charge

c = 6
π2

∑

i

L(ξi), (71)
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where L(z) is Rogers’ dilogarithm

L(z) = −1
2

∫ z

0
dy
(

log y
1 − y

+ log(1 − y)

y

)
. (72)

For pseudo-particles, which keep track of the internal structure of the real particles, we have
εi = 0, so zi = 1, which changes the λi via equation (69). To calculate the central charge in
the presence of pseudo-particles, one first calculates the central charge associated with the full
matrix K, giving cfull. In addition, one calculates the central charge associated with the part of
the matrix K which only contains the pseudo-particles, which we denote by cpseudo. The total
central charge of the system is simply the difference of the two

cCFT = cfull − cpseudo. (73)

The statistics matrix K plays a central role in the UCPFs, which describe the partition
functions of statistical mechanics models, as well as the (chiral) characters conformal field
theories. For the various sectors in CFTs, both the matrix K and the type of the particles (real
or pseudo) is the same. The forms of the functions y for r = 5 and r = 6 take the form of
a UCPF. The bilinear forms appearing in the exponent of q, can be written as q

1
2 m·Km (see

equations (34), (55) for the cases r = 5 and r = 6). We use the discussion above to obtain the
correct form of the matrix K, and the number of pseudo-particles necessary for the explicit
expression for the functions X2k+1(a; b, c, d, e; q) for arbitrary r, but consider the original
ABF model first.

In the case of the original ABF model, we know that the critical behavior of the model in
regime III, i.e. when p → 0 is given in terms of the minimal models M(r − 1, r), which have
a coset description su(2)1×su(2)r−3

su(2)r−2
with r " 4 [42]. The matrix K which appears in the bilinear

form in the UCPFs for these minimal models was found to take the form K = 1
2 Ar−3, where

Ar−3 is the Cartan matrix of su(r−2), and is given via its elements as (Ar−3)i, j = 2δi, j−δ|i− j|,1,
with i, j = 1, . . . , r−3. To calculate the central charge from this matrix, we need the additional
information that only the particle associated with the first row and column is a real particle,
all the other particles are pseudo-particles.

We quote the results of the calculation here, and refer to [43] for the details. The solution
to the equation (70) for the matrix K = 1

2 Ar−3 is given by

ξ j = 1 −
sin
(

π
r

)2

sin
(

(r−2+ j)π
r

)2 , (74)

with j = 1, 2, . . . , r − 3. To obtain the central charge, dilogarithm identities were used,
see [43], which resulted in the central charge associated with the matrix K = 1

2 Ar−3

(assuming that all particles are real), namely cr = 6
π2

∑r−3
j=1 L(ξ j) = (r−3)(r−2)

r . Thus, the
central charge of the minimal models, for which only the first particle is real, is given by
cmm = cr − cr−1 = 1 − 6

(r−1)(r) , which is indeed the central charge of the minimal model
M(r−1, r). We also note the following. The sum of the central charges associated with a matrix
and its inverse add up to the rank of the matrix (assuming that all particles are ‘real’). This means
that the central charge associated with K−1 = 2A−1

r−3 is given by r − 3 − (r−3)(r−2)
r = 2(r−3)

r ,
which is the central charge associated with the Zr−2-parafermion theory, which describes the
critical behavior of the critical p = 0 model for u < 0, i.e. the critical behavior associated
with regime II of the ABF model. We explain this connection in more detail below.

We now focus on the CFT description of the composite height model introduced in [5].
There, it was found that the critical behavior in regime III was given in terms of a diagonal
coset model, also based on su(2)r affine Lie algebras, in particular su(2)1×su(2)1×su(2)r−4

su(2)r−2
. In [5],

explicit fermionic expressions for the local height probabilities, for finite system size, were
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found for the special case where r = 5. These local height probabilities took the form of
UCPFs, based on the matrix K = 1

2 A2, where both particles are real. The associated central
charge is indeed c5 = 6

5 .
The central charge of the coset su(2)1×su(2)1×su(2)r−4

su(2)r−2
is given by c = 1+1+ 3(r−4)

r−2 − 3(r−2)
r =

2 − 12
r(r−2)

. By using the analogy with the original ABF model, we can expect that the LHP of
the composite model can be expressed in terms of UCPFs, based on the matrix K = 1

2 Ar−3,
where two of the particles are real, while the others are pseudo-particles. Indeed, the central
charge associated with such a UCPF is given by cr − cr−2 = 2 − 12

r(r−2)
, which is the expected

result. Below, we will give the conjectured form of the LHP, written in terms of fermionic
characters, based on the bilinear form of K = 1

2 Ar−3, where the first and last particles are real,
while the other particles are pseudo-particles.

5.1. Conjectured fermionic form of the local height probability

In this subsection, we will introduce the conjectured form of the functions
Xr,2k+1(a; b, c, d, e; q) which appear in the expression for the LHP, for arbitrary value of
r, thereby generalizing the result given in [5] for r = 5, which we proved in the current
paper, along with the case r = 6. Note that we added the subscript r to the notation
Xr,2k+1(a; b, c, d, e; q), in order to be completely explicit.

We first introduce a set of functions ỹr(k; l2, l3, l4; q), which play a central role in the
description of the functions Xr,2k+1(a; b, c, d, e; q). In particular, we write

ỹr(k; l2, l3, l4; q) =
∑

mi"0
i=1,...r−3

′
q

1
2 m·K·m− 1

2 δ1<l4<r−1mr−1−l4 ×
[1

2
(k + m2 + δl3,1 + δl4,r−2)

m1

]

×
(r−4∏

i=2

[ 1
2 (mi−1 + mi+1 + δl3,i + δl4,r−1−i)

mi

])

×
[1

2
(k + mr−4 + δl2,1 + δl3,r−3 + δl4,2)

mr−3

]

. (75)

Here, the labels l2, l3 and l4 correspond to various factors in the coset su(2)1×su(2)1×su(2)r−4
su(2)r−2

,
namely the second factor su(2)1, the factor su(2)r−4 and su(2)r−2 in the coset for l2, l3 and l4
respectively. These labels take the values l2 = 1, 2, l3 = 1, 2, . . . , r−3 and l4 = 1, 2, . . . , r−1.
We have written the functions ỹr in such a way that they are non-zero if (l2+l3+l4) mod 2 = 1.
This fixes the suppressed label l1 corresponding to the first factor su(2)1 in the coset to be
l1 = (l2 + l3 + l4) mod 2, due to the constraint l1 + l2 + l3 = l4 mod 2. Finally, we introduced
a ‘generalized Kronecker-delta’, δcond, which is 1 if the condition ‘cond’ is met, and zero
otherwise.

The matrix K = 1
2 Ar−3 has rank r − 3 and is the Cartan matrix defined as above, the

prime on the sum denotes the constraint that the summation variables are either even or odd,
depending on the summation variable as well as the other labels of the functions ỹr. The parity
of mi is given by

mi ≡ (k + l3 + δi"r−l4δr−2+l4+i mod 2,0 + δi#l3δl3+i mod 2,1) mod 2. (76)

With this, we have completely specified the functions ỹr. To make the connection with
the functions Xr,2k+1, there is one additional step, namely the introduction of the functions
yr(k; l2, l3, l4; q), which differ from ỹr(k; l2, l3, l4; q) only in the case that both l2, l3 > 1.

27



J. Phys. A: Math. Theor. 45 (2012) 435001 J Nissinen and E Ardonne

We define

yr(k; 1, l3, l4; q) = ỹr(k; 1, l3, l4; q)

yr(k; 2, l3, l4; q) =
min(l3−1,2k+1)∑

l=0

q(l(k+1)/2−
(⌈

l2−1
2

⌉)
/4ỹr(k −

⌈
l/2

⌉
; 2 − (l mod 2), l3 − l, l4; q),

(77)

where +x, is the ceiling function, i.e. gives the smallest integer bigger or equal to x. The
structure of the sum in the case that l2 = 2 is as follows. The argument l′4 of the functions
ỹr(k′; l′2, l′3, l′4; q) is the same in all the terms. The argument l′3 decreases in steps of one starting
from l′3 = l3. The argument l′2 alternates between l′2 = 2 and l′2 = 1. Finally, the argument
k′ decreases by one every other term. We note that the value k′ = −1 can occur, in case that
2k ! l3 − 2.

With the functions yr in place, we can now write down the explicit expressions for the
functions Xr,2k+1. We will do this for the ground states for u > 0 first. There are four types of
ground state patterns, namely (b, b−1, b, b+1), (b, b+1, b+2, b+1) and two others which
are related by changing the heights from l to r − l, i.e. they are of the form (b, b + 1, b, b − 1)

and (b, b − 1, b − 2, b − 1). Because the functions X2k+1 remain unchanged when all the
heights are reflected, we will concentrate on the first two ground state patterns for u > 0. In
particular, we have the following result

Xr,2k+1(a; b, b − 1, b, b + 1) = yr(k; 1, b − 1, a; q) (78)

Xr,2k+1(a; b, b + 1, b + 2, b + 1) = yr(k; 2, b, a; q), (79)

where we note that the functions yr in the second line are a sum of terms ỹr in the case that
b " 2.

The ground state patterns for u < 0 are of the form (b, b+1, b, b+1) or (b, b−1, b, b−1).
By using the reflection symmetry (26) of the Xr,2k+1, we can restrict ourselves to the first set of
patterns. As we explained in section 2.5, the functions Xr,2k+1(a; b, b+1, b, b+1; q) are related
to the ones for the ground state patterns for u > 0, equations (32), (33). Namely, we have to
distinguish two cases, the functions Xr,2k+1(a; b + 1, b, b + 1, b), where b = 1, 2, . . . , r − 3.
The remaining case b = r−2, i.e. Xr,2k+1(a; r−1, r−2, r−1, r−2) will be treated separately

Xr,2k+1(a; b + 1, b, b + 1, b; q) = q
k+1

2 yr(k; 1, b, a; q) (80)

Xr,2k+1(a; r − 1, r − 2, r − 1, r − 2; q) = qk+1yr(k; 2, 1, r − a; q). (81)

Finally, we come to the functions Xr,2k+1 which are not related to ground state patterns,
namely Xr,2k+1(a; b, b+ 1, b+ 2, b+ 3) and Xr,2k+1(a; b+ 3, b+ 2, b+ 1, b), and concentrate
on the first one, where b = 1, 2, . . . , r − 4. As above, we use a relation to a ground state
pattern for u > 0, namely (31), to obtain

Xr,2k+1(a; b, b + 1, b + 2, b + 3) = q
k+1

2 yr(k; 2, b, a; q). (82)

We numerically checked our conjecture for r = 5, . . . , 13, for all different ground state
patterns up to sizes of at least k = 10 (in the case r = 13). We believe that it is possible to
formalize the structure of the proof presented here for the cases r = 5, 6, along the lines [25],
to prove the general case.
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6. Height probabilities in the thermodynamic limit

In this section, we take the thermodynamic limit of the obtained form for the local height
probabilities, in the case u > 0 as well as for u < 0. In the former case, we can take the
limit from the expressions (75) directly, while in the latter case, we first have to ‘invert’ the
expressions, in order to obtain the result. For u < 0, the result allows us to interpret the local
height probabilities in terms of CFT characters immediately. In the case u > 0, this is more
complicated, and is the subject of the next section.

6.1. Regime III (u > 0)

We start by considering the case u > 0, and take the thermodynamic limit k → ∞, of the
expressions for the height probabilities Xr,2k+1(a; b, c, d, e; q), which were expressed in terms
of the functions yr(k; l2, l3, l4; q), given in equation (78). In those cases where both l2, l3 > 1,
these expressions are a sum over various ỹr(k′; l′2, l′3, l′4; q), but all terms, except for the first
term ỹr(k; l2, l3, l4; q), have an overall factor qlk/2, where l is some positive integer. So in the
thermodynamic limit, we only have to consider the first term ỹr(k; l2, l3, l4; q), which is given
in equation (75).

Taking the limit limk→∞ ỹr(k; l2, l3, l4; q) is rather straightforward, because the k

dependence only resides in the q-binomials, and we can make use of the result limn→∞
[n

m

]
=

1
(q)m

. The only complication lies in the parity of the summation variables, which depends on
the parity of k, forcing us to take the limit k → ∞ over either the even or odd integers. In the
end, we obtain the result

lim
k→∞

yr(k; l2, l3, l4; q) =
∑

mi"0
i=1,...r−3

′ q
1
2 m·K·m− 1

2 δ1<l4<r−1mr−1−l4

(q)m1 (q)mr−3

×
r−4∏

i=2

[1
2
(mi−1 + mi+1 + δl3,i + δl4,r−1−i)

mi

]

, (83)

where the limit is taken either over even or odd k, and the prime on the sum denotes the
constraints on the parities of the mi, namely

mi ≡ (k + l3 + δi"r−l4δr−2+l4+i mod 2,0 + δi#l3δl3+i mod 2,1) mod 2. (84)

The connection of these expressions with CFT characters will be given in the next section.

6.2. Regime II (u < 0)

In order to obtain the thermodynamic limit of the local height probabilities for u < 0, we
have to ‘invert’ the characters. The reason is that in the regime u > 0, the function φ(l), see
equation (18), has to be maximized to find the ground states. Thus, to obtain the behavior
at the critical point, we need to do the following procedure. For any finite system size k,
the maximum value of φ(l) which can be obtained is 1

2 (k + 1)(k + 2). This means that the
functions X2k+1 we are interested in take the form q(k+1)(k+2)/2X2k+1(a; b, c, d, e; q−1), see
also [5] for more details. The particular boundary conditions relevant for the regime u < 0
were described in section 2.4. Equations (32) and (33) express the functions X2k+1 for u < 0 in
terms of functions X2k+1 relevant for u > 0. For the latter functions, we obtained the explicit
fermionic expressions yr(k; l2, l3, l4; q), given in equations (75) and (78), but we note that for
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u < 0, the relevant functions have either l2 = 1 or l3 = 1, so that we only need to consider the
functions ỹr(k; l2, l3, l4; q) in equation (75).

For ease of notation, we write the functions ỹr(k; l2, l3, l4; q) in the following way

ỹr(k; l2, l3, l4; q) =
∑

mi " 0
i = 1, . . . r − 3

′
q

1
2 m·K·m− 1

2 B·m
r−3∏

i=1

[(
(1 − K) · m

)
i + 1

2 (k + u)i

mi

]
, (85)

where the elements of the vectors k, u and B are given by ki = k(δi,1 + δi,r−3), ui =
δi,r−3δl2,1 + δi,l3 + δi,r−1−l4 and Bi = δi,r−1−l4 . The constraints on the sum are the same as those
in (84).

We are interested in calculating q(k+1)(k+2)/2yr(k; l2, l3, l4; q−1), which is done by making
use of the identity

[
n + m

m

]

q−1

= q−nm
[

n + m
m

]

q
, (86)

and by changing the summation variables from the mi to ni = 1
2 (k + u)i − (K · m)i. Most

of the steps of this rewriting are straightforward. First, we note that we can write the mi

in terms of the ni as follows mi =
(
K−1 · ( 1

2 k + 1
2 u − n)

)
i, which allows one to write the

function q(k+1)(k+2)/2yr(k; l2, l3, l4; q−1) in terms of a sum over the ni. One has to take care
in taking into account the constraints in the sum over the mi in the original expression. To
this end, we consider the sum

∑r−3
i=1 ini, by making use of the explicit form of the matrix K,

whose elements read Ki, j = δi, j − 1
2δ|i− j|,1, where i, j = 1, . . . , r − 3. In particular, one finds∑r−3

i=1 i(K · m)i = r−2
2 mr−3, giving rise to

∑r−3
i=1 ini = 1

2

(
(r − 2)(k − mr−3) +

∑r−3
i=1 iui

)
.

The maximum value of
∑

i ini is obtained for the minimal value mr−3, which is the parity
of mr−3, which we denote as pr−3, i.e. pr−3 = (k + l3 + δl4"3δ(l4−1) mod 2,0) mod 2. Thus, we
find the following constraints

r−3∑

i=1

ini ! 1
2

(

(r − 2)(k − pr−3) +
r−3∑

i=1

iui

)

r−3∑

i=1

ini = 1
2

(

(r − 2)(k − pr−3) +
r−3∑

i=1

iui

)

mod r − 2, (87)

where the second constraint follows from the fact that the parity of mr−3 is fixed, which means
that

∑
i ini can only go down in steps of r − 2.

Expressing the remainder of the expression in terms of the ni is straightforward, and leads
to the following expression

q
1
2 (k+1)(k+2)yr(k; l2, l3, l4; q−1) = q

(k+1)l2
2 qδl2 ,1(

r−1−2l3
4(r−2)

)q− l3 (r−2−l3 )

4(r−2) q
(l4−1)(r−1−l4 )

4(r−2) yinv
r (k; l2, l3, l4; q)

(88)

yinv
r (k; l2, l3, l4; q) =

∑

ni"0
i=1,...r−3

′
q

1
2 n·K−1·n− 1

2 B·K−1·n
r−3∏

i=1

[
k +

(
(1 − K−1) · n

)
i + 1

2
(K−1 · u)i

ni

]

,

(89)

where the prime denotes the constraints (87), and we note that the term − 1
2 B · K−1 · n can

be written as − 1
2δ2#l4#r−2(K−1 · n)r−1−l4 . Finally the terms k in the binomials follow from

1
2 (K−1 · k)i = k, for all i. The fact that all binomials contain the size dependence k is of
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great importance. It means that in the ‘inverted’ character, all particles are real particles, no
pseudo particles are present anymore. Thus, in taking the thermodynamic limit k → ∞, all
q-binomials are transformed in 1

(q)ni
. In this limit, the functions X2k+1(a; b, c, d, e; q) relevant

for the critical behavior in the regime u < 0 correspond to the characters of the primary fields
of the Zr−2-parafermion CFT.

To see this, we note that the first constraint in equation (87) disappears in the limit k → ∞.
The second constraint requires a bit more work. We first note that it is in fact independent of
the size. Namely, k has the same parity as pr−3 if (l3 + δl4"3δl4−1 mod 2,0) mod 2 = 0, which
means we can write
r−3∑

i=1

i
(

ni − 1
2

ui

)
mod (r − 2) =






r − 2
2

if (l3 + δl4"3δl4 mod 2,1) mod 2 = 1

0 otherwise
.

To simplify, we use the result that
∑

i iui = l3 + (r − 1 − l4)δ2#l4#r−2 + (r − 3)δl2,1. The
range on δ2#l4#r−2 can trivially be extended to δ2#l4#r−1. The ‘exceptional case’ l4 = 1 in the
expression for

∑
i ini precisely allows us to extent the range δ2#l4#r−1 to δ1#l4#r−1, i.e. the full

range of l4, by making use of the relation (l2 + l3 + l4) mod 2 = 1. Collecting all the terms,
we finally obtain the simple expression for the constraint

r−3∑

i=1

ini = l2 + l3 − l4 − 1
2

mod (r − 2). (90)

We can now make the connection between the functions Xr,2k+1 in the limit k → ∞ and the
characters of the primary fields of the Zr−2 parafermion CFT. For details on this theory, we
refer to [44].

For b = 1, . . . , r − 3, we obtain the following result

lim
k→∞

q
1
2 (k+1)(k+2)X2k+1(a; b + 1, b, b + 1, b; q−1) = lim

k→∞
q

1
2 (k+1)(k+2)yr(k; 1, b, a; q−1)

= lim
k→∞

q− (b−1)(r−b−1)
4(r−2) q

(a−1)(r−a−1)
4(r−2) yinv

r (k; 1, b, a; q) ∝ chq.
a−1
b−1. (91)

For b = r − 2, we obtain the following expression

lim
k→∞

q
1
2 (k+1)(k+2)X2k+1(a; r − 1, r − 2, r − 1, r − 2; q−1)

= lim
k→∞

q
1
2 (k+1)(k+2)yr(k; 2, 1, r − a; q−1)

= lim
k→∞

q
(a−1)(r−a−1)

4(r−2) yinv
r (k; 2, 1, r − a; q) ∝ chq.

a−1
r−3 . (92)

In the equations above, we denoted the fields of the Zr−2 parafermion CFT by .l
m, and the

characters by chq.
l
m. These characters are given by the following expressions (see, for instance

[16–20])

chq.
l
m =

∑

ni"0
i=1,...r−3

′ q
1
2 n·K−1·n− 1

2 B·K−1·n
∏r−3

i=1 (q)ni

, (93)

where the prime denotes the constraint
∑r−3

i=1 ini = l−m
2 mod (r − 2). We find that in the limit

k → ∞, we obtain all the Zr−2 characters up to an overall factor of q. Namely, the labels
l, m of the fields .l

m satisfy the constraint (l + m) mod 2 = 0. The label m is taken to be
modulo 2(r − 2), because the fields .l

m ≡ .l
m+2(r−2) are identified. In addition, the fields

.l
m ≡ .r−2−l

m+r−2 are also identified [44]. This implies that we can restrict the labels l and m to
the range l = 0, 1, . . . , r −2 and m = 0, 1, . . . , r −3 for a total of 1

2 (r −2)(r −1) fields. Thus
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identifications above indeed cover all the fields in the Zr−2 parafermion theory, establishing
the connection between the latter and the critical behavior of the composite height model for
u < 0 (see also [5], noting that chq.

l
m = chq.

l
−m).

Before we continue with the details of the connection between the functions X2k+1 for
u > 0 and CFT characters, we would like to point out the following. In inverting the characters
above, we found that the pseudo-particles present in the fermionic description of the functions
Xr,2k+1 become real. The reason behind this was that upon inversion, all the q-binomials
acquired dependence on the size k, and therefore became factors of 1/(q)n in the limit k → ∞.
This is in fact the generic behavior. In the original ABF model, the critical behavior for u > 0 is
given in terms of minimal models, which have a fermionic description, with one real particle,
while the other particles are pseudo-particles. The matrix K was the same as the one used
here. Upon inversion, all the pseudo-particles become real. In fact, many (anyonic) chain
models exhibit regions whose critical behavior is described in terms of minimal models. Upon
inverting the sign of the Hamiltonian, one often finds another critical region, whose criticality
is described in terms of the Zr−2-parafermion theory. One can speculate that this behavior
is governed by integrable points, which exhibit the same behavior as observed for the ABF
model, and the composite height model considered here.

7. Connection with a coset CFT: regime III (u > 0)

In this section, we explain the connection between the expressions for the local height
probabilities in regime III (u > 0) and characters of a particular coset CFT. This connection
for regime II (u < 0) was explained in the previous section.

To make the connection between the explicit UCPFs which we obtained for the functions
Xr,2k+1, the local height probabilities, and the CFT describing the critical behavior of the model,
we consider bosonic forms of the characters associated with the coset CFT su(2)1×su(2)1×su(2)r−4

su(2)r−2
.

Before we start, we first collect a few properties of this coset theory. The fields . of this
theory carry, a priori, four labels, associated with the four su(2) algebras. These four labels,
taking the values l1, l2 = 1, 2, l3 = 1, . . . , r − 3 and l4 = 1, . . . , r − 1 satisfy the constraint
l1 + l2 + l3 + l4 = 0 mod 2. Throughout, we make the choice l1 = 1, and frequently omit this
label, and write the fields as .l2,l3

l4
.

The scaling dimensions hl2,l3,l4 of the fields were obtained in [5], making use of the
Coulomb gas results of [29], in particular

h(l2, l3, l4)=






(l3r − l4(r − 2))2 − 4
8r(r − 2)

+ 1
2

− (l3 − l4 + 2l2) mod 4
4

for l3 + l4 mod 2 = 0

(l3r − l4(r − 2))2 − 4
8r(r − 2)

+ 1
8

for l3 + l4 mod 2 = 1
.

(94)

The scaling dimensions satisfy h(3 − l2, r − 2 − l3, r − l4) = h(l2, l3, l4), reflecting the fact
that the fields .3−l1,3−l2,r−2−l3

r−l4
and .l1,l2,l3

l4
are identified.

One way to view this coset theory is via a product of two unitary minimal models.
The unitary minimal models have a coset description, su(2)1×su(2)r−3

su(2)r−2
being the minimal model

M(r − 1, r), where r = 4 corresponds to the Ising CFT. The coset su(2)1×su(2)1×su(2)r−4
su(2)r−2

can be
viewed as the product of two minimal models, in particular M(r − 2, r − 1)!M(r − 1, r) ∼=
su(2)1×su(2)r−4

su(2)r−3
! su(2)1×su(2)r−3

su(2)r−2
. The coset su(2)1×su(2)1×su(2)r−4

su(2)r−2
is not the direct product of the

two consecutive minimal models, but corresponds to a non-diagonal modular invariant of
the product theory. We note that in [45], the case r = 5 was considered in the context of
non-Abelian quantum Hall states.
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To construct this modular invariant, we will use the intuition that one can construct ‘new’
CFTs from ‘old’ ones by condensing a boson (i.e. a particle corresponding to a field with integer
scaling dimension) present in the theory, as advocated in [46]. Under this condensation, the
boson is identified with the vacuum, or identity field; in addition, those fields which are related
to each other by fusion with the boson (i.e. the condensate), are to be identified. Two other
steps are necessary to construct the new CFT. First, two fields which are each others dual (i.e.
their fusion contains the identity) have to be split, if both the identity and the boson which is
condensed are present in the fusion product of the two fields considered. This is because the
boson is identified with the identity, and two fields can not be fused to the identity in more
than one way. Second, fields with have non-trivial monodromy with the boson, are confined.
We used these principles to guide us in constructing a non-diagonal modular invariant of
the product theory of two consecutive minimal models. More details about the condensation
procedure can be found in [46].

To construct the relevant modular invariant, we first briefly recall some facts about minimal
models [1]. Minimal models are labeled by two co-prime integers r and r′, where we choose
the ordering r < r′. The minimal model M(r, r′) is unitary if r′ = r + 1. The fields φ present
in this theory can be labeled by two integers (l3, l2), where 1 ! l3 ! r′ −1 and 1 ! l2 ! r −1.
The scaling dimensions of the fields φ(l3,l2 ) are given by h(l3,l2 ) = (l3r−l2r′)2−(r−r′ )2

4rr′ . One finds
that h(l3,l2 ) = h(r′−l3,r−l2 ), and the labels (l3, l2) and (r′ − l3, r − l2) indeed correspond to
the same field, φ(l3,l2 ) = φ(r′−l3,r−l2 ). Thus, the number of fields in the model M(r, r′) is
1
2 (r − 1)(r′ − 1).

The chiral characters of the minimal models M(r, r′) can be written as [47]

χ(r,r′ )
(l3,l2 )(q) = qh−c/24

(q)∞

∑

n∈Z
qn(nrr′+l3r−l2r′) − q(nr+l2 )(nr′+l3 ), (95)

where c is the central charge of the corresponding theory, and h the scaling dimension of the
field. In addition, (q)∞ =

∏∞
n=1(1 − qn).

The fields in the product theory M(r − 2, r − 1) ! M(r − 1, r) are, in anticipation
of the results given below, labelled by (l2, l3; l4, l′2), and the scaling dimensions are given
by the sum of the scaling dimensions of the fields in the two factors. In particular, the field
(3, 1; 1, 3) has scaling dimension h(3,1;1,3) = 2, irrespective of the value of r (as long as
r " 5, which is necessary for the coset to be defined). By applying the condensation strategy
outlined above, one can find a set of fields which are not confined, and are inequivalent of
one another. This set of fields has the labels (1, l3; l4, 1) in the case that l3 mod 2 = 1 and
(2, l3; l4, 2) when l3 mod 2 = 0. We note that l3 and l4 take the values l3 = 1, 2, . . . , r −3 and
l4 = 1, 2, . . . , r − 1, which means that the product theory contains (r − 3)(r − 1) different
fields. The fields in the original product theory which are identified with the field with the
label (1, l3; l4, 1) are of the form (l, l3; l4, l), with l mod 2 = 1. The fields identified with
(2, l3; l4, 2) also take the form (l, l3; l4, l), but now with l mod 2 = 0.

We will denote the characters of the field in the product theory by χ(l2,l3;l4,l′2 )(q) =
χ(l2,l3 )(q)χ(l4,l′2 )(q). With these fields, one can construct different modular invariants. As usual,
there is the diagonal invariant, corresponding to the direct product of the two minimal models

Zdiag =
(r−2,r−3;r−1,r−2)∑

(l2,l3;l4,l′2 )=(1,1;1,1)

|χ(l2,l3;l4,l′2 )(q)|2, (96)

where the sum is over all the fields in the product theory.
Apart from this diagonal invariant, one can construct a different modular invariant, which

corresponds to the coset su(2)1×su(2)1×su(2)r−4
su(2)r−2

. We denote this theory by M(r − 2, r − 1, r),
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and the partition function, which was obtained from the condensation picture outlined above,
takes the form

ZM(r−2,r−1,r) =
r−3∑

l3=1
l3 odd

r−1∑

l4=1

|χ(1,l3;l4,1)(q) + χ(3,l3;l4,3)(q) + · · · |2

+
r−3∑

l3=2
l3 even

r−1∑

l4=1

|χ(2,l3;l4,2)(q) + χ(4,l3;l4,4)(q) + · · · |2. (97)

This form of the modular invariant gives expressions for the characters of the coset
M(r − 2, r − 1, r), in terms of the bosonic characters of the minimal models. The characters
corresponding to the fields in the coset model can now be written in terms of the bosonic
characters.

The characters of the coset fields are denoted as chq.
l2,l3
l4

and are given by

chq.
l2,l3
l4

=
r−2∑

l=1
l+l3=0 mod 2

χ(l,l3;l4,l)(q), (98)

where it is assumed that (l2+l3+l4) mod 2 = 1. We checked numerically that these characters
indeed correspond to the branching functions of the coset M(r − 2, r − 1, r).

We can now relate the thermodynamic limit of the functions Xr,2k+1 to the characters
of the coset fields. As already indicated in [5], one has to consider the cases k odd and k
even separately. The reason is that the parity of the summation variables in the functions
ỹr(k; l2, l3, l4; q) depends on the parity of k. We obtain the following identification. For
k = 2p + 1 odd, the limits are, for the ground state patterns of type G−

2 and G+
1 ,

lim
p→∞

Xr,4p+3(a; b + 1, b, b + 1, b + 2; q) = lim
p→∞

ỹr(2p + 1; 1, b, a; q) = chq.
1,b
a (99)

lim
p→∞

Xr,4p+3(a; b, b + 1, b + 2, b + 1; q) = lim
p→∞

ỹr(2p + 1; 2, b, a; q) = chq.
2,b
a

= lim
p→∞

ỹr(2p + 1; 2, r − 2 − b, r − a; q)

= chq.
2,r−2−b
r−a . (100)

For k = 2p even, the connection between the functions Xr,2k+1 for the u > 0 ground state
patterns G−

2 is slightly different, namely

lim
p→∞

Xr,4p+1(a; b + 1, b, b + 1, b + 2; q) = lim
p→∞

ỹr(2p; 1, r − 2 − b, r − a; q)

= chq.
1,r−2−b
r−a (101)

lim
p→∞

Xr,4p+1(a; b, b + 1, b + 2, b + 1; q) = lim
p→∞

ỹr(2p; 2, b, a; q) = chq.
2,b
a

= lim
p→∞

ỹr(2p; 2, r − 2 − b, r − a; q)

= chq.
2,r−2−b
r−a . (102)

In taking the limit k → ∞, the structure of the resulting expressions for ỹr is given in
equation (83). The first and last q-binomials are transformed into 1/(q)m1 and 1/(q)mr−3 . With
this, the equivalence between the two different identifications for the ground state patterns G+

1
follows from a simple re-parametrization of the sum over the mi.
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8. Discussion

While the anyonic chains were introduced as a simple setting to study interacting anyons
appearing in various topological phases, it has turned out that they have rich phase diagrams
interesting in their own right, much like for ordinary spin chains. The two integrable critical
points identified in [5] led to the composite height model we have been studying here.
In addition to novel phase diagrams and critical behavior, to mention one thing, the one-
dimensional anyonic chains are of direct relevance to the boundary behavior of a nucleated
phase, arising from the interactions, and the ‘parent’ topological phase hosting the bare anyons
[48]. By now, transitions between different topological phases due to the interactions between
the anyonic excitations in topological liquids has been studied in quite some detail, see for
instance [45, 48, 49].

In this paper, we have further investigated the properties of the composite height model of
[5] as follows. We obtained and studied the fermionic forms of the LHPs and identified their
off-critical CFT structure at two different regimes. The same CFTs are related to the critical
points of the height model and that of the original anyon chain. The proof was based on the
recurrence properties of the LHPs and the UPCFs, very much like in the original case of the
ABF model and the minimal models. Proofs of this type, based on polynomial recurrences,
are straightforward and tractable but unfortunately much of the physics, especially the off-
critical CFT structure, in the height model is obscured as a trade off.

In particular, we gave a closed UCPF form for the LHPs. Using these, we were able to
analytically prove the correspondence for r = 5, 6 and gave a general conjecture based on the
structure of the UCPFs for r = 5, 6, correct asymptotic central charges, as well as numerical
checks. Although the form of the recursion we used here quickly becomes cumbersome as
r grows larger, we suspect that our proof can be further improved to a proof for general
r, along the lines of [25], using the UCPFs conjectured here. We note that the fermionic
representations of UCPFs as finitized characters are usually not unique [13], as there might be
several integrable perturbations of the CFT and different ways to introduce the ‘finitization’
in the size k. We have not attempted to analyze to what integrable perturbations our UPCFs
correspond to. Moreover, the recursions we were forced to use are more general than those
in the lattice model, and the physical quantities related to the height probabilities were only
obtained as special cases and, in the regime III, as linear combinations from the functions
yr=5,6. In addition, we obtained various relations between the general functions, which were
necessary to show the equivalence with the local height probabilities. We note that in the case
of the original ABF models, one can show more directly that the recursions for the local height
probabilities and the UCPFs are identical.

To the best of our knowledge, the fermionic forms for the characters of the coset
su(2)1×su(2)1×su(2)r−4

su(2)r−2
are new and characterized by the fact that they have two real fermions. In

addition, the forms based on the characters of minimal models also appears to be new. From
these characters, we obtained characters of the Zr−2 parafermions by sending q → q−1 and
taking the limit of large systems size in the obtained UPCFs. In the context of the anyonic
chains, this procedure corresponds to changing the overall sign of the Hamiltonian. These
infinite system size Zr−2 parafermion characters are of course not new, but the finitized versions
we obtained here do differ from the finitized Zr−2 parafermion characters which correspond to
regime II in the original ABF model. The latter can be obtained from the finitized characters
corresponding to regime III of the ABF model by the inversion procedure, see for instance
[25]. It is interesting that the finitized characters of the diagonal coset models generically lead
to different finitized characters of the Zr−2 parafermions!
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We briefly remark on the modular properties of the fermionic character formulae for the
coset theories presented here. As our analysis in section 5 shows, a crucial role is played by the
pseudo-particles [37]. In the limit k → ∞ for u > 0, our fermionic formulae are generalized
(r − 3)-dimensional q-hypergeometric series containing r − 5 q-binomial factors with finite
arguments from the pseudo-particle sector. In the case when there are no pseudo-particles,
Nahm [50] has provided a conjecture regarding the modular properties of multi-dimensional
q-hypergeometric series arising from UCPFs determined by a bilinear form K and a ‘shift’ B.
In the case r = 5, there are no pseudo-particles present, and our formulae give back the well-
known results and (asymptotic) central charges c = 6

5 , 4
5 based on K = 1

2 A2, 2A−1
2 at rank 2

[5, 50]. In the general case for u > 0, our fermionic character formulae (83) have q-binomial
contributions from the pseudo-particles, and the modular properties of the resulting q-series
are even more complicated than in Nahm’s conjecture and left for future study.

Lastly, we would like to mention some future directions for the study of the composite
height model that were left out from this paper. Much like in the original ABF models, one
would like to obtain bosonic forms for the characters of the coset theory, to pave way for
corresponding Rogers–Ramanujan type identities and the modular properties of the coset
theory. The UCPFs and their recursions that we have explicitly used in our proof for r = 5, 6
are more general than the LHPs and characters, that are obtained only at special values of the
arguments and, for the coset theory, as linear combinations. This behavior is new compared
to the ABF models and it would be interesting to find the natural representation theoretic
setting, if any, of these q-polynomials or, conversely, to find a more direct functional form
for the recursions in the LHPs. To study the physics and combinatorics of the height model
more directly, a study of LHPs in terms of lattice paths of the composite height model
[51, 52], where (18) acts as the Virasoro generator L0, would be interesting. This would at the
very least combinatorially relate generating functions in the path space of the height model
to our fermionic UCPFs. Also, we have addressed only a half of the phase diagram of the
composite height model, 0 < p < 1, along the lines of the original paper [5], that corresponds
to the quantum mechanical anyon chain. The negative p regime, −1 < p < 0, can also be
studied via the CTM method but the quantum mechanical interpretation, if any, is unknown.
The details of the phases of the composite height model for negative p will be given in a
subsequent publication [53].
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Appendix. Recursions for r = 6

Here we present the proof of the equivalence of the remaining recursions for r = 6, one for
each a = l4 for the different patterns determined by the height b. The other values for a = l4
follow in almost the same way, since the patterns in the recursions and the indices l2, l3 are the
same irrespective of a = l4 and the identities for y(ABC)(k1, k2, k3; l2, l3, l4) are identical for
fixed parity of a = l4; thus the recursions differ only slightly in the specific parities appearing.
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A.1. Recursions in G+
1

The recursion for X2k+1(2; 1232) is

X2k+1(2; 1232) = X2k−1(2; 1212) + X2k−1(2; 3212) (A.1)

which is

X2k+1(2; 1232) = qky(BBB)(k − 1, k − 1, 0; 212) + y(BBB)(k − 1, k − 1, 0; 234)

+q
k
2 y(AAB)(k − 2, k − 2, 0; 124) + q

2k−1
2 y(ABA)(k − 2, k − 2, 0; 214).

Now

y(ABC)(k1, k2, k3; 234) = y(CBA)(k2, k1, k3; 212)

y(ABC)(k1, k2, k3; 124) = y(CBA)(k2, k1, k3 + 1; 212)

y(ABC)(k1, k2, k3; 214) = y(CBA)(k2 − 1, k1 + 1, k3; 212).

These give

X2k+1(2; 1232) = qky(BBB)(k − 1, k − 1, 0; 212) + y(BBB)(k − 1, k − 1, 0; 212)

+q
k
2 y(BAA)(k − 2, k − 2, 1; 212) + q

2k−1
2 y(ABA)(k − 3, k − 1, 0; 212).

We use the relation in (63),

y(ABC)(k1, k2, k3; 212) = y(C+1B+1A+1)(k2 − 1, k1 + 1, k3; 212), for k3 " 0,

to get

X2k+1(2; 1232) = qky(BBB)(k − 1, k − 1, 0; 212) + y(BBB)(k − 1, k − 1, 0; 212)

+q
k
2 y(BBA)(k − 3, k − 1, 1; 212) + q

2k−1
2 y(ABA)(k − 3, k − 1, 0; 212).

Now apply the recursion

y(BBA)(k − 3, k − 1, 1; 212) = y(BBA)(k − 3, k − 1,−1; 212) + y(BAA)(k − 2, k,−1; 212)

to get

X2k+1(2; 1232) = q
k
2

(
y(BBA)(k − 3, k − 1,−1; 212) + q

k−1
2 y(ABA)(k − 3, k − 1, 0; 212)

)

+qky(BBB)(k − 1, k − 1, 0; 212) + y(BBB)(k − 1, k − 1, 0; 212)

+ q
k
2 y(BAA)(k − 2, k,−1; 212).

This is equal to

X2k+1(2; 1232) = q
k
2 y(BBA)(k − 1, k − 1,−1; 212) + qky(BBB)(k − 1, k − 1, 0; 212)

+y(BBB)(k − 1, k − 1, 0; 212) + q
k
2 y(BAA)(k − 2, k,−1; 212).

The RHS is equal to

q
k
2 (y(BBA)(k − 1, k + 1,−1; 212) + y(BAA)(k − 2, k,−1; 212)) + y(BBB)(k − 1, k − 1, 0; 212)

= q
k
2 y(BAA)(k − 2, k, 1; 212) + y(AAA)(k − 2, k, 0; 212),

where we use (63) again on the second term. So we are left with

X2k+1(2; 1232) = q
k
2 y(BAA)(k − 2, k, 1; 212) + y(AAA)(k − 2, k, 0; 212)

which is the original recursion for X2k+1(2; 1232) = y(AAA)(k, k, 0; 212). The recursion for
X2k+1(4; 1232) is similar and omitted.

Finally, the recursion for X2k+1(4; 3454) is

X2k+1(4; 3454) = q
k+1

2 X2k−1(4; 1234) + q
k+1

2 X2k−1(4; 3234) + X2k−1(4; 3434)

+ X2k−1(4; 5434). (A.2)
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This is the same as

X2k+1(4; 3454) = q
k+1

2 q
k
2 y(BAB)(k − 1, k − 1, 0; 214) + q

k+1
2 y(BBA)(k − 1, k − 1, 0; 124)

+q
k
2 y(BAA)(k − 1, k − 1, 0; 122) + y(BBB)(k − 1, k − 1, 0; 212).

Next, we use the relations on the last the two terms, which are not part of X2k+1(4; 3454),

y(ABC)(k1, k2, k3; 122) = y(CBA)(k2 + 1, k1 − 1, k3 + 1; 234)

y(ABC)(k1, k2, k3; 212) = y(CBA)(k2, k1, k3; 234).

So we get

X2k+1(4; 3454) = q
k+1

2 q
k
2 y(BAB)(k − 1, k − 1, 0; 214) + q

k+1
2 y(BBA)(k − 1, k − 1, 0; 124)

+q
k
2 y(AAB)(k, k − 2, 1; 234) + y(BBB)(k − 1, k − 1, 0; 234).

Also, using the relation

y(ABC)(k1, k2, k3; 234) = y(C+1B+1A+1)(k2 + 1, k1 − 1, k3; 234), for k3 " 0,

in (63) on the last term, the recursion reduces to

X2k+1(4; 3454) = q
k+1

2 q
k
2 y(BAB)(k − 1, k − 1, 0; 214) + q

k+1
2 y(BBA)(k − 1, k − 1, 0; 124)

+q
k
2 y(AAB)(k, k − 2, 1; 234) + y(AAA)(k, k − 2, 0; 234)

which is simply the same as

X2k+1(4; 3454) = q
2k+1

2 y(BAB)(k − 1, k − 1, 0; 214) + q
k+1

2 y(BBA)(k − 1, k − 1, 0; 124)

+ y(AAA)(k, k, 0; 234),

as desired. Again, the recursion for X2k+1(2; 3454) is similar and left for the reader.

A.2. Recursions in G−
2

The recursions for X2k+1(2; 3234) is

X2k+1(2; 3234) = q
k+1

2 X2k−1(2; 1232) + q
k+1

2 X2k−1(2; 3232) + X2k−1(2; 3432)

+ X2k−1(2, 5432). (A.3)

Writing the RHS in terms of ys gives

X2k+1(2; 3234) = q
k+1

2 y(CCC)(k − 1, k − 1, 0; 212) + q
k+1

2 q
k
2 y(CAA)(k − 1, k − 1, 0; 122)

+y(CCA)(k − 1, k − 1, 0; 124) + q
k
2 y(CAC)(k − 1, k − 1, 0; 214).

Using

y(ABC)(k1, k2, k3; 212) = y(ABC)(k1 + 1, k2 − 1, k3 − 1; 122)

y(ABC)(k1, k2, k3; 124) = y(CBA)(k2 + 1, k1 − 1, k3; 122)

y(ABC)(k1, k2, k3; 214) = y(CBA)(k2, k1, k3 − 1; 122),

we get

X2k+1(2; 3234) = q
k+1

2 y(CCC)(k, k − 2,−1; 122) + y(ACC)(k, k − 2, 0; 122)

+ q
k
2 y(CAC)(k − 1, k − 1,−1; 122) + q

k+1
2 q

k
2 y(CAA)(k − 1, k − 1, 0; 122).

Next we use the recursion on the last two terms

q
k + 1

2 y(CAA)(k − 1, k − 1, 0; 122)+ y(CAC)(k − 1, k − 1, − 1; 122)

= y(CAC)(k − 1, k + 1, − 1; 122),
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so

X2k+1(2; 3234) = q
k
2 (q

1
2 y(CCC)(k, k − 2,−1; 122) + y(CAC)(k − 1, k + 1,−1; 122))

+ y(ACC)(k, k − 2, 0; 122).

Focusing on the first term, we have by (63) and the recursion

q
1
2 y(CCC)(k, k − 2,−1; 122) = q1/2y(AAA)(k − 1, k − 1,−1; 122)

= q1/2y(AAA)(k + 1, k − 1,−1; 122) − q
k+1

2 y(CAA)(k − 1, k − 1, 0; 122)

and

y(CAC)(k − 1, k + 1,−1; 122) = y(ACA)(k, k − 2,−1; 122) + q
k+1

2 y(CCA)(k, k − 2, 0; 122).

Using (63) again, two terms cancel and give

q1/2y(AAA)(k + 1, k − 1,−1; 122) + y(ACA)(k, k − 2,−1; 122) = y(ACA)(k, k − 2, 1; 122).

Finally we get

X2k+1(2; 3234) = q
k
2 yACA(k, k − 2, 1; 122) + y(ACC)(k, k − 2, 0; 122).

The recursion for X2k+1(4; 3234) is similar and omitted.
Finally, the recursion for X2k+1(3; 4345) is

X2k+1(3; 4345) = q
k+1

2 X2k−1(3; 2343) + q
k+1

2 X2k−1(3; 4343) + X2k−1(3; 4543). (A.4)

In terms of ys the RHS is

X2k+1(3; 4345) = q
k+1

2 (y(BAB)(k − 1, k − 1, 0; 223) + q
k
2 y(AAB)(k − 2, k − 2, 0; 113))

+ q
k+1

2 q
k
2 y(BAA)(k − 1, k − 1, 0; 133) + y(BBA)(k − 1, k − 1, 0; 113).

Now

y(ABC)(k1, k2, k3; 223) = y(ABC)(k1, k2 − 2, k3 + 1; 133)

y(ABC)(k1, k2, k3; 113) = y(ABC)(k1 + 1, k2 − 1, k3; 133)

and we get

X2k+1(3; 4345) = q
k+1

2 y(BAB)(k − 1, k − 3, 1; 133) + q
k+1

2 q
k
2 y(AAB)(k − 1, k − 3, 0; 133)

+ q
k+1

2 q
k
2 y(BAA)(k − 1, k − 1, 0; 133) + y(BBA)(k, k − 2, 0; 133).

Now, using the identity y(ABC)(k1, k2, k3; 133) = y(CBA)(k2 + 2, k1 − 2, k3; 133) in (59) on the
last term, gives

X2k+1(3; 4345) = y(ABB)(k, k − 2, 0; 133) + q
k+1

2 (y(BAB)(k − 1, k − 3, 1; 133)

+ q
k
2 y(AAB)(k − 1, k − 3, 0; 133) + q

k
2 y(BAA)(k − 1, k − 1, 0; 1133)). (A.5)

The term in the brackets is, using the recursion in the first term and (59) in the second,

y(BAB)(k − 1, k − 3, 1; 133)+ q
k
2 y(AAB)(k − 1, k − 3, 0; 133)+ q

k
2 y(BAA)(k − 1, k − 1, 0; 1133)

= y(BAB)(k − 1, k − 3, − 1; 133)+ y(BBB)(k, k − 2, − 1; 133)

+ q
k
2 y(BAA)(k − 1, k − 3, 0; 133) + q

k
2 y(BAA)(k − 1, k − 1, 0; 133),

or further, using equations (59) and (62) on the last term,

y(BAB)(k − 1, k − 1,−1; 133) + y(BBB)(k, k − 2,−1; 133) + q
k
2 y(BAA)(k − 1, k − 1, 0; 133)

= y(BAB)(k−1, k−1,−1; 133) + y(BBB)(k, k−2,−1; 133)

+ q
k
2 y(AAB)(k−1, k−1, 0; 133)
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or

y(BAB)(k + 1, k − 1,−1; 133) + y(BBB)(k, k − 2,−1; 133)

= y(BBB)(k, k − 2, 1; 133)

= y(ABA)(k, k − 2, 1; 133),

which follows again by (62). Returning to (A.5), we get back y(ABB)(k, k, 0; 133) =
X2k+1(3; 4345) as desired. The recursions for X2k+1(1; 4345) and X2k+1(5; 4345) are similar
and omitted.
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