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Abstract
We derive explicit expressions for the conformal blocks of the Ising conformal
field theory for the correlators of an arbitrary number of primary fields.
These results are obtained from the bosonized description of the Ising model.
Interestingly, correlators involving Majorana fermions can be obtained in two
different ways, giving rise to identities between the ‘bosonic’ and ‘fermionic’
description of these correlators. These identities are generalizations of the
famous Cauchy identity. The conformal blocks of the Ising model are used to
derive the expression for the conformal blocks of the su(2)2 WZW conformal
field theory.

PACS numbers: 11.25.Hf, 05.30.Pr

1. Introduction

To completely specify a conformal field theory, one has to provide some data, including the
central charge, the scaling dimensions of the primary fields, their fusion rules and so on.
However, from this data, it is far from trivial to calculate the arbitrary correlation functions of
(primary) fields. In general, it is a daunting task to obtain correlation functions of more than
four fields. Of course, in the case of free fields (such as a chiral boson or a Majorana fermion),
one can use Wick’s theorem to calculate correlation functions of an arbitrary number of fields.
In almost all other cases, this seems to be utterly impossible. A notable exception is the spin
field σ (with the scaling dimension hσ = 1/16), present in the (chiral) Ising conformal field
theory. This theory can be bosonized, which allows one to calculate the correlation function
of an arbitrary (even) number of σ fields, and express it in a completely explicit form.

The Ising conformal field theory is relevant for various systems, which in recent years
have attracted a lot of attention in condensed matter physics. Apart from the fractional
quantum Hall effect, which we will introduce shortly, there are several examples. Notable
are the p + ip-type superconductors, whose vortices have Majorana-zero modes [1]. Kitaev
introduced the ‘Majorana wire’ [2], a one-dimensional wire, which harbors Majorana fermions
at the endpoints. In recent proposals [3], these Majorana fermions are braided around each
other, which hopefully leads to the detection of non-Abelian statistics. Kitaev’s famous model
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of interacting spin-1/2 particles on the honeycomb lattice [4] has, in the presence of a magnetic
field, a gapped phase, whose excitations are of the Ising type. Several ways of realizing such a
model have been proposed, see for instance [5]. Finally, we mention a new class of materials,
the topological insulators. Fu and Kane [6] proposed a system of a 3D topological insulator,
coated with an s-wave superconductor, resulting a chiral p-wave superconductor, harboring
Majorana bound states at its vortices.

To answer the question why one would be interested in correlation functions of an arbitrary
number of σ fields, we take an excursion to the quantum Hall effect. The quantum Hall effect
observed at the filling fraction ν = 5

2 is attributed to the formation of the Moore–Read quantum
Hall state [7]. Theoretically, this quantum Hall state is ‘constructed’ from the chiral Ising
conformal field theory (combined with a compactified chiral boson). The operator creating an
electron consists of a Majorana fermion, combined with a vertex operator of the chiral boson,
which is associated with the charge of the electron. The wavefunction obtained in this way
contains a Pfaffian factor (coming from the Majorana fermions). The operator creating an
excitation (or quasi-hole) contains the spin-field σ , apart from a vertex operator. The recent
excitement about the ν = 5

2 quantum Hall effect originates in the properties of these σ fields,
which (hopefully) describe the excitations of this state.

Most importantly, the σ field has non-trivial fusion rules. That is, upon fusion of two σ ’s,
there are two possible outcomes: σ × σ = 1 + ψ . The other fusion rules read σ × ψ = σ and
ψ × ψ = 1. For a correlator to be non-zero, it is necessary that all field can be fused to the
identity 1. In the case of four σ fields, this can be done in two independent ways. As a result,
the correlator of four σ ’s ‘stands for’ two conformal blocks (CBs).

On the level of the quantum Hall effect, this has the following interpretation. Creating
four excitations in the Moore–Read state (for instance, by increasing the magnetic field) can
give two different results. These two different states differ in their topological properties.
It has been proposed to use these different states as states of a qubit, which inherently is
protected from decoherence by the environment, due to its topological nature [8, 9]. Braiding
the quasi-holes around each other has the effect of acting by unitary matrices. These matrices
have been shown not to commute, which underlies the nomenclature of the ‘non-Abelian’
quantum Hall state.

To observe effects of non-Abelian statistics, one has to do a measurement on the ν = 5
2

quantum Hall state. Most measurements in the quantum Hall effect involve some kind of
(charge) transport measurement. In the quantum Hall effect, the charge is transported via
the edge states, which are described with an (edge) conformal field theory. The charge and
statistics of excitations can be probed by measuring the response of the so-called point contacts,
which are constrictions, in which two edges are brought close together, allowing particles to
tunnel from one edge to another. By measuring the shot-noise in a single point contact, the
fractional charge of the excitations of the ν = 1

3 Laughlin state has been confirmed [10]. To
get a hand on the statistics properties is harder, but attempts in that direction have been made
in double point contact ‘interferometers’ [11], trying, amongst other things, to observe the
predicted ‘even–odd effect’ for the ν = 5/2 state [12].

To calculate the response of these constricted geometries, one uses the edge state
formalism, expressing the response in terms of conformal field theory correlators. In the
non-Abelian case, such a program has been carried out for single and double point contacts
[13, 14]. In those calculations, one ends up with (to lowest order in perturbation theory)
four-point functions. These four-point functions are known for most conformal field theories.
However, in going to different geometries, or in higher order in perturbation theory, one will
encounter higher order correlators. For ‘free’ theories, such as the compactified u(1) chiral
boson theories, these correlators are well known. As indicated above, it is extremely hard to
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find such correlators for arbitrary conformal field theories. The notable (and physically very
relevant) exception is the Ising conformal field theory. In this paper, we will explicitly give
the (chiral) correlators of an arbitrary (even) number of σ fields, and an arbitrary number of
ψ fields.

Another use of the chiral correlators to which this paper is devoted in the context of
quantum Hall wavefunctions is the issue of the effect of braiding non-Abelian particles around
each other. It has been conjectured that if one expresses the wavefunctions in terms of CBs,
one only needs to consider the monodromies of the CBs, while the Berry phase does not
give a contribution to the (non-Abelian) statistics [7]. For the Abelian Laughlin state, this
follows from an explicit Berry phase calculation [15]. Progress in proving this conjecture in
the non-Abelian case was made in [16–18] and more recently in [19] and [20]. Having access
to the explicit expressions presented in this paper might facilitate such calculations in a more
general setting3.

The knowledge of the Ising chiral correlators has yet another application which is the
computation of the CBs of the WZW model based on the su(2)2 current algebra. These
correlators will also be given in this paper using the fact that this WZW model can be
expressed as the product of the Ising model times a compactified boson. In the case of the
su(2)1 WZW model there is a unique chiral correlator involving an arbitrary number of spin
1/2 primary fields. This correlator has a Jastrow-type form which, interestingly enough,
gives the ground state of the Haldane–Shastry Hamiltonian for a spin 1/2 chain with inverse
square exchange interactions [21, 22]. In a similar way, the su(2)2 WZW chiral correlators
can be used to construct the ground states of a non-Abelian version of the Haldane–Shastry
model [23]. These results suggest an interesting analogy between spin systems and fractional
quantum Hall systems having a common conformal field theory underlying structure.

We will conclude this introduction by going back to the early days of conformal field
theory. Shortly after the seminal paper of Belavin, Polyakov and Zamolodchikov [24],
Dotsenko and Fateev expressed the correlation functions of arbitrary minimal models, in
terms of contour integrals [25, 26], based on the Coulomb gas formalism. Despite these
expressions, in many calculations it is advantageous to use more explicit expressions. The
connection between the integral formulation of Dotsenko and Fateev and the expressions
presented here is an interesting problem.

This paper is organized as follows. In section 2, we will review some basic properties of
the Ising conformal field theory and give some simple correlators as examples. In section 3,
we will show how one can obtain a simple explicit form of the correlator of 2n σ -fields, by
using a bosonized form of the CBs.

Section 4 contains the results on the arbitrary CBs of the Ising model. These blocks are
obtained in two different ways, giving rise to a curious set of identities between bosonic and
fermionic forms of these CBs. In section 5, we present a different form of the CBs which
will be useful in future applications. Finally, before we conclude, we use the results obtained
in the earlier sections, to present the arbitrary CBs of the WZW theory based on the su(2)2

current algebra in section 6.

2. Some preliminaries on the Ising conformal field theory

The critical Ising model is the simplest conformal field theory (CFT) amongst the ‘minimal’
model CFTs studied by Belavin, Polyakov and Zamolodchikov [24]. This theory has three
primary fields 1, ε and σ , whose conformal dimensions (h, h) are (0, 0), (1/2, 1/2) and

3 We were informed by the authors of [20] that they also obtained the Ising correlators as we present here.
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(1/16, 1/16), respectively. The fusion rules read

1 × 1 = 1
1 × σ = σ σ × σ = 1 + σ (1)

1 × ε = ε σ × ε = σ ε × ε = 1 ,

or in terms of the fusion coefficients,

N1xx = Nx1x = Nσσ1 = Nσσε = Nσεσ = Nεσσ = Nεεε = 1, (2)

where x stands for any of the fields, and all the other coefficients are zero.
These rules imply that the number of CBs involved in a correlator of an (even) number

2n primary fields σ and N primary fields ε is 2n−1. The field ε can be written as the
product of a chiral Majorana fermion ψ(z) and an antichiral Majorana fermion ψ(z), i.e.
ε(z, z) = ψ(z)ψ(z). The CBs are the building blocks of the non-chiral correlation functions
(see below), and we will denote them by

F2n,N
m (v1, . . . , v2n, z1, . . . , zN) = 〈σ (v1) · · · σ (v2n)ψ(z1) · · · ψ(zN)〉m . (3)

Here, the vector m of length n labels the CB. The ith entry of m specifies the fusion channel
of the fields σ (v2i−1) and σ (v2i ). If mi = 0, they fuse to the trivial particle 1, while for
mi = 1, they fuse to ψ . Naively, this gives rise to 2n different labels for the CBs, but for the
CB to be non-zero, there have to be an even number of mi = 1. We will find that the explicit
expressions we will give below do in fact not depend on m1, so we indeed obtain the right
number 2n−1 of different CBs.

In this paper, we will give two essentially different forms for the CBs of an arbitrary
number of σ fields 2n and an arbitrary number N of fields ψ . From these CBs, one can obtain
the full, non-chiral correlation functions as follows:

〈σ (v1, v1) · · · σ (v2n, v2n)ε(z1, z1) · · · ε(zN , zN)〉 =
∑

m

F2n,N
m F2n,N

m , (4)

where F2n,N

m is the complex conjugate of F2n,N
m . In the remainder of the paper, we will mainly

be concerned with the chiral CBs.
Belavin, Polyakov and Zamolodchikov derived a set of second-order differential

equations, whose solutions are the CBs F2n,N
m , which take the form

(
4
3

∂2

∂v2
a

−
∑

b %=a

1
(va − vb)

∂

∂vb

−
∑

i

1
(va − zi)

∂

∂zi

− 1
16

∑

b %=a

1
(va − vb)2

− 1
2

∑

i

1
(va − zi)2

)

F2n,N
m = 0 (5)

(
3
4

∂2

∂z2
i

−
∑

a

1
(zi − va)

∂

∂zi

−
∑

j %=i

1
(zi − zj )

∂

∂zj

− 1
16

∑

a

1
(zi − va)2

− 1
2

∑

j %=i

1
(zi − zj )2

)

F2n,N
m = 0. (6)

We will frequently make use of the (chiral) operator product expansion (OPE), which
describes the behavior of two fields in the limit they approach each other and reflect the fusion
rules (1). In particular, we have

σ (z)σ (w) ∼ 1
(z − w)1/8

+
1√
2
(z − w)3/8ψ(w). (7)
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ψ(z)ψ(w) ∼ 1
(z − w)

. (8)

The factor 1√
2

stems from the constant Cσσε = 1
2 which appears in the OPE of the non-chiral

fields

σ (z, z)σ (w,w) ∼ 1
|z − w|1/4

+ Cσσε|z − w|3/4ε(w,w) . (9)

We note that these OPE coefficients can be calculated from (four-point) correlators, which
are specified by the differential equations they satisfy. The constant Cσσ1 = 1 normalizes the
fields σ .

Before we start with the correlator of an arbitrary (even) number of σ fields, we will first
deal with the simpler two- and four-point correlators. The two-point correlators (as well as the
three-point correlators) are determined by global conformal symmetry. In particular, we have

F2,0 = 〈σ (v1)σ (v2)〉 = 1
(v1 − v2)1/8

= v
−1/8
12 , (10)

where we introduced the notation vab = va − vb, and the exponent is given by −2hσ .
The four-point correlators are not completely determined by global conformal symmetry.

However, one can always make a transformation, which transforms the variables (v1, v2, v3, v4)

to (x, 0, 1,∞), where x = v12v34
v14v32

is the cross-ratio. The partial differential equations for the
four-point function transform into an ordinary differential equation, which is in general much
easier to solve. Typically, this gives rise to hypergeometric functions, but in the case of the
spin field of the Ising CFT, the result is simpler:

F4,0
m = 〈σ (v1)σ (v2)σ (v3)σ (v4)〉m

= 1√
2
(v1 − v2)

− 1
8 (v3 − v4)

− 1
8

√
(1 − x)

1
4 + (−1)m2(1 − x)−

1
4 , (11)

where m labels the two CBs, the possible values being (0, 0) and (1, 1), for pairwise fusion
of the σ fields to the 1 and ψ channel, respectively. Note that the expression does not depend
on m1. The overall factor is fixed by the requirement that in the limit v2 → v1, v4 → v3, one
obtains, by making use of the OPE, the value 1 for the correlator in the case m = (0, 0). The
same limit gives rise to the correlator 〈ψ(v1)ψ(v3)〉 = 1

v1−v3
in the case m = (1, 1).

3. The 2n-point σ correlator

In this section, we will present a particular simple form of the correlator of an arbitrary
even number of σ fields. This will allow us to use the operator product expansion to obtain
expressions for CBs of an arbitrary (even) number of σ fields and an arbitrary number of ψ

fields. We will obtain these correlators in both a ‘bosonic’ and ‘fermionic’ form, giving rise
to a curious set of functional identities, some of which appear to be new. It is well known that
one can bosonize the Ising model [27], which allows one to obtain the correlation functions.
By starting from the results of [27], Fendley, Fisher and Nayak [13] provide a systematic way
of writing down the chiral 2n-point correlation functions of σ -fields, in the representation in
which the σ fields are pairwise in a definite fusion channel, in terms of a bosonized correlator,
which we will give below. We will take this expression as our starting point to obtain the
results presented in this paper.

To be able to write the CBs in a compact way, we define the following cross-ratios. First
we pair the variables (v2i−1, v2i ), and for each of the pairs, we introduce

xi,j = (v2i−1 − v2i )(v2j−1 − v2j )

(v2i−1 − v2j )(v2j−1 − v2i )
(12)
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for i, j = 1, . . . , n and the vi are the locations of the σ fields. So for four fields, we have one
cross-ratio, consistent with global conformal transformations. What might be a little surprising
is that we introduce, for 2n large enough, more cross-ratios than there are variables, namely
n(n − 1)/2 of them. Even though in general not all of these cross-ratios are independent,
the expressions for the correlators are rather simple in terms of this over complete set of
cross-ratios.

Before we explicitly give the form of the 2n-point correlators, we should point out again
that there are 2n−1 fusion channels. We will label these fusion channels by a vector with n
entries, namely m = (m1,m2,m3, . . . , mn); there the mi take the values 0 or 1. The expression
for the 2n-point σ correlator we present below does not depend on the value of m1. Thus, we
indeed have the correct number of independent CBs. We will start by giving the expression of
the 2n-point chiral σ correlator as given by Fendley, Fisher and Nayak in terms of the chiral
correlator of a compactified boson field φ:

(〈σ (v1)σ (v2) · · · σ (v2n)〉m)2 ∝
〈

n∏

j=1

(ei(φ(v2j−1)−φ(v2j ))/2 + (−1)mj e−i(φ(v2j−1)−φ(v2j ))/2)

〉

. (13)

The correlator of the vertex operators of the chiral boson φ can easily be evaluated by making
use of the result

〈eia1φ(v1) · · · eianφ(vn)〉 =
∏

i<j

(vi − vj )
aiaj when

∑

i

ai = 0. (14)

This correlator vanishes when
∑

i ai %= 0. Swapping the signs of all the ai does not change
the correlation function.

By using the result (13) of [13], we obtain the following expression for the 2n-point
correlator:

〈σ (v1)σ (v2) · · · σ (v2n)〉m = 2− 1
2 (n−1)

n∏

i=1

(v2i−1 − v2i )
− 1

8

×

√√√√√√√

∑

t1=1
t2,t3,...,tn=−1,1

n∏

i=1

t
mi

i

∏

1!i<j!n

(1 − xi,j )
ti tj

4 , (15)

where the normalization is fixed by requiring that for m = (0, 0, . . . , 0), the correlator
reduces to 1 if one fuses all pairs (2i − 1, 2i) of σ -fields (i = 1, . . . , n). The correlator
〈σ (v1)σ (v2)〉 = (v1 − v2)

− 1
8 gives the normalization of the σ -field. Also note that the

correlator (15) does not depend on the value of m1, which reduces the number of independent
correlators of 2n−1.

Let us first use the above expression with m = (1, 1, . . . , 1) to reduce a correlator of 2n

σ -fields (with 2n a multiple of 4) to a correlator of n ψ-fields, which is just the Pfaffian. In
doing so, we will make use of the operator product expansion (OPE)

lim
v2→v1

σ (v1)σ (v2) = (v1 − v2)
− 1

8 1 + (v1 − v2)
3
8 Cψ

σ,σ σ (v1) + higher order terms, (16)

with the (chiral) OPE coefficient Cψ
σ,σ = 1√

2
.

Using this OPE several times, by taking the appropriate limits, namely v2i → v2i−1, for
i = 1, . . . , n we find that the correlator (equation (15)) with m = (1, 1, . . . , 1) reduces to
(after a relabeling of the variables v2i−1 → zi , with i = 1, . . . , n, and N = n)

〈ψ(z1)ψ(z2) · · · ψ(zN)〉 =

√√√√Hf

(
1

(zi − zj )2

)

, (17)
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where Hf(M) denotes the Haffnian of a symmetric N × N matrix M and is given by
Hf(M) = 1

2N/2(N/2)!

∑
σ∈SN

∏N/2
i=1 Mσ (2i−1),σ (2i). In other words, the Haffnian of a matrix

Mij is obtained by summing over all different ways of pairing the indices, where each term
contributes a factor Mi1i2Mi3i4 · · · MiN−1iN .

To convince oneself that equation (17) follows from equation (15) by making use of the
OPE we note that

lim
v2i→v2i−1

(
Cψ

σ,σ

)−n
n∏

i=1

(v2i−1 − v2i )
− 3

8 〈σ (v1)σ (v2) · · · σ (v2n)〉(1,1,...,1)

= lim
v2i→v2i−1

n∏

i=1

(v2i−1 − v2i )
− 1

2

√√√√√√√

∑

t1=1
t2,t3,...,tn=−1,1

n∏

i=1

ti
∏

1!i<j!n

(
1 − ti tj

4
xi,j

)
, (18)

because in the limit v2i → v2i−1, xi,j → 0. Now, in the expansion of
∏

(1 − ti tj xi,j /4), only
those terms which contain all indices on x once (and only once) survive in the limit. If an
index i appears more than once, the term will vanish, because we get an overall contribution
proportional to at least (v2i−1 − v2i )

1/2, which vanishes in the limit. If an index i does not
appear in the expansion of

∏
(1 − ti tj xi,j /4), then there will be a similar term in the sum over

the ti’s, but with the opposite overall sign (namely, if the index i %= 1, it is the term in which ti
has the opposite value; for i = 1, it is the term in which all tj have the opposite value). Thus,
we conclude that only those terms in which each index appears once and only once will be
present. It is not difficult to convince oneself that all these terms have a positive sign (because
the ti will enter as t2

i ). In the terms present, the numerator of the xi,j present in the expansion
will be canceled by the prefactor

∏
(v2i−1 − v2i )

− 1
2 (thus making the limit well defined).

The denominators which remain give rise to the Haffnian. In the limit, the denominators of
the term xi,j xk,l . . . give rise to factors 1/(v2i−1 − v2j−1)

21/(v2k−1 − v2l−1)
2 · · ·. Because

in the expansion of
∏

(1 − ti tj xi,j /4) only terms in which all indices appear once and only
once are present, we end up with an (unsigned) sum over all possible ways of picking pairs
v2i−1, v2j−1, and for each pair, we have a factor 1/(v2i−1 − v2j−1)

2. This is precisely the
Haffnian Hf

( 1
(v2i−1−v2j−1)2

)
. It is not difficult to check that the overall factors of 2 work out

as well. The OPE coefficients Cψ
σ,σ = 1/

√
2 give rise to a factor 2

n
2 . The factors of 1/4 in

products contribute 2− n
2 (after taking the square root). Finally, the sum over the ti gives a

factor of 2
n−1

2 . Combining all this with the prefactor 2− n−1
2 , we indeed find that the factors of

2 cancel.
To show that the reduction described above gives rise to the Pfaffian Pf

( 1
(zi−zj )

)
, we note

a famous identity between the Pfaffian and Haffnian, namely
[

Pf

(
1

(zi − zj )

)]2

= Hf

(
1

(zi − zj )2

)

, (19)

where Pf(A) denotes the Pfaffian of an anti-symmetric N × N matrix A, and is given by
Pf(A) = 1

2N/2(N/2)!

∑
σ∈SN

∏N/2
i=1 sign(σ )Aσ (2i−1),σ (2i). This identity follows from the Cauchy

identity.

4. Correlators of an arbitrary number of σ’s and ψ’s

We will now continue with the description of the CBs of both σ and ψ fields. Such correlators
were known for two [7] and four [16] σ fields, and an arbitrary number of ψ fields. Because
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we have an explicit result for the correlator of an arbitrary (even) number of σ fields, we can
also obtain the mixed correlators of an arbitrary number of ψ fields and an arbitrary even
number of σ fields, by making use of the OPE. We will derive these results explicitly for two
σ fields and an arbitrary number of ψ fields. For the other cases, we will merely state the
(somewhat cumbersome) results.

Apart from the method sketched above, there is an other way to obtain the arbitrary CBs of
the Ising model, which uses the approach of [16] (see [28] for a generalization of the results of
[16] to Zk parafermions and parafermions based on su(3)2). In this approach, one constructs
the blocks by starting from the ψ correlators, with the correct (polynomial) dependence of
the coordinates of the σ particles build in. There are 2n−1 such functions which are linearly
independent, and one considers a general linear combination, where the ‘coefficients’ will
depend on the coordinates of the σ fields (we note that a ‘manifestly’ independent set is given
in [29]). These ‘coefficients’ are obtained by performing appropriate fusions, to obtain already
known correlators. In this way, one constructs a set of 2n−1 independent functions, which have
the right degree, zero and pole structure. This constitutes a proof that the functions obtained
are indeed the CBs of the Ising model. We refer to [16, 28] for more details on this approach.

Thus, we can obtain different, but necessarily equivalent, expressions for the correlators,
generalizing the Haffnian–Pfaffian identity (19). We will refer to the expressions obtained by
using the bosonization procedure (i.e. those containing the ‘Haffnians’) as the bosonic form,
while we refer to the expressions obtained by the procedure outlined in the previous paragraph
(i.e. those which will contain the ‘Pfaffians’) as the fermionic form.

In the context of the Moore–Read state, this identity for two σ fields already noted in [7],
while for more σ ’s, these identities appear to be new.

4.1. The case of two σ fields

The case of two σ fields and an arbitrary number of ψ fields is the last example we will deal
with in some detail; the results for the remaining cases will be simply stated. The arguments
are completely equivalent, however.

We consider a correlator of 2 + 2N σ -fields, with m = (0, 1, 1, . . . , 1). We fuse all but
the first two fields in pairs. The result is

〈σ (v1)σ (v2)ψ(z1) · · · ψ(zN)〉

= 2− N
2 (v1 − v2)

− 1
8

√√√√∑

I

2|I |

(

Hfi,j∈I

1
(zi − zj )2

)
(v1 − v2)|̃I |

∏
j ∈̃I (v1 − zj )(v2 − zj )

, (20)

where N is even and the sum is over all subsets of {1, 2, . . . , N}, containing an even number
of elements |I |. The set Ĩ (containing |̃I | elements) is equal to {1, 2, . . . , N}\I .

We will now briefly describe how this result can be obtained. Even though we will not take
the limit v2 → v1, we still have that all xi,j → 0 in the limit v2i → v2i−1 for i = 2, . . . , N + 1.
As before, we have the result that in the expansion of

∏
(1 − ti tj xi,j /4), any index i > 1 must

appear once and only once. This implies that we will have an even number r of factors tix1,i ,
which in the limit give rise to a factor (v1 − v2)

r/
∏

i (v1 − v2i−1)(v2 − v2i−1). The remaining
factors tj tj ′xj,j ′ give rise to a Haffnian in the ‘remaining’ variables, in the same way as in the
previous section. Let us check the factors of 2. Both the OPE coefficients and the sum over
the ti give a factor of 2N/2. The number of factors of x depends on r, which results in an overall
factor of 2(−N−r)/2. Combined with the two factors 2N/2, this gives the factor 2|I | in the square
root. The prefactor 2−N/2 originates in the prefactor in (15).

8



J. Phys. A: Math. Theor. 43 (2010) 505402 E Ardonne and G Sierra

Due to an identity already noted in [7], namely

∑

I

2|I |(v1 − v2)
N−|I |

(

Hfi,j∈I

1
(zi − zj )2

)
∏

j∈I

(zj − v1)(zj − v2)

=
[

Pf

(
(zi − v1)(zj − v2) + (zi − v2)(zj − v1)

zi − zj

)]2

, (21)

equation (20) reduces to the result which normally appears in the literature, namely

〈σ (v1)σ (v2)ψ(z1) · · · ψ(zN)〉 = 2− N
2 (v1 − v2)

− 1
8

×
N∏

j=1

(v1 − zj )
− 1

2 (v2 − zj )
− 1

2 Pf

(
(zi − v1)(zj − v2) + (zi − v2)(zj − v1)

zi − zj

)

.

(22)

We can repeat the above exercise for 2 + 2N , with N an odd integer. This means that the
first two σ -fields now also should fuse to a ψ . It turns out that in this case, the correlator takes
exactly the form (20), but now with N being an odd integer. Note that in this case, all the terms
in the square root are proportional to (v1 − v2), which is not the case for N even. It is not that
difficult to generalize the relation (21) to an odd number of z variables as well, namely for N
being an odd integer, we have

∑

I

2|I |(v1 − v2)
N−|I |−1

(

Hfi,j∈I

1
(zi − zj )2

)
∏

j∈I

(zj − v1)(zj − v2)

=
[

N∑

m=1

(−1)mPfi,j %=m

(
(zi − v1)(zj − v2) + (zi − v2)(zj − v1)

zi − zj

)]2

. (23)

4.2. The case of four σ fields

Before we give the most general result, we will first check if we can reproduce the result
obtained in [16] for the correlator of four σ -fields and an arbitrary even number of ψ-fields.
Using contractions of equation (15), we find the following, somewhat involved, expression:

〈σ (v1)σ (v2)σ (v3)σ (v4)ψ(z1) · · · ψ(zN )〉m = 2− N+1
2 (v1 − v2)

− 1
8 (v3 − v4)

− 1
8

×

√√√√√∑
I



2|I |



Hfi,j∈I
1

(zi−zj )2







∑
Ĩ1 ,̃I2



 (−1)|̃I2 |+m2

(1−x)
1
4

+ (1 − x)
1
4



 (v1−v2)|̃I1 |
∏

i1 ∈̃I1
(v1−zi1 )(v2−zi1 )

(v3−v4)|̃I2 |
∏

i2 ∈̃I2
(v3−zi2 )(v4−zi2 )







.

(24)

Some remarks are in order here. As above, the sum over I is over all subsets of {1, . . . , N}
with an even number of elements, while the sum over the sets Ĩ1 and Ĩ2 is over all possible
ways to divide the set {1, . . . , N}\I into two sets, whose order is important.

In [16], the case of four σ ’s and an arbitrary (but even) number of ψ’s was obtained
differently. The expression obtained makes use of the following functions:

'(k1k2)(k3k4)

= Pf

(
(vk1 − zi)(vk2 − zi)(vk3 − zj )(vk4 − zj ) + (vk1 − zj )(vk2 − zj )(vk3 − zi)(vk4 − zi)

zi − zj

)

.

(25)

9
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The three functions '(12)(34), '(13)(24) and '(14)(23) are not independent but satisfy '(14)(23) =
x'(12)(34) + (1 − x)'(13)(24). In terms of these functions, we can write the correlator (24) in
the following form:

〈σ (v1)σ (v2)σ (v3)σ (v4)ψ(z1) · · · ψ(zN)〉m

= 2− N+1
2 (v1 − v2)

− 1
8 (v3 − v4)

− 1
8

4∏

i=1

N∏

j=1

(vi − zj )
− 1

2

(

(1 − x)
1
4 +

(−1)m2

(1 − x)
1
4

)− 1
2

×
(
(1 − x)

1
4 '(13)(24) + (−1)m2(1 − x)−

1
4 '(14)(23)

)
. (26)

We should point out that (24) and (26) differ by at most a sign.

4.3. The case of an arbitrary even number of σ fields

We will now provide an expression for the CBs of 2n σ -fields and N ψ-fields, with both N and
n integers. We first give the expression and explain the notation afterward:

〈σ (v1) · · · σ (v2n)ψ(z1) · · · ψ(zN)〉m = 2− N+n−δn>0
2

n∏

i=1

(v2i−1 − v2i )
− 1

8

×

√√√√
∑

I

2|I |

(

Hfi,j∈I

1
(zi − zj )2

)[
∑

Ĩ1,...,̃In

A
(m+r) mod 2
2n

n∏

i=1

(v2i−1 − v2i )ri

∏
j ∈̃Ii

(v2i−1 − zj )(v2i − zj )

]

. (27)

In the formula above, we used the following notation. First of all, the sum over I is over all
subsets of {1, . . . , N} with an even number of elements. The sum over Ĩ1, . . . , Ĩn is over all
different ways of dividing the set {1, . . . , N}\I into n subsets, which might be empty, and the
order of these sets is important. Furthermore, ri = |̃Ii | is the number of elements of Ĩi and
r = (r1, . . . , rn). We use the convention that

∑
i mi = N mod 2, and the vector (m+r) mod 2

has elements ((m1 + r1) mod 2, . . . , (mn + rn) mod 2). The function Am
2n is closely related to

the correlator of 2n σ fields

Am
2n =

∑

t1=1
t2,t3,...,tn=−1,1

n∏

i=1

t
mi

i

∏

1!i,j!n

(1 − xi,j )
ti tj

4 . (28)

Finally, we introduced the notation δn>0, which is 1 if n > 0, and zero for n = 0.
It is not to difficult to generalize equation (26) to an arbitrary (but for now, even) number

of ψ fields. To do so, we start with the ‘preferred basis’ for the functions ', as described in
[16]. Nayak and Wilczek label the 2n−1 functions with two n tuples, which have the property
that 2i −1 and 2i are never in the same tuple. Note that the order of the two tuples is irrelevant.
For us, it will be convenient to label the functions ' by the vector t = (t1, t2, . . . , tn). The
relation with the two tuples is a follows. If ti = 1, we have 2i − 1 in the first tuple and 2i in
the second, while for ti = −1 the situation is reversed. As an example, '(1,−1,1) corresponds
to '(145)(236). We will write the ‘preferred basis’ functions ' explicitly in terms of the ti:

't = Pf

(∏n
i=1(v(2i−1)− ti−1

2
− zj )(v(2i)+ ti−1

2
− zk) +

∏n
i=1(v(2i−1)− ti−1

2
− zk)(v(2i)+ ti−1

2
− zj )

(zj − zk)

)

.

(29)

The subscript on the v’s is a little involved, but for ti = 1, the pair (v
(2i−1)− ti−1

2
, v

(2i)+ ti−1
2

)

is simply (v2i−1, v2i ), while for ti = −1, we get (v2i , v2i−1). We note that it is in principle

10
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possible to write ' related to an arbitrary pair of tuples in terms of the functions (29),
generalizing the relation '(12)(34) = − 1−x

x
'(13)(24) + 1

x
'(14)(23).

We have now introduced all the notation necessary to write down the generalization of
(26) to an arbitrary even number of σ and an even number of ψ fields:

〈σ (v1) · · · σ (v2n)ψ(z1) · · · ψ(zN)〉m=2− N+n−δn>0
2

n∏

i=1

(v2i−1−v2i )
− 1

8

2n∏

i=1

N∏

j=1

(vi − zj )
− 1

2
(
Am

2n

)− 1
2

×
(

∑

t1=1
t2,t3,...,tn=−1,1

(
n∏

i=1

t
mi

i

∏

1!i,j!n

(1 − xi,j )
ti tj

4

)

't

)

. (30)

To generalize (30) to an odd number of ψ fields, we just have to perform a contraction of (say)
the first ψ field and one of the σ fields. For convenience, we choose to fuse the first ψ at z1

with the first σ at v1. It turns out that we only have to modify the form of 't to obtain the
generalization of (30) to an odd number of ψ fields. Namely, we define for N odd

't = (v1 − v2)
1
2

N∑

m=1

[

(−1)m

(
n∏

i=2

(v1 − v2i+ ti−1
2

)
1
2

(v1 − v2i−1− ti−1
2

)
1
2

(v2i−1− ti−1
2

− zm)

)

Pfj,k %=m

×
(∏n

i=1(v(2i−1)− ti−1
2

− zj )(v(2i)+ ti−1
2

− zk) +
∏n

i=1(v(2i−1)− ti−1
2

− zk)(v(2i)+ ti−1
2

− zj )

(zj − zk)

)]

.

(31)

By using this form for 't in (30) when N is odd, we obtain an expression for the correlator of
an even number of σ fields, and an odd number of ψ fields. We could have fused the ψ field
with any other σ field as well. This would have led to different, but equivalent, correlators.
For instance, if we fused the ψ at z1 to the σ at v2, instead of v1 as we did above, we would
need to do the following replacement in equation (31):
(

n∏

i=2

(v1 − v2i+ ti−1
2

)
1
2

(v1 − v2i−1− ti−1
2

)
1
2

(v2i−1− ti−1
2

− zm)

)

→
(

n∏

i=2

(v2 − v2i−1− ti−1
2

)
1
2

(v2 − v2i+ ti−1
2

)
1
2

(v2i+ ti−1
2

− zm)

)

.

(32)

If we would have fused z1 to any other vj , we would have obtained slightly more complicated
expressions (basically, because our expressions do not depend on m1). We will not give these
expressions here, but we trust that the interested reader can work them out.

The fact that the arbitrary chiral Ising correlators can be obtained in two independent ways
gives rise to what appear to be new identities. For completeness, we will give this identity
in its most general form. This identity is based on the equivalence between the correlators in
equations (27) and (30). Namely, we have

∑

I

2|I |

(

Hfi,j∈I

1
(zi − zj )2

)[ ′∑

Ĩ1,...,̃In

A
(m+r) mod 2
2n

n∏

i=1

(v2i−1 − v2i )
ri

∏
j ∈̃Ii

(v2i−1 − zj )(v2i − zj )

]

=
2n∏

i=1

N∏

j=1

(vi − zj )
−1(Am

2n

)−1

(
∑

t1=1
t2,t3,...,tn=−1,1

(
n∏

i=1

t
mi

i

∏

1!i,j!n

(1 − xi,j )
ti tj

4

)

't

)2

.

(33)
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Here, we used the same notation as above, and 't is given by equation (29) for N even, while
it is given by equation (31) for N odd.

5. Alternative representation

In this section, we provide an alternative representation of the fermionic form of the CBs of an
arbitrary number of σ and ψ fields, which will be useful later on. To obtain the representation
that we present in this section, one only has to reshuffle some overall factors. In particular,
we will consider the form where there is an overall factor

∏
1!a<b!n(va − vb)

−1/8, while the
factor of the type

∏
i,a(zi − va)

−1/2 will be completely absorbed in the ‘Pfaffian part’ of the
wavefunction.

5.1. CBs of σ fields

The simplest correlator for which there is a difference between the two representations is the
4-σ correlator, for which the two possible CBs can be written as

F4
0,1 = 〈σ (v1)σ (v2)σ (v3)σ (v3)〉0,1 = 2−1/2

∏

a<b

v
−1/8
ab (

√
v13v24 ± √

v14v23)
1/2, (34)

where the block p = 0 (resp. p = 1) corresponds to the plus sign (resp. minus sign) on the
RHS.

Let us write equation (34) in the following form:

F4
p = 2−1/2

∏

a<b

v
−1/8
ab (εp0

√
v13v24 + εp1

√
v14v23)

1/2 (35)

where εpq are sign factors and q label the monomials in the summand on the RHS. The values
of these quantities are

ε00 = 1, ε01 = 1

ε10 = 1, ε11 = −1.
(36)

The expression of the CBs for six σ -fields has a structure similar to equation (34):

F6
p = 2−1

∏

a<b

v
−1/8
ab (εp0

√
v135v246 + εp1

√
v136v245 + εp2

√
v146v235 + εp3

√
v145v236)

1/2, (37)

where

vabc = vabvacvbc. (38)

The four possible CBs correspond to the following choices:

ε00 = 1, ε01 = 1, ε02 = 1, ε03 = 1

ε10 = 1, ε11 = −1, ε12 = 1, ε13 = −1

ε20 = 1, ε21 = 1, ε22 = −1, ε23 = −1

ε30 = 1, ε31 = −1, ε32 = −1, ε33 = 1.

(39)

One can verify for these choices that (37) satisfies the BPZ (equation (5)), and that they
correspond to the expression given in section 3.

Consider a CB of 2n σ -fields whose coordinates are v1, . . . , v2n and pair them as
(v1, v2)(v3, v4) · · · (v2n−1, vn), which we will call reference pairs. We might as well use the

12
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1 3 5 7 9 11 13

2 4 6 8 10 12 14

q= 0 11010

Figure 1. Illustration of the macrogroups, corresponding to (1, 3, 6, 8, 9, 12, 14)
(2, 4, 5, 7, 10, 11, 13). The value for q = 22 or in binary digits q = 010110.

labels of these coordinates so that the reference pairs are given by (1, 2)(3, 4) · · · (2n−1, 2n).
A basis of CBs is associated with two macrogroups containing n elements each

(*1, *2, . . . , *n), (*′
1, *

′
2, . . . , *

′
n) (40)

such that two members of a reference pair never belong to the same macrogroup. As
an example, take the case n = 3. The four possible pairs of macrogroups are given
by (135)(246), (136)(245), (146)(235), (145)(236). For n integer, there are 2n−1 different
macrogroup pairs (40), which can be labeled by an integer q = 0, 1, . . . , 2n−1 − 1. The
macrogroup -* = (*1, *2, . . . , *n) associated with q is given by

*1 = 1

*k+1 − *k = 2 if qk = 0

*k+1 − *k = 1 if qk = 1 and *k : even

*k+1 − *k = 3 if qk = 1 and *k : odd,

(41)

where qk are the binary digits of the integer q = (q1, q2, . . . , qn−1). The macrogroup
-*′ = (*′

1, *
′
2, . . . , *

′
n) associated with q also satisfies the recursion relations (41) plus the

initial condition *′
1 = 2. The macrogroup pair associated with q = 0 are (1, 3, . . . , 2n −

1)(2, 4, . . . , 2n). A graphical representation of this construction is given in terms of a two-leg
ladder where the kth-rung (k = 1, . . . , n) corresponds to the reference pair (2k − 1, 2k). The
pair (-*q, -*′

q) is described by two strings of integers on the ladder, which on the kth-plaquette
crosses or not for qk = 1 or qk = 0, respectively (see figure 1). As explained earlier, a
macrogroup is associated with a set of n coordinates v*k

. We shall now assign an overall factor
to it:

v-* =
n∏

k<m

v*k ,*m
, v*k ,*m

= v*k
− v*m

, (42)

and similarly for the macrogroup -*′. For n = 1 we take by convenium v-* = v -*′ = 1. For
n = 2, we get v(*1,*2) = v*1 − v*2 , which agrees with the earlier definition of vab = va − vb.
The case n = 3 coincides with the earlier definition of vabc given in equation (38) which
corresponds to the macrogroup (abc).

The connection between the qi and the ti can be described as follows. First, we consider
(1 − ti)/2, which takes the values 0 and 1 for ti = 1 and ti = −1, respectively. Then, the qi

are given by qi =
∑i+1

j=1(1 − tj )/2 mod 2.
The CBs can be labeled by graphs whose links are associated with primary fields which

meet at vertices whenever the coincident fields satisfy the fusion rules. The primary fields

13
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0 0
0

σ σ σ σ σ σσ

ψ
ψ ψ

ψ
0

1 1 0p

σ

0

=

Figure 2. Label of a correlator, specifying the conformal block. For the block displayed, p = 6,
or in binary notation p = 110.

appearing in the correlator are associated with the external lines of the graph, while the primary
fields of the internal lines give rise to the existence of different CBs. This picture is the familiar
one in particle physics if we view the primary fields as particles and the CBs as scattering
processes. Figure 2 shows the scattering representation of the CB (43), according to which the
fields σ (v2k−1) and σ (v2k) fuse together giving rise to either the identity or the Majorana field.
These fields in turn fuse together on a baseline. The binary digits of p describe the primary
fields running on this baseline: the identity if pi = 0 or the Majorana field if pi = 1.

The connection with the labels of the CBs in the previous sections is as follows. There,
the labels mi indicated the fusion channel of the pair (v2i−1, v2i ) with i = 1, . . . n, mi = 0
for the fusion into the identity channel, while mi = 1 for the ψ channel. It follows that the
relation with pi reads pi =

∑i
j=1 mj mod 2.

After these definitions we can finally give the expression of the CB of 2n σ -fields and no
Majorana fermions:

F2n,0
p = Cn,0

2n∏

a<b

v
−1/8
ab




2n−1−1∑

q=0

εpq
√

v*qv*′
q




1/2

, p = 0, 1, . . . , 2n−1 − 1, (43)

where εpq is a sign given in terms of the binary digits of p and q

εpq = (−1)
∑n−1

k=1 pkqk (44)

and the constant Cn,0 is given by

Cn,0 = 2−(n−1)/2 . (45)

The latter result can be checked taking the limit v2k−1 → v2k and using the OPE
(equation (16)).

As explained in equation (4), the CB can be used to construct the non-chiral correlator of
fields. For the Ising model these correlators are known, thanks to a bosonic version of two
copies of the Ising model. In particular, one has

〈σ (v1, v1) · · · σ (v2n, v2n)〉2 = 2−n
∑

εi=±1,
∑

εi=0

∏

i<j

|vi − vj |εiεj /2. (46)

We have checked for n = 2, 3 that

〈σ (v1, v1) · · · σ (v2n, v2n)〉2 =
(

∑

p

F2n,0
p F2n,0

p

)2

. (47)
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5.2. CBs with σ and ψ fields

The chiral correlator or CB of an even number 2m of Majorana fields is given by

F (0,2m)(z1, . . . , z2m) = 〈ψ(z1) · · · ψ(z2m)〉 = Pf
(

1
zi − zj

)
, (48)

where Pf is the Pfaffian of the 2m × 2m antisymmetric matrix 1/(zi − zj ). For a generic
antisymmetric matrix Aij , the Pfaffian is given by

PfA =
√

det A = 1
m!2m

∑

π∈S2m

sgn(π)

n∏

i=1

Aπ(2i−1),π(2i),

where S2m is the permutation group of 2m symbols. For an odd number of Majorana fields
the CB is zero.

Let us next consider the CB of two σ fields and an even number of ψ fields. There is only
one CB, whose expression was found by Moore and Read [7]:

〈σ (v1)σ (v2)

2m∏

i=1

χ(zi)〉 = 2−m v
−1/8
12

2m∏

i=1

((zi − v1)(zi − v2))
−1/2

× Pf
(

(zi − v1)(zj − v2) + (zi − v2)(zj − v1)

zi − zj

)
.

For later purposes it is convenient to write this equation as

F (2,2m)
0 (v1, v2, z1, . . . , z2m) = 2−m v

−1/8
12 Pf

(
h(1),(2)(zi, zj )

zi − zj

)

(49)

where

h(1),(2)(zi, zj ) =
[
(zi − v1)(zj − v2)

(zi − v2)(zj − v1)

]1/2

+ (i ↔ j). (50)

For four σ fields and 2m ψ fields there are two CBs which were found by Nayak and
Wilczek, which can be written as [16]

F (4,2m)
0,1 (v1, . . . , v4, z1, . . . , z2m) = C

∏

a<b

v
−1/8
ab

(√
v13v24 ± √

v14v23
)−1/2

×
[√

v13v24 Pf
(h(13),(24)(zi, zj )

zi − zj

)
± √

v14v23 Pf
(h(14),(23)(zi, zj )

zi − zj

)]
, (51)

where

h(ab),(cd)(zi, zj ) =
[
(zi − va)(zi − vb)(zj − vc)(zj − vd)

(zi − vc)(zi − vd)(zj − va)(zj − vb)

]1/2

+ (i ↔ j). (52)

Note the analogy between equations (51) and (34). The subindices of the h matrix elements
are nothing but the two macrogroups (13)(24) and (14)(23) associated with the CB of four σ

fields. Indeed, one can write the following generalization of equations (49) and (51):

F (2n,2m)
p (v1, . . . , v2n, z1, . . . , z2m) = C2n,2m

2n∏

a<b

v
−1/8
ab




2n−1−1∑

q=0

εpq
√

v*qv*′
q




−1/2

×




2n−1−1∑

q=0

εpq
√

v*qv*′
q

Pf
h*q,*′

q
(zi, zj )

zi − zj



 (53)
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where

h-*, -*′(zi, zj ) =
[

n∏

k=1

(zi − v*k
)(zj − v*′

k
)

(zi − v*′
k
)(zj − v*k

)

]1/2

+ (i ↔ j) (54)

and

C2n,2m =
{

1 n = 0
2−((n−1)/2+m) n > 0 .

It is not difficult to convince oneself that this expression is equivalent to equations (30) and
(29). We also checked for small values of n and m that (53) satisfies the BPZ equations (5).

Let us now consider the CB with an odd number of fermions. For m > 1 we start from
the equation

F (2,2m)
0 (v1, v2, z1, . . . , z2m) = 2−m v

−1/8
12 Pf

(
h(1),(2)(zi, zj )

zi − zj

)

(55)

and take the limit z2m → v1. One gets

h(1),(2)(zi, z2m)

zi − z2m

→ v
1/2
12

(z2m − v1)1/2
[(zi − v1)(zi − v2)]−1/2.

Next we use the expansion of the Pfaffian of a 2m × 2m matrix

PfA =
2m−1∑

i=1

(−1)1+iAi,2m Pfj,k %=i,2m Aj,k

where the RHS contains the Pfaffian of the matrix obtaining from A by deleting the ith and
(2m)th rows and columns. Using again the OPE of ψ(z2m) and σ (v1) one gets

F (2,2m−1)
0 (v1, v2, z1, . . . , z2m−1) = 2−m+1/2 v

3/8
12

2m−1∑

i=1

(−1)1+i

× [(zi − v1)(zi − v2)]−1/2 Pfj,k %=i,2m

(
h(1),(2)(zj , zk)

zj − zk

)

. (56)

For generic CBs involving an even number of σ fields one has in the limit z2m → v1

h-*,-*′(zi, z2m)

zi − z2m

→ (zi − v1)
−1

(z2m − v1)1/2

∏n
k=1

√
v1*′

k∏n
k=2

√
v1*k

n∏

k=1

(
zi − v*k

zi − v*′
k

)1/2

which gives

F (2n,2m−1)
p = C2n,2m−1

2n∏

a<b

v
−1/8
ab




2n−1−1∑

q=0

εpq
√

v*qv*′
q




−1/2

×




2n−1−1∑

q=0

εpq
√

v*qv*′
q

∏n
k=1

√
v1*′

k∏n
k=2

√
v1*k

2m−1∑

i=1

(−1)i+1 (zi − v1)
−1

×
n∏

k=1

(
zi − v*k

zi − v*′
k

)1/2

Pfj,k %=i,2m

(h*q,*′
q
(zj , zk)

zj − zk

)]

(57)

with

C2n,2m−1 =
{

1 n = 0
2−(n/2+m−1) n > 0 .

Again one can check that this expression is equivalent to equations (30) and (31).
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6. Free field representation of su(2)k for k = 1, 2

In this section, we will use the expressions we found for the chiral Ising correlators, to give
the correlators of the primary fields of the WZW conformal field theory based on su(2)2. For
more details on the correlators and CBs of primary fields in the WZW model, we refer to the
seminal paper by Knizhnik and Zamolodchikov [30]. The free field representation for WZW
theories was introduced by Wakimoto [31] (for more information, we refer to [32]).

Let us use the Cartan–Weyl basis for the generators of the su(2)k algebra J 0(z), J±(z).
The OPEs are given by

J 0(z)J 0(w) ∼ k/2
(z − w)2

J 0(z)J±(w) ∼ ±J±(w)

z − w

J +(z)J−(w) ∼ k

(z − w)2
+

2J 0(w)

z − w
.

For k = 1 these currents can be realized as

J 0(z) = i√
2
∂zφ(z), J±(z) = e±i

√
2φ(z).

The primary fields with spin j = 1/2 are

V1/2,s(z) = eisφ(z)/
√

2, s = ±1, h1/2 = 1
4 .

For k = 2 the currents can be written as

J 0(z) = i∂zφ(z), J±(z) =
√

2 ψ(z) e±iφ(z),

where ψ(z) is the Majorana field of the Ising model. The primary fields with spin j = 1 are

V1,±1(z) = e±iφ(z), V1,0(z) = ψ(z), h1 = 1
2

while the primary fields with spin j = 1/2 are

V1/2,s(z) = σ (z) eisφ(z)/2 s = ±1, h1/2 = 3
16 ,

where σ (z) is the spin field of the Ising model, with hσ = 1/16.

6.1. CBs of N spin 1 fields

Consider N spins 1 labeled by si = ±1, 0 associated with the coordinates zi (i = 1, . . . , N).
The wavefunction is given by

ψ(s1, . . . , sN) = χs

N∏

i<j

(zi − zj )
si sj Pf0

(
1

zi − zj

)
,

where

χs = (−1)
∑

i:even(si−1)

and the Pfaffian is restricted to the positions where si = 0.
Note that the term

∏
i<j (zi − zj )

si sj only depends on the sites where si = ±1. The total

spin must be zero so
∑N

i=1 si = 0. Before we continue with the case combining the spin 1 and
spin 1/2 fields, we state the following. For N odd and greater than 1, one can form singlet(s)
out of the spins. In principle, one could expect a contribution from the case si = 0 for all
i, which would correspond to the correlator of an odd number of ψ fields. However, this
correlator is zero since it involves an odd number of ψ fields.
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6.2. CBs of N spin 1 and 2n spin 1/2 fields

Let va (a = 1, . . . , 2n) be the coordinates of the spin 1/2 fields, τa = ±1 their spin, and
zi (i = 1, . . . , N) the coordinates of the spin 1 fields, and si = 0,±1 their spin. We shall
denote by z0

i the coordinates where si = 0, and assume there are M such coordinates. The
total spin Sz = 0 imposes that

1
2

2n∑

a=1

τa +
N∑

i=1

si = 0.

The wavefunctions (or CBs) are given, in terms of the chiral Ising correlators, by

ψp(τ1, . . . , τ2n, s1, . . . , sN) = χτχs

∏

a<b

v
τaτb/4
ab

∏

i<j

z
si sj

ij

∏

i,a

(zi − va)
1
2 siτa F (2n,M)

p

(
vj , z

(0)
k

)
,

(58)

where F (2n,M)
p (vj , z

(0)
k ) is the Ising CB computed earlier and the overall sign is given by

χs = (−1)
∑

i:even(si−1), χτ = (−1)
∑

a:even(τa−1)/2.

7. Conclusion and outlook

In this paper, we gave explicit expressions for all the CBs of the Ising model. These expressions
were obtained by starting from the bosonized formulation of the Ising model, which gave us the
expression for the CB of an arbitrary number of σ fields. From this, two different expressions
for the correlators of an arbitrary number of σ and ψ fields were obtained. The equivalence
between these expressions gave rise to a family of identities, which are a consequence of the
fact that the Ising model can be bosonized. We used the expressions for the CBs of the Ising
model, to obtain expressions for the CBs of the su(2)2 WZW conformal field theory.

It is straightforward to generalize these results to the CBs of those WZW theories which
can be written in terms of a set of chiral bosons, augmented with the Ising conformal field
theory. Theories of this type are so(2n + 1)1 and E8 at level 2.

We hope that the explicit form of the Ising CBs and correlators presented in this paper
will aid in the design of experiments (and perhaps applications) to detect the effects of non-
Abelian statistics, which has been conjectured to be present in several different condensed
matter systems, ranging from the quantum Hall effect, (p+ip) superconductors, systems based
on topological insulators, to cold atomic gases. In addition, the form of the correlators might
inspire to make progress in obtaining the explicit form of (typically much harder) multi-point
correlators in other conformal field theories.
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