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Abstract
We calculate (q-deformed) Clebsch–Gordan and 6j -coefficients for rank 2
quantum groups. We explain in detail how such calculations are done,
which should allow the reader to perform similar calculations in other cases.
Moreover, we tabulate the q-Clebsch–Gordan and 6j -coefficients explicitly, as
well as some other topological data associated with theories corresponding to
rank 2 quantum groups. Finally, we collect some useful properties of the fusion
rules of particular conformal field theories.

PACS numbers: 02.20.Uw, 11.25.Hf, 73.43.−f

1. Introduction

Clebsch–Gordan coefficients and 6j -symbols have long played an important role in
representation theory and also in quantum mechanics, where they traditionally appear in
the addition of angular momenta and of internal quantum numbers of particles, such as isospin
and color. Recently, models with the so-called topological phases have come under intense
investigation in condensed matter physics and these provide another arena where explicit
knowledge of generalized Clebsch–Gordan and 6j -coefficients is of great importance. Part
of the current excitement is generated by the prospect that the unusual properties of the
excitations of these phases can be harnessed and put to use in fault tolerant ‘topological
quantum computers’ [1, 2]. In view of this, we believe it is useful to provide the explicit data
needed to compute time evolutions in a number of topological phases, with a description of
the methods employed, so as to assist the reader in calculating similar data for other systems.

In the low energy limit, all physical information in a topological phase of matter can
be expressed in the framework of topological field theory. Practical expressions for any
physical amplitude in a topological field theory can be obtained in terms of generalized (often
q-deformed) 6j -symbols, usually called F-symbols, and a further set of numbers called the
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R-symbols. These data can be obtained from the representation theory of quantum groups.
For an important class of topological models, namely those associated with su(2)k Chern–
Simons theory, there exists an explicit expression for the F-symbols, which was derived from
the associated quantum group Uq(sl(2)). However, for most other topological models, no
general formulas are available. Nevertheless, whenever the quantum group that describes a
topological model is known, the F-symbols can be calculated explicitly. We explain in detail
how such calculations can be done, focusing mostly on the quantum groups arising from
q-deformations of simple Lie algebras, which describe the Chern–Simons gauge theories
based on the corresponding simple Lie groups. We provide explicit tables of q-Clebsch–
Gordan coefficients and F-symbols, as well as R-symbols for rank 2 quantum groups.

Although we mainly focus on multiplicity-free cases (that is, cases in which there are no
fusion multiplicities greater than 1), we include one example of a theory which does contain a
nontrivial fusion multiplicity, namely the su(3)3/Z3 orbifold theory. We are aware of only one
other instance in which the F-symbols were calculated for a theory with a fusion multiplicity,
namely in [3], for a theory with three types of particles. In contrast to the example treated here,
that theory does not allow for a consistent braiding, and hence does not have an associated
R-matrix.

This paper is organized as follows. In section 2, we give an overview of the structure
of topological models in general. The ‘topological data’ specifying topological models are
introduced, and a quick introduction on how these can be used to calculate physical observables
is given. Section 3 introduces the basic representation theory of quantum groups which is
used throughout the paper to calculate topological data. In particular, the definition of the
q-Clebsch–Gordan coefficients and F-symbols is given. In section 4, we collect useful data on
anyon theories. In particular, we list those theories (based on affine Lie algebras), which do
not have fusion multiplicities. It turns out that many of the multiplicity-free theories at high
rank have the same fusion rules as other, ‘simpler’ or better known theories, such as theories at
lower rank or orbifolds of the chiral boson. We give such identifications with simpler theories
for all affine Lie algebras of types C, D, E, F and G.

A rather detailed description of the calculation of q-Clebsch–Gordan coefficients is given
in section 5, which should enable the readers to carry out such calculations themselves. Using
these methods, we give a simple expression for the R-symbols in section 6. A summary of the
topological data considered in this paper is provided in section 7. Finally, in the last part of
the main text (section 8), we give some applications of these topological data.

About half of this paper consists of appendices, in which we tabulate, amongst other
things, the q-Clebsch–Gordan coefficients and the F- and R-symbols for various theories.
These include su(3)2 (appendix A), su(3)3/Z3 (appendix B) and the non-simply laced cases
so(5)1 (appendix C) and g2,1 (appendix D). In particular, this covers all the rank 2 algebras
at the lowest non-trivial (i.e. non-Abelian) level. We also cover one of the simplest theories
containing a fusion multiplicity, namely su(3)3/Z3. For completeness, we give explicit
expressions for the case su(2)k as well, in appendix E. The q-Clebsch–Gordan coefficients
and F-symbols have been collected in four mathematica notebooks, which are available via
http://arxiv.org/src/1004.5456/anc.

2. Topological models

Topological phases are phases of matter characterized by the property that their low energy
sectors may be described in the language of topological field theory [4–7]. In particular, these
phases have a finite number of types of gapped low energy excitations which may exhibit
nontrivial behavior under fusion and exchanges. In planar systems, the exchange behavior
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is governed by a nontrivial representation of the braid group and the excitations are called
anyons. The different types of anyons are said to have different topological charges. The
amplitude for low-energy processes involving anyons are calculated using diagrams that may
be interpreted as spacetime diagrams for the processes. The type, or topological charge, of
each anyonic particle is indicated as a label on its worldline in such a diagram. As particles
fuse or split, this gives rise to vertices where three worldlines meet. As the particles move
around and exchange positions, this induces braiding of their world lines. The amplitude
associated with a diagram is invariant under continuous deformations and may be calculated
by the application of certain moves, most notably the so-called F-moves. Using the F-moves
one may express a diagram as a linear combination of diagrams in which one four-particle
process in the history depicted by the diagram has been recoupled. The coefficients that appear
in these linear combinations are called the F-symbols and they essentially determine the value
of any observable quantity in the theory. Most of this paper is devoted to an explicit calculation
and tabulation of the F-symbols for a number of theories.

Before we get started with the definition of the F-symbols, we first quickly introduce the
concept of fusion rules. The fusion rules of a topological theory state how many times the
particle type c appears in the decomposition of the (fusion) product of two particles of types
a and b:

a × b =
∑

c

na,b
cc. (1)

Here, the fusion coefficients na,b
c are non-negative integers. When the TQFT is described

using a quantum group (see also section 3), the fusion coefficient na,b
c is just the multiplicity

of the quantum group representation labeled c in the decomposition of a suitably defined tensor
product of the representations labeled a and b.

The fusion rules are required to be associative. One also requires that na,b
c = nb,a

c,
and that n1,a

a′ = δa,a′ , where 1 denotes the trivial particle. Each particle a has a unique
anti-particle ā for which na,ā

1 = 1 (note that a can be its own anti-particle, as is the case for
all representations of su(2)k).

We now define our standard set of F-symbols as the coefficients appearing in the
diagrammatic equation

a b c

d

e = f (F
a,b,c
d )e,f

a b c

d

f

(2)

There are a number of remarks to be made before we continue. First of all, when the TQFT is
described using a quantum group, the three lines labeled a, b and c represent three irreducible
quantum group representations that are tensored together in two different orders, leading to
different intermediate representations with irreducible components e and f . The line labeled d
indicates that an irreducible component of type d is selected from the threefold tensor product
as the ‘overall topological charge’. The F-symbols then give a map between these components
of the threefold tensor product (again see section 3 for more detail).

Second, the F-symbols as defined here are strictly speaking not numbers, but matrices
which map between two topological vector spaces characterized by the fusion trees in the
diagrams. We mainly restrict our attention to multiplicity-free TQFTs, for which all such
fusion spaces are either one dimensional or zero dimensional. In the second case, the diagram
has amplitude zero (we say that it is not allowed by the fusion rules). In the first case, all the
vertices correspond to one-dimensional ‘fusion spaces’, and the F-symbols can be viewed as
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numbers (they are 1 × 1 matrices). We can then view
[
Fabc

d

]
as a matrix, whose rank is given

by the number of consistent choices of e (or f , which is equivalent), such that the fusion rules
are satisfied.

Since the F-symbols are the coefficients of a transformation between two topological
vector spaces determined by fusion trees, they are only fully determined after the bases for
these spaces are chosen. A change of basis transforms the F-symbols and since every choice
of basis is equally good this gives us a gauge freedom in the F-symbols. Since we (mostly)
deal with theories without fusion multiplicities and we use only orthonormal bases, this gauge
freedom reduces to a choice of a phase for every vertex in the two diagrams that appear in the
definition of the F-symbols.

It is not too difficult to see that repeated application of recoupling moves such as that
shown in equation (2) allows us to reduce any diagram that involves only fusions and splittings
to a standard form, in effect fixing the time evolution of the state of the system (see for
instance [5] for more details). More generally, diagrams may have crossings of the particle
lines, corresponding to exchanges of the particles. These may by removed by R-moves, such
as the one shown below.

c

ab
= Rab

c
c

ab

(3)

The R-symbol Rab
c that appears in this equation is in principle a unitary matrix, but in a fusion

multiplicity-free theory, this reduces to a number (in fact, a phase, since Rab
c is a unitary 1 × 1

matrix in this case). The R-symbols, like the F-symbols, depend on the choice of bases in the
topological vector spaces (an exception are the R-symbols Raa

b which are gauge invariant), but
often this gauge freedom is exhausted once the F-symbols are fixed—this is the case for the
theories examined in this paper.

Using both R-symbols and F-symbols, all diagrams that can occur may be reduced to a
standard form and hence a knowledge of these symbols completely fixes the gauge invariant
physical observables of the theory. Some important gauge invariant quantities characterizing
topological models are quantum dimensions, twist factors, Frobenius–Schur indicators and
the central charge. Formulas for these quantities in terms of the F- and R-symbols are given
in section 7.

3. Quantum groups, CG coefficients and 6j-symbols

Quantum groups are algebras which have a number of structures that make sure that it is
possible to define a tensor product on their representations and associated Clebsch–Gordan
coefficients and 6j -symbols. This makes them useful in physics especially in the theory
of integrable models and models of anyonic systems. In the quantum group description
of anyonic systems the irreducible representations of the quantum group correspond to the
topological superselection sectors of the anyon model. The decomposition of tensor products
of representations corresponds to fusion and 6j -symbols correspond to the F-symbols. There
is also a structure called the universal R-matrix which provides for braiding and in particular
gives the values of the R-symbols. The structures of the quantum group are defined in such
a way that the F-symbols and R-symbols obtained from the quantum group’s representation
theory have all the required properties to fulfill their role in the corresponding anyon model.
In particular, fusion is associative and the F-symbols and R-symbols satisfy the pentagon and
hexagon equations (see appendix F for the most general form). For a detailed introduction
to quantum groups the reader may for instance consult [8]. Here we do not even review all
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of the structure of a quantum group. Instead, we discuss just enough of the structure to be
able to define Clebsch–Gordan coefficients, 6j -symbols and R-symbols. We explicitly give
the relevant structures for the quantum groups we are interested in, the q-deformed universal
enveloping algebras Uq(g) based on the semisimple Lie algebras.

Let g be a semisimple Lie algebra and denote its simple roots by αi . To each simple root,
we associate three generators Hi, L

+
i and L−

i . These generate Uq(g) as an algebra, subject to
the relations

[Hi,Hj ] = 0
[
Hi, L

±
j

]
= ±AijL

±
j

[
L+

i , L
−
j

]
= δij$Hi%qi

(4)

and
1−Aij∑

s=0

(−1)s
⌊

1 − Aij

s

⌋

qi

(
L±

i

)1−Aij −s
L±

j

(
L±

i

)s = 0 (for i &= j). (5)

Here, Aij = 2(αi ,αj )

(αj ,αj )
are the elements of the Cartan matrix of g and we have defined qi = q1/ti ,

where ti = 2
(αi ,αi )

are integers in the set {1, 2, 3} such that the matrix with the (i, j)-element
tiAij is symmetric. In addition, these are the elements of the inverse of the quadratic form
matrix. When q = 1, these relations reduce to the relations for the Chevalley–Serre basis of
the universal enveloping algebra U(g). The qi-number $n%qi

is given by

$n%qi
= q

n/2
i − q

−n/2
i

q
1/2
i − q

−1/2
i

=
n∑

m=1

q
n+1

2 −m

i

and the qi-binomials that appear are defined by
⌊

n

m

⌋

qi

= $n%qi
!

$m%qi
!$n − m%qi

!
,

where for n ! 1 we introduced

$n%qi
! =

n∏

m=1

$m%qi

and for n = 0 we take $0%qi
! = 1. When ti = 1, we often drop the subscript i from qi, and the

subscript qi from the q-numbers and factorials altogether, i.e. $n%qi
= $n%q = $n%.

Any quantum group A has a coproduct, usually denoted as #, which is a homomorphism
of algebras from A into A ⊗ A, which is coassociative, that is,

(# ⊗ id)# = (id ⊗ #)#. (6)

Given two representations π1, π2 of A, one can define a tensor product representation π1 ⊗π2

by the formula

π1 ⊗ π2 : x → (π1 ⊗ π2)(#(x)). (7)

Since # is a homomorphism, this will indeed be a representation and since # is coassociative,
this tensor product will be associative, that is, different orders of tensoring multiple
representations lead to the same overall representation of A.

For Uq(g), the coproduct is given on the generators by the formulas

#(Hi) = 1 ⊗ Hi + Hi ⊗ 1

#
(
L±

i

)
= L±

i ⊗ q
Hi/4
i + q

−Hi/4
i ⊗ L±

i .
(8)

If q is not a root of unity, the representation theory of Uq(g) is very similar to the representation
theory of g. The irreducible representations of Uq(g) are labeled by the dominant integral
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weights of g. The module of the representation labeled by the weight λ has a basis of
eigenstates of the Hi, so that each such state is itself labeled by a weight of g. The action of
the generators L±

i on a vector of weight µ sends this state either to zero or to a state with
weight µ ± αi . The weight of a state is in general not enough to fix the state up to a constant,
as there are cases where the common eigenspaces of the Hi are higher dimensional. When we
describe representations in detail in subsequent sections, we make some arbitrary choices to
fix a basis for these higher dimensional eigenspaces (see section 5.2 for this). However, when
no such choices are required, the matrix elements of the generators L±

i can be written in a
form which directly mirrors the undeformed case. For example, the action of L± for the states
in the irreducible representations of Uq(sl(2)) is given by

L±|j,m〉 =
√

$j ∓ m%q$j ± m + 1%q |j,m ± 1〉. (9)

Here j ∈ 1
2 Z and m ∈ {−j,−j + 1, . . . j − 1, j} label the allowed z-components of the

‘q-spin’ or, equivalently, the eigenvalues of H/2 in the representation. This formula easily
translates into the general multiplicity-free case. When q is a root of unity, one finds that some
of the q-numbers in the formula above become equal to zero and this has some interesting
consequences. It turns out that the representations given above remain well defined, but many
are no longer irreducible and in particular there are indecomposable representations. In the
following, we focus on the irreducible representations.

Let us now introduce the q-Clebsch–Gordan coefficients for the tensor product of
irreducible representations. As usual, these Clebsch–Gordan coefficients relate the product
basis of the tensor product to a basis which is compatible with the decomposition of the tensor
product as a direct sum of irreducible representations. To write explicit CG coefficients, we
need to introduce the notation for the canonical basis states of an irreducible Uq(g)-module. As
noted before, each irreducible module is labeled by a weight of g and has a basis of eigenstates
of the Hi, which are themselves each labeled by a weight of g. If all weight spaces which
occur in the module have dimension equal to 1, we can denote the basis states for the module
simply as |j,m〉, where j is the weight labeling the module and m is the weight labeling the
weight space in the module. One may now define the Clebsch–Gordan coefficients by

|j,m〉 =
∑

m1,m2

[
j1 j2 j

m1 m2 m

]

q

|j1,m1〉|j2,m2〉. (10)

In other words, the CG coefficients
[

j1 j2 j

m1 m2 m

]

q
are the coefficients of the decomposition

of the state |j,m〉 in the irreducible j -component in the tensor product representation j1 ⊗ j2

into the standard product basis of this tensor product representation.
Of course, the basis states that appear above are only fixed up to a phase by the labels j

and m, so their phases may still be chosen to give ‘nicer’ CG coefficients. For tensor products
that are not multiplicity free, more labels are needed to distinguish the various irreducible
representations of the same weight that may occur in the tensor product. This is dealt with in
some detail in section 5.2, but it does not change the structure of what follows here (we can
imagine the extra labels to be implicit in the m-labels).

The q-Clebsch–Gordan coefficients are orthogonal for q ∈ R and we can use analytic
continuation to obtain an orthogonality relation for arbitrary q, which we checked to hold for
the q-CG coefficients we calculated:

∑

m1,m2

[
j1 j2 j

m1 m2 m

]

q

[
j1 j2 j ′

m1 m2 m′

]

q

= δj,j ′δm,m′ . (11)

We use the ‘inner product’ which is defined, like the usual inner product on Rn, as the sum of
the products of the coefficients of the two vectors, without complex conjugation. This inner
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Table 1. Theories with fusion multiplicities

Ar,k ≡ su(r + 1)k k ! 3 ∧ r ! 2 E6,k k ! 3
Br!2,k ≡ so(2r + 1)k k ! 3 E7,k k ! 3
Cr!3,k ≡ sp(2r)k k ! 2 E8,k k ! 4
Dr!4,k ≡ so(2r)k k ! 3 F4,k k ! 3

G2,k k ! 3

product is positive definite for all real q ! 0, but for other values of q this is not necessarily
true. With this inner product the formula above guarantees that states in different irreducible
subrepresentations of a tensor product are orthogonal for all q.

We calculate the F-symbols, or q − 6j coefficients, by making use of the q-Clebsch–
Gordan coefficients. The graphical representation of these symbols in our current notation
is

j1 j2 j3

j

j12
= j23

(F j1,j2,j3
j )j12,j23

j1 j2 j3

j

j23

Thus, at real positive q, each F-symbol can be obtained as the inner product between two states
obtained from the two different ways of fusing the three particles (or representations) j 1, j 2

and j 3. These states themselves can be written in terms of the q-Clebsch–Gordan coefficients.
Hence, we obtain the formula
(
F

j1,j2,j3
j

)
j12,j23

=
∑

m1,m2,m3,m12,m23

[
j1 j2 j12

m1 m2 m12

]

q

[
j12 j3 j

m12 m3 j

]

q

×
[

j2 j3 j23

m2 m3 m23

]

q

[
j1 j23 j

m1 m23 j

]

q

. (12)

The inner product (without complex conjugation) used to derive this formula is really only
well defined (positive definite) for q > 0 real, but by analytic continuation, the formula
nevertheless remains true for arbitrary q.

It would be natural to continue with a description of the R-symbols in terms of quantum
group data. However, these are most easily expressed in terms of particular q-Clebsch–Gordan
coefficients. Therefore, we will wait with the R-symbols until section 6, which immediately
follows the section in which we give a detailed explanation of the calculation of the q-Clebsch–
Gordan coefficients.

4. On fusion multiplicities

While working on this manuscript, we often wondered about properties of the fusion rules of
particular CFTs. Which theories have fusion multiplicities, and what is the structure of those
that do not? Although this is an issue which is slightly off topic, we do take this paper as
an opportunity to gather this undoubtedly known information here. We should note that in
gathering this information, we benefited much from the program Kac by Schellekens [9].

In table 1, we list the theories, based on affine Lie algebra’s, or WZW CFTs, which do
have fusion multiplicities.

In table 2, we give the list of WZW theories, without multiplicities, for which we can
identify the fusion rules as a ‘known’ fusion ring. Two of the entries are a tautology, namely
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Table 2. Identification of the fusion rules without fusion multiplicities, in terms of perhaps
‘better’-known fusion rings. The k = 2 entries for Ar!2 and Br are a tautology.

k = 1 k = 2 k = 3

Ar!2 Zr+1 su(r + 1)2

Br su(2)2 so(2r + 1)2

Cr su(2)r

Dr

{
Z2 × Z2 (r even)
Z4 (r odd) Z2 orbifold R = 2r

E6 Z3 so(3)5 × Z3

E7 Z2 so(3)3 × su(2)2

E8 Z1 su(2)2 so(3)9

F4 so(3)3 so(3)9

G2 so(3)3 so(3)7

Ar!2,2 and Br,2. For completeness, we note that of course the theories A1,k ≡ su(2)k do
not have fusion multiplicities for arbitrary k. Again, we used Kac to gather this information.
For example, the fusion rules of Dr,k=2 are the same as the fusion rules of the Z2 orbifold
of the chiral boson at radius R = 2r , which we checked explicitly up to r = 20. We note
that with so(3)k , we denote the integer spin sector of the su(2)k theory. In particular, so(3)3

corresponds to the Fibonacci theory (sometimes denoted as Fib), which consists of two anyon
types 1 and τ , with the non-trivial fusion rule τ × τ = 1 + τ .

5. Calculating the q-Clebsch–Gordan coefficients

In this section, we show how to calculate the q-Clebsch–Gordan coefficients in full detail.
While the calculational techniques presented in the rest of this paper are valid for all of the
quantum groups Uq(g), we use the case g = su(3) in our explicit examples, because it is
probably the simplest case to display all of the relevant features. Hence, we will often be
dealing with the quantum group Uq(su(3)). For details on the representation theory of the
corresponding finite-dimensional Lie algebra su(3), we refer to appendix A and, for instance,
to the books [11–13].

We start with some straightforward examples which explain the structure of the
calculation, without having to worry about additional complications. The complications
consist of two types of multiplicities, namely weight-space multiplicities and fusion
multiplicities, which will be dealt with after we have completed explaining the structure
of the calculations.

We first introduce some notation needed in this discussion. The representations of the
rank 2 algebra su(3) are labeled by the Dynkin labels of the highest weight, ('1,'2).
In addition, we also denote the representations by their dimensions in boldface (and an
overline to denote the conjugate representations). The weights of the representations
are labeled by (λ1, λ2). For example, the eight-dimensional adjoint representation 8
has the highest weight ('1,'2) = (1, 1). The other weights in this representation are
(−1, 2), (2,−1), (0, 0)+, (0, 0)−, (−2, 1), (1,−2) and (−1,−1), which we include here, in
order to show the notation of the two-dimensional weight space (0, 0). We note that for
q = e2π i/5 (or k = 2), 8 is the only representation with a weight-space multiplicity. In addition,
the following representations 1 = (0, 0), 3 = (1, 0), 3̄ = (0, 1), 6 = (2, 0), 6̄ = (0, 2) and
8 = (1, 1) are present at k = 2.
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As stated in section 3, the q-Clebsch–Gordan coefficients express the tensor product
representations in terms of the direct sum of irreducible representations

|j,m〉 =
∑

m1,m2

[
j1 j2 j

m1 m2 m

]

q

|j1,m1〉|j2,m2〉. (13)

5.1. The structure of calculating q-Clebsch–Gordan coefficients

The calculation of q-Clebsch–Gordan coefficients closely follows the calculation of Clebsch–
Gordan coefficients in the ‘classical’ case, see for instance [10]; however, there are some
important differences.

The most obvious difference is that the explicit representation matrices for the elements of
Uq(g) contain q-numbers instead of integers, as illustrated in formula (9), and these q-numbers
propagate into the Clebsch–Gordan and 6j -coefficients for Uq(g). We follow a policy of
expressing all explicitly given coefficients in terms of q-numbers, as much as possible, because
this allows one to immediately obtain the corresponding classical coefficients by replacing
q-numbers by the corresponding integers4.

When q is a root of unity, it turns out that a tensor product of two irreducible representations
often contains indecomposable representations. To deal with this problem, one has to introduce
a ‘truncated’ tensor product, in which the unwanted, indecomposable representations no
longer appear. This ‘truncated’ tensor product precisely corresponds to the fusion product (as
introduced in section 2) for physical systems described by the Chern–Simons theory based on
g at level k, where k is related to q through

q = e
2π i
k+g .

Here g is the dual Coxeter number of g. This makes the case where q is a primitive root of unity
the most interesting from the perspective of the physics of anyons. For the actual calculation
of Clebsch–Gordan coefficients which involve only irreducible representations, the truncation
of the tensor product makes little difference—the main change in our treatment compared to
the classical case is that we will not consider the other components of the tensor product when
q is a root of unity.

The third and perhaps the most important difference between the deformed and classical
calculation of CG coefficients occurs due to the deformation of the coproduct. As can be
seen from equation (8), the action of the raising and lowering operators of Uq(g) in a tensor
product representation involves factors of different powers of q, depending on wether the
raising/lowering operator acts on the left- or right-hand factor of the tensor product. These
factors of powers of q also end up in the CG coefficients. As a result of the deformation of #,
the various components of a tensor product representation are no longer simply symmetric or
antisymmetric under exchange of the tensor factors, which gives an indication that there is no
longer a representation of the permutation group SN on an N-fold tensor product, but instead
a representation of the braid group BN. The R-symbols which describe the action of the braid
group are calculated in section 6.

Let us now explain the calculational algorithm from scratch (that is, without presuming
a knowledge of the classical algorithm), by taking a simple concrete example, based on the

4 It should be noted that the opposite process, obtaining the q-deformed coefficients from the classical ones by
replacing integers by q-integers, is not easily accomplished, because the various different ways in which integers
may be represented would lead to different q-deformed results. For example, if the integer 9 appears in a classical
coefficient, it is not clear whether this should be replaced by $9%q or $3%2

q or 1 + $8%q , to name just a few of the
possibilities.

9
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su(3) tensor product 3 ⊗ 3 = 3̄ ⊕ 6, which for k ! 2 corresponds to the fusion product as
well: 3 × 3 = 3̄ + 6. We start with the Clebsch–Gordan coefficients for the representation 6
in the tensor product decomposition of 3 ⊗ 3.

The highest weight of the representation 6 is (2, 0), which is the sum of the highest weights
of the two representations 3, namely (1, 0). Thus, the highest weight of the representation 6
uniquely decomposes, and we find the first (trivial) Clebsch–Gordan coefficient:

|(2, 0)(2, 0)〉 = |(1, 0)(1, 0)〉 ⊗ |(1, 0)(1, 0)〉, (14)

namely
[
(1, 0) (1, 0) (2, 0)

(1, 0) (1, 0) (2, 0)

]

q

= 1. (15)

This coefficient has norm 1, and we choose to set the phase to 0 by convention. By acting
with the lowering operator L−

1 on both sides of equation (14), we find other Clebsch–Gordan
coefficients. On the right-hand side, we actually need to use #(L−

1 ), which is given by
#(L−

1 ) = L−
1 ⊗ qH1/4 + q−H1/4 ⊗ L−

1 . This leads to the following:

|(2, 0)(0, 1)〉= L−
1√
$2%

|(2, 0)(2, 0)〉 = #(L−
1 )√

$2%
|(1, 0)(1, 0)〉 ⊗ |(1, 0)(1, 0)〉

= q1/4

√
$2%

|(1, 0)(−1, 1)〉 ⊗ |(1, 0)(1, 0)〉 +
q−1/4

√
$2%

|(1, 0)(1, 0)〉 ⊗ |(1, 0)(−1, 1)〉.

(16)

We put in the factor 1/
√

$2% ‘by hand’ to make sure that the states are normalized throughout
the calculation. Of course, one could also ignore these factors at first and normalize the states
later on. To be able to discuss the normalization, we recall that we defined the inner product in
the usual way for q ∈ R, that is, by simple multiplication of the coefficients, and for arbitrary
q by analytic continuation of this definition. We note that this inner product does not involve
complex conjugation of the coefficients. Recalling in addition that we used the following
convention for the q-numbers:

$n% = q
n
2 − q− n

2

q
1
2 − q− 1

2

, (17)

it easily follows that the right-hand side of equation (16) is indeed normalized.
So, we found the additional q-Clebsch–Gordan coefficients

[
(1, 0) (1, 0) (2, 0)

(1, 0) (−1, 1) (0, 1)

]

q

= q−1/4

√
$2%

(18)

[
(1, 0) (1, 0) (2, 0)

(−1, 1) (1, 0) (0, 1)

]

q

= q1/4

√
$2%

. (19)

We can now continue this procedure by acting with additional lowering operators. In fact,
in this case, we can either act with L−

1 to obtain the state |(2, 0)(−2, 2)〉, or with L−
2 to find the

coefficients for |(2, 0)(1,−1)〉. To see with which lowering operators one can act, we refer to
appendix A containing the structure of the representations we consider in this paper. All the
q-Clebsch–Gordan coefficients for the 6 in 3 × 3 are collected in appendix A.3.1.

We now explain how to obtain the q-Clebsch–Gordan coefficients for the representation
3̄ in the tensor product decomposition of 3 ⊗ 3. To start with, we need to express the
(highest weight) state |(0, 1)(0, 1)〉 in terms of the states |(1, 0)(1, 0)〉 ⊗ |(1, 0)(−1, 1)〉 and

10
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|(1, 0)(−1, 1)〉⊗|(1, 0)(1, 0)〉. We do this by using that |(0, 1)(0, 1)〉 is a highest weight state,
i.e L+

1 |(0, 1)(0, 1)〉 = L+
2 |(0, 1)(0, 1)〉 = 0. In this case, we only need to consider

L+
1 |(0, 1)(0, 1)〉 = #

(
L+

1

)
(a|(1, 0)(1, 0)〉 ⊗ |(1, 0)(−1, 1)〉

+ b|(1, 0)(−1, 1)〉 ⊗ |(1, 0)(1, 0)〉)
= (aq−1/4 + bq1/4)|(1, 0)(1, 0)〉 ⊗ |(1, 0)(1, 0)〉 = 0, (20)

from which it follows that

|(0, 1)(0, 1)〉= q1/4

√
$2%

|(1, 0)(1, 0)〉 ⊗ |(1, 0)(−1, 1)〉− q−1/4

√
$2%

|(1, 0)(−1, 1)〉 ⊗ |(1, 0)(1, 0)〉,

(21)

where the overall sign (or better, phase) is our convention. In general, we choose the overall
phase to be such that for q = 1, the Clebsch–Gordan coefficient with the highest possible
weight on the left-hand side of the tensor product is real and positive (we spell out all our
conventions in detail below). We should note that this state |(0, 1)(0, 1)〉 is orthogonal to the
state |(2, 0)(0, 1)〉 (equation (16)), as it should. Thus, we find the following q-Clebsch–Gordan
coefficients:

[
(1, 0) (1, 0) (0, 1)

(1, 0) (−1, 1) (0, 1)

]

q

= q1/4

√
$2%

(22)

[
(1, 0) (1, 0) (0, 1)

(−1, 1) (1, 0) (0, 1)

]

q

= −q−1/4

√
$2%

. (23)

We can find the other coefficients related to the states |(0, 1)(1,−1)〉 and |(0, 1)(−1, 0)〉 by
first acting with the lowering operator L−

2 and subsequently with L−
1 on the state |(0, 1)(0, 1)〉.

Without spelling out all the details, this gives the following q-Clebsch–Gordan coefficients:
[
(1, 0) (1, 0) (0, 1)

(1, 0) (0,−1) (1,−1)

]

q

= q1/4

√
$2%

[
(1, 0) (1, 0) (0, 1)

(0,−1) (1, 0) (1,−1)

]

q

= −q−1/4

√
$2%

(24)

[
(1, 0) (1, 0) (0, 1)

(−1, 1) (0,−1) (−1, 0)

]

q

= q1/4

√
$2%

[
(1, 0) (1, 0) (0, 1)

(0,−1) (−1, 1) (−1, 0)

]

q

= −q−1/4

√
$2%

.

(25)

With the information we have given so far, it is possible to obtain all the q-Clebsch–
Gordan coefficients which do not involve the representation 8. In the following subsection,
we explain the subtleties which arise when dealing with this representation.

5.2. Dealing with multiplicities

In this section, we explain how to deal with the two kinds of multiplicities, namely weight
space multiplicity and fusion multiplicity.

The eight-dimensional adjoint representation of su(3) has the property that the ‘weight’
(0, 0) corresponds to a two-dimensional weight space. In other words, the two states
L−

2 L−
1 |(1, 1)(1, 1)〉 and L−

1 L−
2 |(1, 1)(1, 1)〉 are linearly independent. Thus, we choose a

basis for this weight space. We pick the following basis, which is orthonormal:

|(1, 1)(0, 0)±〉 =
(
L−

1 L−
2 ± L−

2 L−
1

)
√

2($2% ± 1)
|(1, 1)(1, 1)〉. (26)

11
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We now have the following relations for the action of the lowering operators on the states
‘above’ the weight (0, 0) space

L−
1 |(1, 1)(2,−1)〉 =

√
$2% + 1

2
|(1, 1)(0, 0)+〉 +

√
$2% − 1

2
|(1, 1)(0, 0)−〉 (27)

L−
2 |(1, 1)(−1, 2)〉 =

√
$2% + 1

2
|(1, 1)(0, 0)+〉 −

√
$2% − 1

2
|(1, 1)(0, 0)−〉, (28)

while the action of raising and lowering operators on |(1, 1)(0, 0)±〉 is given by

L+
1 |(1, 1)(0, 0)±〉 =

√
$2% ± 1

2
|(1, 1)(2,−1)〉

L+
2 |(1, 1)(0, 0)±〉 = ±

√
$2% ± 1

2
|(1, 1)(−1, 2)〉

(29)

L−
1 |(1, 1)(0, 0)±〉 =

√
$2% ± 1

2
|(1, 1)(−2, 1)〉

L−
2 |(1, 1)(0, 0)±〉 = ±

√
$2% ± 1

2
|(1, 1)(1,−2)〉.

(30)

The fact that one has to choose a basis for the two-dimensional weight space |(1, 1)(0, 0)±〉
is not the only subtlety which arises in conjunction with the representation 8. Consider the
su(3) tensor product 8 ⊗ 8 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27. One finds that in the decomposition,
the eight-dimensional representation appears twice. At level k = 2, or in other words, for
q = e2π i/5, only one of these two eight-dimensional representations is present in the fusion
product, which reads 8×8 = 1 + 8. One is thus led to the question, how can one decide which
eight-dimensional representation to pick?

In solving the highest weight conditions L+
1 |(1, 1)(1, 1)〉 = L+

2 |(1, 1)(1, 1)〉 = 0, one
finds a two-dimensional space of solutions, as one should. A convenient way of writing the
two solutions is as follows:

|(1, 1)(1, 1)〉1 = q3/4

√
$4% + 1

|(1, 1)(1, 1)〉 ⊗ |(1, 1)(0, 0)+〉

+
q−3/4

√
$4% + 1

|(1, 1)(0, 0)+〉 ⊗ |(1, 1)(1, 1)〉

−

√
$2% + 1

2($4% + 1)
(|(1, 1)(−1, 2)〉 ⊗ |(1, 1)(2,−1)〉

+ |(1, 1)(2,−1)〉 ⊗ |(1, 1)(−1, 2)〉) (31)

|(1, 1)(1, 1)〉2 = q3/4

√
$4% − 1

|(1, 1)(1, 1)〉 ⊗ |(1, 1)(0, 0)−〉

− q−3/4

√
$4% − 1

|(1, 1)(0, 0)−〉 ⊗ |(1, 1)(1, 1)〉

+

√
$2% − 1

2($4% − 1)
(|(1, 1)(2,−1)〉 ⊗ |(1, 1)(−1, 2)〉

− |(1, 1)(−1, 2)〉 ⊗ |(1, 1)(2, 1)〉). (32)

12
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We observe that for generic q, the states are orthonormal. However, for q = e2π i/5, we have
$4% = 1, which means that the state |(1, 1)(1, 1)〉2 is not normalizable5. Thus, we conclude
that at level k = 2, the state |(1, 1)(1, 1)〉1 corresponds to the eight-dimensional representation
which is present in the fusion product 8×8 = 1 + 8, while the state |(1, 1)(1, 1)〉2 corresponds
to the representation which is present in the tensor product, but not in the fusion product.

At level k = 3, i.e. q = e2π i/6, both eight-dimensional representations are present in the
fusion product: su(3)3 is one of the simplest theories which exhibits a fusion multiplicity.
Therefore, we also give the q-Clebsch–Gordan coefficients for the su(3)3/Z3 theory, which
contains four representations, 1, 8, 10 and 10, see appendix B for more details. In particular,
we have the following fusion product:

8 × 8 = 1 + 8 + 8′ + 10 + 10, (33)

where the first 8 in the fusion product corresponds to the one present at level k = 2, while the
second 8′ corresponds to the one appearing for the first time at k = 3. So, in the case at hand,
there is a natural choice of a basis for the two-dimensional space corresponding to this fusion
multiplicity, namely in ‘order of appearance’ when the level k increases. In fact, for su(3), it
is always possible to make such a choice, because the so-called threshold levels for the fusion
coefficients of su(3) differ by 1. We note, however, that this property is special for su(3). For
more on this, we refer to section 16.4 of [11].

With this information, we dealt with all the subtleties arising from the adjoint
representation of su(3).

5.3. Gauge convention for the q-Clebsch–Gordan coefficients

In the calculation of the q-Clebsch–Gordan coefficients, one must choose conventions for the
overall phases of the coefficients. In this section, we explicitly describe our choice. To fix the
gauge for the symbols

[
j1 j2 j

m1 m2 m

]

q
for a particular choice of j 1, j 2 and j , it suffices to fix

the phase of one of the symbols. It is convenient to fix the phase of the symbol with m = j ,
and the highest possible weight m1 = mmax. We have chosen this phase in such a way that in
the limit q → 1, this symbol

[
j1 j2 j

mmax j − mmax j

]

q
is real and positive.

This gauge choice for the q-Clebsch–Gordan coefficients also completely specifies the
gauge degrees of freedom for the q − 6j symbols, because they are fixed by the q-Clebsch–
Gordan coefficients. Our gauge choice is such that the q − 6j symbols with a trivial particle
on any of the incoming lines is equal to 1, when no vertices with a fusion multiplicity are
present. When q is the primitive root of unity corresponding to the associated Chern–Simons
theory, the q − 6j symbols with a trivial particle on the outgoing line is also equal to 1 (again
assuming there are no vertex multiplicities) .

5.4. Symmetries of the q-Clebsch–Gordan coefficients

In this section, we give the symmetries of the q-Clebsch–Gordan coefficients. Due to these
symmetries, we do not have to calculate all the q-Clebsch–Gordan coefficients. We first state
these symmetry relations and explain them afterward:

[
j2 j1 j

m2 m1 m

]

q

= (−1)s1

[
j1 j2 j

m1 m2 m

]

1
q

(34)

5 One might be tempted to multiply the given expression for this state by
√

$4% − 1 to obtain a state with a good
limit as q → e2π i/5. This indeed yields a state with finite coefficients, but it will have norm zero with respect to our
complex conjugation-free inner product.

13
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[
j1 j2 j

−m1 −m2 −m

]

q

= (−1)s2+#(0,0)−

[
j1 j2 j

m1 m2 m

]

1
q

(35)

[
j1 j2 j

m1 m2 m

]

q

= (−1)s3+#(0,0)−

[
j1 j2 j

m1 m2 m

]

q

, (36)

where, as before, we used the j ’s and m’s to denote the highest weights and the weights
of the states in the representations, respectively. By the conjugate weights (denoted by the
overline), we mean the following. In the case of su(3) the weight conjugate to m = (λ1, λ2)

is m = (λ1, λ2) = (λ2, λ1). However, for so(5) and G2, weights are self-conjugate
m = (λ1, λ2) = (λ1, λ2). In the equations above s1, s2 and s3 are either 0 or 1, depending
on the case at hand (see the tables in appendix A.3.10 and appendix B.2). In addition, with
#(0, 0)−, we mean the number of m1, m2, m which are equal to (0, 0)− in the representation 8
of su(3), see below for an explanation.

The first relation (equation (34)) is related to the symmetry of the tensor products. When
j1 = j2, the value of s1 is gauge invariant and cannot be chosen. However, for j1 &= j2, the
value of s1 is a gauge choice. As noted in section 5.3, we always choose the overall phase
of the states in such a way that the q-Clebsch–Gordan coefficient with m = j and with the
highest possible value of m1 is positive in the limit q → 1. Note that the highest possible
value of m1 is not always equal to j 1. This choice completely fixes the gauge and hence
also s1. In the tables in appendix A.3.10 and appendix B.2, we give the values of s1 in our
gauge.

The relation (equation (35)) relates the q-Clebsch–Gordan coefficients ‘within’ a certain
representation. This relation stems from the fact that one can equally well obtain the whole
representation by acting with raising operators on the lowest weights, instead of acting
with lowering operators on the highest weights, as we do here. The value of s2 depends
on the representation at hand; this value is specified in the tables in appendix A.3.10 and
appendix B.2. Finally, the last symmetry relation (36) corresponds to the symmetry under
complete conjugation.

There is one important issue, which occurs for both equations (35) and (36), which is
related to the conjugation of the weight (0, 0)− in the eight-dimensional representation of
su(3). Loosely speaking, we have the relation (0, 0)− = −(0, 0)−. This means that for every
time the (conjugated) weight (0, 0)− appears in equations (35) and (36), we get an additional
sign.

Finally, we also note that the only case in this paper for which s3 = 1 is the 8′ representation
which appears in the fusion product 8 × 8 = 1 + 8 + 8′ + 10 + 10 of su(3)3/Z3.

6. Obtaining the R-symbols

After having obtained the q-Clebsch–Gordan coefficients, it is rather straightforward to obtain
the R-symbols as well. We make use of the explicit expression for the R-matrix. This
expression is rather cumbersome for arbitrary quantum groups, but we only need a very
limited amount of information contained in this expression to extract the R-symbols. In
particular, the expression contains a product over all positive roots. The ordering of these
positive roots is important, but we will not specify this ordering, because it is immaterial for
our purposes. In addition to this product, there is a pre-factor, which we need to obtain the
R-matrix elements.

14
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With these caveats in place, we give the structure of the R matrix:

R = q(Fqf)i,j
hi⊗hj

2

∏

α>0

E
(q

1
2 −q− 1

2 )(eαq
hα
4 ⊗q− hα

4 fα)

q−1 , (37)

where Ex
q =

∑∞
n=0

q
n
4 (n−1)

$n%! xn.

The overall factor, q(Fqf)i,j
hi⊗hj

2 , contains the quadratic form matrix Fqf, whose components
in terms of the inverse Cartan matrix elements and the integers tj read (Fqf)ij = (A−1)ij /tj ,
where there is no summation over j . Recall that ti = 2

(αi ,αi )
, with αi being the simple roots of

the algebra. For simply laced Lie algebras, such as su(r + 1), all the ti = 1. The short roots
of Br, Cr and F4 have t = 2, while for the short root of G2, one has t = 3.

The product is over all positive roots of the algebra and the factors consist of exponentials
of raising operators eα acting on the left tensor factor, and lowering operators fα acting on
the right tensor factors. It is this structure which allows us to obtain the R-symbols from the
pre-factor alone, as we explain below, and give an explicit example for clarification.

In the calculation of the R-symbols one first acts with the R-matrix on a particular tensor
decomposition, followed by swapping the tensor factors. This combined operation is denoted
by σR. This gives rise to the tensor decomposition in which the representations are swapped,
up to an overall phase factor. The R-symbol is precisely this phase factor. We now explain the
calculation of the R-symbols R

j1,j2
j in detail.

First of all, the R-symbols R
j1,j2
j depend only on the representations j 1, j 2 and j , and not

on the particular weights within these representations, as is the case for the the F-symbols.
We can thus pick a particular weight in the representation j to obtain R

j1,j2
j , which we take

to be m = j . We restrict ourselves further by only considering a suitably chosen term in the
decomposition.

Namely, we pick that component of the tensor decomposition which has a lowest possible
weight in the left factor of the tensor product. By this we mean that one cannot subtract a root
from this weight and obtain another term in the tensor decomposition.

Because all the raising operators in the R-matrix act on the left factor of the tensor product,
the only contribution to the component in the tensor product with this lowest possible weight
on the right (after performing the swap σ !) comes from the component with the lowest
possible weight on the left. In addition, it is only the identity term in all exponents which
contributes, because all the other terms contain raising operators on the left tensor factor.
Thus, the knowledge of the two corresponding q-Clebsch–Gordan coefficients and the factor

q(Fqf)i,j
hi⊗hj

2 suffices to obtain the R-symbols.
To show how this works, we give an explicit example. Let us consider the 3 in 3 × 3, and

take the highest weight of 3:

|(0, 1)(0, 1)〉= q1/4

√
$2%

|(1, 0)(1, 0)〉 ⊗ |(1, 0)(−1, 1)〉− q−1/4

√
$2%

|(1, 0)(−1, 1)〉 ⊗ |(1, 0)(1, 0)〉.

(38)

We let σR act on the term − q−1/4
√

$2% |(1, 0)(−1, 1)〉 ⊗ |(1, 0)(1, 0)〉 and find

σR

(
−q−1/4

√
$2%

|(1, 0)(−1, 1)〉 ⊗ |(1, 0)(1, 0)〉
)

= −q−1/6q−1/4

√
$2%

|(1, 0)(1, 0)〉 ⊗ |(1, 0)(−1, 1)〉

= (−q−2/3)
q1/4

√
$2%

|(1, 0)(1, 0)〉 ⊗ |(1, 0)(−1, 1)〉. (39)
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Comparing this result to the first term in equation (38), we find that R3,3
3

= −q−2/3. In general
(including the non-simply laced case), we obtain the following expression for the R-matrix
elements

R
j1,j2
j = q

1
2 mmin·Fqf ·(j−mmin)

[
j1 j2 j

mmin j − mmin j

]

q[
j2 j1 j

j − mmin mmin j

]

q

, (40)

where mmin is the lowest possible weight mentioned earlier, i.e. mmin is chosen so that[
j1 j2 j

mmin − α j − mmin + α j

]

q = 0 for all simple roots α, and nevertheless the CG-coefficients
in the formula above are nonzero. Note that we assume that the weights are given in terms of
their Dynkin labels (hence the appearance of the quadratic form matrix Fqf). Finally, let us
note two symmetries of the R-symbols which exist in our gauge:

Ra,b
c = Rb,a

c Ra,b
c = Rā,b̄

c̄ . (41)

7. TQFT data

In this section, we briefly describe some of the topological data associated with a topological
quantum field theory. We will not go into a lot of detail to explain the theory behind this data.
For this, we refer the reader to, for instance, [1] or [14]. We frequently use the data of su(3)2

as an example and refer to the appendices for the corresponding data of the other models.
We note that the formulas for the various quantities hold in the case of unitary anyon models,
which corresponds here to the cases where q is a primitive root of unity.

7.1. Quantum dimensions

The quantum dimension da associated with a particle of type a is defined in the following way:

da = 1
∣∣(Fa,a,a

a

)
1,1

∣∣ . (42)

Though this is not obvious from this definition, the Hilbert space of n particles of type a grows
as dn

a . The quantum dimensions of the six representations of su(3)2 are given by

d1 = 1 d3 = d3̄ = $3% → φ d6 = d6̄ = 1 + $5% → 1 d8 = $3% + $5% → φ,

(43)

where the numerical values are obtained for q = e
2π i
5 and φ = 1+

√
5

2 . In particular, the total
quantum dimension D2 =

∑
a d2

a = 3(2 + φ).

7.2. Frobenius–Schur indicator

The phase or, in our gauge choice, the sign of the F-symbol
(
Fa,a,a

a

)
1,1, is called the

Frobenius–Schur indicator fba = da

(
Fa,a,a

a

)
1,1. In the case of a self-dual particle, a = a,

this is a gauge invariant quantity, which takes the values ±1. In the case of non-self
dual particles, the Frobenius–Schur indicator is often defined to be zero, but we will not
do this here and we simply keep the definition above. Concretely, this means we have
fb1 = fb3 = fb3 = fb6 = fb6 = fb8 = 1.

In section 7.4, we give an expression for the Frobenius–Schur indicator of the self-dual
particles (of modular theories) in terms of the so-called twist factors.
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7.3. Theta symbols

In this section, we give the value of the ‘theta’ symbols. These depend on our choice of gauge.
By the ‘theta’ symbols, we mean the following diagrams:

a

b

e

We denote the value of the theta symbols by ϑ(a, b, e). These symbols can easily be evaluated,
by applying the appropriate F-symbol, and by noting that tadpoles give zero contributions:

ϑ(a, b, e) =
(
Fa,b,b̄

a

)
e,1dadb. (44)

Our choice of gauge implies that
(
Fa,b,b̄

a

)
e,1 = ±

√
de

dadb
, so we find that

ϑ(a, b, e) = ±
√

dadbde, (45)

where the sign is just the sign of the F-symbol
(
Fa,b,b̄

a

)
e,1. The theta symbols have the

following symmetries:

ϑ(a, b, e) = ϑ(ā, b̄, ē) ϑ(a, b, e) = ϑ(b, a, e) ϑ(a, b, e) = ϑ(ē, b, ā). (46)

Thus, by specifying the following values, all the theta symbols for su(3)2 are determined:

ϑ(3, 3̄, 3) = −d
3
2

3 ϑ(3̄, 3, 6) = d3
√

d6

ϑ(3, 3, 8) = d3
√

d8 ϑ(3, 6̄, 8) = −
√

d3d6d8

(47)

ϑ(6, 6̄, 6) = d
3
2

6 ϑ(8, 8, 8) = d
3
2

8 . (48)

Note that if any of the labels is the vacuum representation, the theta symbol is just the quantum
dimension of the remaining representation.

7.4. Twist factors

The twist factors or topological spin of a particle a is denoted by θa . In general, the twist
factors are given by

θa = θa = fba

(
Ra,a

1

)∗
. (49)

In those cases where the TQFTs are associated with conformal field theories, θa is also
given by θa = e2π iha , where ha is the scaling dimension of the corresponding primary field in
the CFT. Again, taking su(3)k as an example,

θ1 = 1 θ3 = θ3̄ = e2π ih3 = e
8π i

3(k+3) = q4/3 (50)

θ6 = θ6̄ = e2π ih6 = e
20π i

3(k+3) = q10/3 θ8 = e2π ih8 = e
6π i

(k+3) = q3. (51)

In addition, one can express the Frobenius–Schur indicator for self-dual particles in terms of
the fusion coefficients and twist factors as follows:

fbc = 1
D2

∑

a,b

na,b
c

(
θa

θb

)
dadb, (52)

where the summation variables a and b run over all particle types, and nc
a,b denote the fusion

coefficient. In particular, we find that both fb1 = fb8 = 1 for su(3)2.
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7.5. Central charge

The central charge of the theory can be determined (modulo 8) by using the result

e
2π ic

8 = 1
D

∑

a

d2
a θa, (53)

which leads to the expected result c = 16
5 for su(3)2.

7.6. The tetrahedral symbol

Finally, we mention a relation between the F-symbols and the so-called tetrahedral symbols.
The tetrahedral symbols are related to the F-symbols one-to-one, and are proportional the
the F-symbols. The advantage of the tetrahedral symbols is that they satisfy more symmetry
properties. In actual calculations, however, one always needs the F-symbols, so will tabulate
those instead in the appendices.

The tetrahedral symbol is represented as

a
b

c

de
f

To calculate the value of the tetrahedral symbols, one applies the F-symbol
(
Fa,b,c

d

)
e,f ′ . The

only non-vanishing term in the sum (2) is the one with f ′ = f , and the resulting graph is

f

fb

c d
a

This graph is easily found to give
(
F

f,f̄ ,f
f

)
1,1ϑ(a, d, f )ϑ(b, c, f ). Using

∣∣(Ff,f̄ ,f
f

)
1,1

∣∣ = 1
df

and equation (45) for the theta symbols, we find that

G(a, b, c, d, e, f ) = sgn(ϑ(a, d, f ))sgn(ϑ(b, c, f ))fbf

(
Fa,b,c

d

)
e,f

√
dadbdcdd, (54)

where sgn(ϑ(a, b, c)) = ϑ(a,b,c)
|ϑ(a,b,c)| = sgn

((
Fa,b,b̄

a

)
e,1

)
.

As we stated before, the tetrahedral symbols have more symmetry than the F-symbols.
This symmetry arises from the symmetry of the tetrahedron. Thus, the following relations
generate the full symmetry. Note that we have to take the conjugate representations in those
cases where the arrows are reversed before and after ‘rotation’ of the tetrahedron:

G(a, b, c, d, e, f ) = G(d, f̄ , b, e, a, c̄) = G(e, c, f̄ , a, d, b̄)

G(a, b, c, d, e, f ) = G(c, d̄, a, b̄, f̄ , ē)

G(a, b, c, d, e, f ) = G(c̄, b̄, ā, d̄, f̄ , ē).

(55)

8. Applications, discussion and outlook

The topological data calculated in this paper can be applied to calculate various properties of
physical systems. Particularly interesting examples of such systems occur in the context of the
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fractional quantum Hall effect. It has been proposed that (some of) the topological properties
of fractional quantum Hall states can be measured by means of interference experiments, see
[15] for the Moore–Read state [16] case, [17] for the Read–Rezayi states [18] and [19] for an
account of the general case. Recent and promising experiments in this area are described in
[20–22].

Of course, apart from what may be experimentally measurable in the immediate future,
it is also of interest to determine the full representation of the braid group which governs the
exchange properties of the non-Abelian anyons in these Hall states, not in the least because
a knowledge of these braid group representations or indeed of the full TQFTs describing
these states is needed in the design of gates and algorithms for future topological quantum
computers based on these states. In [23], the braiding of quasiparticles in the the Read–
Rezayi states was investigated using quantum groups and we hope the present paper makes
it obvious how similar calculations can be done for more complicated systems. Braiding
properties can also be deduced by considering the full CFT correlation functions describing
the non-Abelian excitations, as was done in [24] for the Moore–Read state. The Uq(su(3))

coefficients calculated in this paper match up with CFT-correlator calculations in [25], where
the su(3)k-based spin-singlet state of Ardonne and Schoutens [26] was considered, as well as
with the Read–Rezayi states.

An interesting recent development is the study of anyonic quantum spin chains [27, 28].
Non-Abelian anyons are the basic constituents of these chains, and the F-symbols are essential
in the construction of the Hamiltonian. For more details, we refer to [29].

On a more formal level, the coefficients calculated can be used to study relations between
different anyon models, such as those based on coset-theories. For instance, from the
explicit calculation of the F-symbols of the Z3-parafermion theory in [30], where the pentagon
equations were solved directly, we know that these symbols are equivalent to those calculated
here for su(3)2.

A potentially interesting mathematical problem would be to calculate q-deformed
Clebsch–Gordan and 6j -coefficients for the full set of irreducible representations of Uq(sl(3))

at all levels. The multiplicities could be dealt with by the method of threshold levels discussed
in section 5.2. This should also yield a particularly interesting set of bases for the CG-
coefficients and 6j -symbols of SU(3) itself in the limit where q approaches 1.
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Appendix A. The case su(3)

In this appendix, we give the topological data, q-Clebsch–Gordan coefficients and F-symbols
in the case of su(3)2. However, we first summarize the data for the finite-dimensional Lie-
algebra su(3). For much more detail on the theory of finite (and infinite)-dimensional Lie
algebras, see for instance [11–13].
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(1, 0)

(−1, 1)

(0, −1)

(0, 1)

(1, −1)

(−1, 0)

Figure A1. The weights of the su(3) representations 3 and 3.

(2, 0)

(0, 1)

(−2, 2) (1, −1)

(−1, 0)

(0, −2)

(0, 2)

(1, 0)

(2, −2)(−1, 1)

(0, −1)

(−2, 0)

(1, 1)

(−1, 2) (2, −1)

(0, 0)±

(−2, 1) (1, −2)

(−1, −1)

Figure A2. The weights of the su(3) representations 6, 6 and 8.

The q-Clebsch–Gordan coefficients, i.e.
[

j1 j2 j3

m1 m2 m3

]

q

,

are tabulated in the following way. First, the various sections are labeled by the explicit fusion
rule j1 × j2. In this section, one finds the coefficients of all the possible fusion outcomes j 3.
The coefficients for a particular j 3 are given in a table, whose rows are labeled by m1, and the
columns by m2. In the case that there are no weight space multiplicities, this uniquely specifies
m3 = m1 + m2. In the case of the eight-dimensional representation of su(3), 8, the weight
(0, 0) corresponds to a two-dimensional space, whose basis states we denote by (0, 0)+ and
(0, 0)−. Often we can compactly combine the symbols for m3 = (0, 0)±. In cases where this
is not easily possible, the q-CG coefficients with m3 = (0, 0)+ and m3 = (0, 0)− are given in
separate tables, while the locations in the original table for which m1 +m2 = (0, 0) are marked
by X.

A.1. Generalities on su(3)

The Cartan matrix of the simply laced Lie algebra su(3) and its inverse read

A =
(

2 −1
−1 2

)
A−1 = Fqf = 1

3

(
2 1
1 2

)
(A.1)

The representations relevant for the su(3)2 theory are 1 = (0, 0), 3 = (1, 0), 3 = (0, 1),

6 = (2, 0), 6 = (0, 2) and 8 = (1, 1). In figures A1 and A2, we give the structure of these
representations for completeness. Here and below, arrows pointing ‘to the left’ correspond to
the subtraction of α1, while arrows pointing ‘to the right’ correspond to the subtraction of α2.
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Table A1. The fusion rules of su(3)2.

× 3 3 6 6 8

3 3 + 6
3 1 + 8 3 + 6
6 8 3 6
6 3 8 1 6
8 3 + 6 3 + 6 3 3 1 + 8

A.2. The topological data of su(3)2

In this section, we give the relevant topological data for su(3)2. The fusion rules of the theory
are given in table A1. The numerical values of the data are obtained from the general ones in
terms of q by specifying q = e2π i/5.

The quantum dimensions are given by

d1 = 1 d3 = d3̄ = $3% → φ d6 = d6̄ = 1 + $5% → 1 d8 = $3% + $5% → φ,

(A.2)

which gives D2 =
∑

a d2
a = 3φ + 6. The twist factors are given by

θ1 = 1 θ3 = θ3̄ = e2π ih3 = e
8π i

3(k+3) = q4/3 (A.3)

θ6 = θ6̄ = e2π ih6 = e
20π i

3(k+3) = q10/3 θ8 = e2π ih8 = e
6π i

(k+3) = q3. (A.4)

The Frobenius–Schur indicators of the self-dual particles are fb1 = fb8 = 1 and finally, the
central charge is c = 16

5 .

A.3. The q-CG coefficients relevant for su(3)2

In this section, we give the q-CG coefficients in the case of su(3)2.

A.3.1. 3 × 3 = 3̄ + 6.
(1, 0) (−1, 1) (0,−1)

(1, 0) q
1
4√

$2%
q

1
4√

$2%

(−1, 1) − q− 1
4√

$2%
q

1
4√

$2%

(0,−1) − q− 1
4√

$2% − q− 1
4√

$2%

The q-CG coefficients for the 3̄ in 3 × 3.

(1, 0) (−1, 1) (0,−1)

(1, 0) 1 q− 1
4√

$2%
q− 1

4√
$2%

(−1, 1) q
1
4√

$2% 1 q− 1
4√

$2%

(0,−1) q
1
4√

$2%
q

1
4√

$2% 1

The q-CG coefficients for the 6 in 3 × 3.

A.3.2. 3 × 3̄ = 1 + 8.

(0, 1) (1,−1) (−1, 0)

(1, 0) q
1
2√

$3%
(−1, 1) − 1√

$3%

(0,−1) q− 1
2√

$3%

The q-CG coefficients for the 1 in 3 × 3̄.

(0, 1) (1,−1) (−1, 0)

(1, 0) 1 1 q− 1
4√

2($2%±1)

(−1, 1) 1 q
1
4 ±q− 1

4√
2($2%±1)

1

(0,−1) ± q
1
4√

2($2%±1)
1 1

The q-CG coefficients for the 8 in 3 × 3̄.
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A.3.3. 3 × 6 = 8.

(2, 0) (0, 1) (−2, 2) (1,−1) (−1, 0) (0,−2)

(1, 0) q
1
2√

$3% q
1
4

√
$2%
$3%

q
1
2√

$3% ±q
1
4

√
$2%±1
2$3% q

1
4

√
$2%
$3%

(−1, 1) −q− 1
4

√
$2%
$3% − q− 1

2√
$3%

q
3
4 ∓q− 3

4√
2($2%±1)$3%

q
1
2√

$3% q
1
4

√
$2%
$3%

(0,−1) −q− 1
4

√
$2%
$3% −q− 1

4

√
$2%±1
2$3% −q− 1

4

√
$2%
$3% − q− 1

2√
$3% − q− 1

2√
$3%

The q-CG coefficients for the 8 in 3 × 6.

A.3.4. 3 × 6̄ = 3̄.

(0, 2) (1, 0) (−1, 1) (2,−2) (0,−1) (−2, 0)

(1, 0) q
3
4√

$4%
q

3
4√

$4% q
1
2

√
$2%
$4%

(−1, 1) − q
1
4√

$4% −
√

$2%
$4% − q− 1

4√
$4%

(0,−1) q− 1
2

√
$2%
$4%

q− 3
4√

$4%
q− 3

4√
$4%

The q-CG coefficients for the 3̄ in 3 × 6̄.

A.3.5. 3 × 8 = 3 + 6̄.

(1, 1) (−1, 2) (2,−1) (0, 0)± (−2, 1) (1,−2) (−1,−1)

(1, 0) q
3
4
√

$2%∓1√
2$2%$4%

q
1
2
√

$3%√
$2%$4%

q
1
2
√

$3%√
$2%$4%

(−1, 1) −
√

$3%√
$2%$4%

(∓q
1
4 −q− 1

4 )
√

$2%∓1√
2$2%$4% −

√
$3%√

$2%$4%

(0,−1) q− 1
2
√

$3%√
$2%$4%

q− 1
2
√

$3%√
$2%$4% ± q− 3

4
√

$2%∓1√
2$2%$4%

The q-CG coefficients for the 3 in 3 × 8.

(1, 1) (−1, 2) (2,−1) (0, 0)± (−2, 1) (1,−2) (−1,−1)

(1, 0) q
1
4√

$2% ± q
1
4
√

$2%±1√
2$2%

1
$2%

q
1
4√

$2%
1

$2%

(−1, 1) − q− 1
4√

$2% − q− 1
2

$2%
(±q

1
4 −q− 1

4 )
√

$2%±1√
2$2%

q
1
2

$2%
q

1
4√

$2%

(0,−1) − 1
$2% − 1

$2% − q− 1
4√

$2% − q− 1
4
√

$2%±1√
2$2% − q− 1

4√
$2%

The q-CG coefficients for the 6̄ in 3 × 8.
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A.3.6. 6 × 6 = 6̄.

(2, 0) (0, 1) (−2, 2) (1,−1) (−1, 0) (0,−2)

(2, 0) q
1
2√

$3%
q

1
2√

$3%
q

1
2√

$3%

(0, 1) − 1√
$3% − q− 1

4√
$2%$3%

q
3
4√

$2%$3%
q

1
2√

$3%

(−2, 2) q− 1
2√

$3% − 1√
$3%

q
1
2√

$3%

(1,−1) − q
1
4√

$2%$3% − 1√
$3% − 1√

$3% − q− 1
4√

$2%$3%

(−1, 0) q− 1
2√

$3%
q− 3

4√
$2%$3% − q

1
4√

$2%$3% − 1√
$3%

(0,−2) q− 1
2√

$3%
q− 1

2√
$3%

q− 1
2√

$3%

The q-CG coefficients for the 6̄ in 6 × 6.

A.3.7. 6 × 6̄ = 1.

(0, 2) (1, 0) (−1, 1) (2,−2) (0,−1) (−2, 0)

(2, 0) q√
$5%+1

(0, 1) − q
1
2√

$5%+1

(−2, 2) 1√
$5%+1

(1,−1) 1√
$5%+1

(−1, 0) − q− 1
2√

$5%+1

(0,−2) q−1
√

$5%+1

The q-CG coefficients for the 1 in 6 × 6̄.

A.3.8. 6 × 8 = 3̄.

(1, 1) (−1, 2) (2,−1) (0, 0)± (−2, 1) (1,−2) (−1,−1)

(2, 0) q
3
4√

$4%
q

3
4√

$4%

(0, 1) − q
1
4
√

$2%±1√
2$2%$4% − 1√

$2%$4%
q√

$2%$4%

(−2, 2) q− 1
4√

$4% − q
1
4√

$4%

(1,−1) q− 1
2√

$2%$4%
(−q

1
4 ±q− 1

4 )
√

$2%±1√
2$2%$4% − q

1
2√

$2%$4%

(−1, 0) − q−1
√

$2%$4%
1√

$2%$4% ± q− 1
4
√

$2%±1√
2$2%$4%

(0,−2) − q− 3
4√

$4% − q− 3
4√

$4%

The q-CG coefficients for the 3̄ in 6 × 8.
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A.3.9. 8 × 8 = 1 + 8.

(1, 1) (−1, 2) (2,−1) (0, 0)+ (0, 0)− (−2, 1) (1, −2) (−1, −1)

(1, 1) q
3
4√

$4%+1 0 q
1
2
√

$2%+1√
2($4%+1)

q
1
2
√

$2%+1√
2($4%+1)

X

(−1, 2) −
√

$2%+1√
2($4%+1)

−q− 1
4 −q

1
4 +q

3
4

2
√

$4%+1 − q
1
4
√

$3%
2
√

$4%+1 X q
1
2
√

$2%+1√
2($4%+1)

(2, −1) −
√

$2%+1√
2($4%+1)

−q− 1
4 −q

1
4 +q

3
4

2
√

$4%+1
q

1
4
√

$3%
2
√

$4%+1 X q
1
2
√

$2%+1√
2($4%+1)

(0, 0)+
q− 3

4√
$4%+1

−q− 1
4 −q

1
4 +q− 3

4

2
√

$4%+1
−q− 1

4 −q
1
4 +q− 3

4

2
√

$4%+1 X X −q− 1
4 −q

1
4 +q

3
4

2
√

$4%+1
−q− 1

4 −q
1
4 +q

3
4

2
√

$4%+1
q

3
4√

$4%+1

(0, 0)− 0 − q− 1
4
√

$3%
2
√

$4%+1
q− 1

4
√

$3%
2
√

$4%+1 X X q
1
4
√

$3%
2
√

$4%+1 − q
1
4
√

$3%
2
√

$4%+1 0

(−2, 1) q− 1
2
√

$2%+1√
2($4%+1)

X −q− 1
4 −q

1
4 +q− 3

4

2
√

$4%+1
q− 1

4
√

$3%
2
√

$4%+1 −
√

$2%+1√
2($4%+1)

(1, −2) q− 1
2
√

$2%+1√
2($4%+1)

X −q− 1
4 −q

1
4 +q− 3

4

2
√

$4%+1 − q− 1
4
√

$3%
2
√

$4%+1 −
√

$2%+1√
2($4%+1)

(−1, −1) X q− 1
2
√

$2%+1√
2($4%+1)

q− 1
2
√

$2%+1√
2($4%+1)

q− 3
4√

$4%+1 0

The q-CG coefficients for the 8 (when m &= (0, 0)±) in 8 × 8.

(1, 1) (−1, 2) (2,−1) (0, 0)+ (0, 0)− (−2, 1) (1, −2) (−1,−1)

(1, 1) q
1
4√

$4%+1

(−1, 2) −q
− 1

4 +q
1
4 +q

3
4

2
√

$4%+1

(2, −1) −q
− 1

4 +q
1
4 +q

3
4

2
√

$4%+1

(0, 0)+
−2(q

− 1
4 +q

1
4 )+q

3
4 +q

− 3
4

2
√

$4%+1
0

(0, 0)− 0 q
3
4 +q

− 3
4

2
√

$4%+1

(−2, 1) q
− 1

4 −q
1
4 +q

− 3
4

2
√

$4%+1

(1, −2) q
− 1

4 −q
1
4 +q

− 3
4

2
√

$4%+1

(−1, −1) q
− 1

4√
$4%+1

The q-CG coefficients for the 8 (for m = (0, 0)+) in 8 × 8.

(1, 1) (−1, 2) (2,−1) (0, 0)+ (0, 0)− (−2, 1) (1,−2) (−1,−1)

(1, 1) 0

(−1, 2) q
1
4
√

$3%
2
√

$4%+1

(2,−1) − q
1
4
√

$3%
2
√

$4%+1

(0, 0)+ 0 q
3
4 +q− 3

4

2
√

$4%+1

(0, 0)−
q

3
4 +q− 3

4

2
√

$4%+1 0

(−2, 1) − q− 1
4
√

$3%
2
√

$4%+1

(1,−2) q− 1
4
√

$3%
2
√

$4%+1

(−1,−1) 0
The q-CG coefficients for the 8 (for m = (0, 0)−) in 8 × 8.
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Table A2. The parameters s1, s2 and s3 in the symmetry relations between the q-CG coefficients
for su(3)2, as explained in section 5.4.

j 1 j 2 j s1 s2 s3 j 1 j 2 j s1 s2 s3

3 3 3̄ 1 1 0 6 6 6̄ 0 0 0
3 3 6 0 0 0 6 6̄ 1 0 0 0
3 3̄ 1 0 0 0 6 8 3̄ 1 1 0
3 3̄ 8 0 0 0 8 8 1 0 0 0
3 6 8 1 1 0 8 8 8 0 0 0
3 6̄ 3̄ 0 0 0
3 8 3 0 0 0
3 8 6̄ 1 1 0

(1, 1) (−1, 2) (2,−1) (0, 0)+ (0, 0)− (−2, 1) (1,−2) (−1,−1)

(1, 1) q√
$2%$4%

(−1, 2) − q
1
2√

$2%$4%

(2,−1) − q
1
2√

$2%$4%
(0, 0)+

1√
$2%$4% 0

(0, 0)− 0 1√
$2%$4%

(−2, 1) − q− 1
2√

$2%$4%

(1,−2) − q− 1
2√

$2%$4%

(−1,−1) q−1
√

$2%$4%
The q-CG coefficients for the 1 in 8 × 8.

A.3.10. The relation between the q-CG coefficients. In table A2, we specify the coefficients
s1, s2 and s3, which appear in the symmetry relations between the various q-CG coefficients
as explained in section 5.4.

A.4. The F-symbols for su(3)2

In total, there are 405 F-symbols. Out of these, there are 147 symbols which have a 1 on at
least one of the outer lines. In the gauge we chose, all these symbols are equal to 1. Moreover,
because the F-symbols are invariant under the operation of taking the conjugate representation
of all six indices, namely

(
Fa,b,c

d

)
e,f

=
(
F ā,b̄,c̄

d̄

)
ē,f̄

, we only list those symbols which either
have a = 3, a = 6 or a = 8.

All those symbols which have at least one 6 or 6 on the outer lines correspond to a
one-dimensional transformation and reduce to ±1 for q = e2π i/5, but we list these symbols
for general q. It turns out that there are only ten independent values:

F 3,3,3̄
6̄ = F 3,3,6

3 = F 3,3,6
6̄ = F 3,3̄,3

6̄ = F 3,3̄,3̄
6 = F 3,3̄,6

3̄ = F 3,3̄,6̄
3 = F 3,6,3

3 = F 3,6,3
6̄ = F 3,6,3̄

3̄

= F 3,6,6
3̄ = F 3,6̄,3̄

3 = F 6,3,3
3 = F 6,3,3

6̄ = F 6,3,3̄
3̄ = F 6,3,6

3̄ = F 6,3̄,3
3̄ = F 6,6,3

3̄ = 1 (A.5)
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F 3,3,6̄
8 = F 3,3,8

6 = F 3,6̄,6̄
8 = F 3,6̄,8

3̄ = F 3,8,6̄
3̄ = F 3,8,6̄

6 = F 6,3̄,3̄
8 = F 6,3̄,8

6̄ = F 6,6,3̄
8

= F 6,6,8
3 = F 6,8,3̄

3 = F 6,8,3̄
6̄ = F 8,3,3

6 = F 8,3,6̄
6 = F 8,3̄,3̄

6̄ = F 8,3̄,6
6̄ = F 8,6,3̄

3 = F 8,6,6
3

= F 8,6̄,3
3̄ = F 8,6̄,6̄

3̄ = − $3%
$2%

√
$5% + 1

→ −1 (A.6)

F 3,3̄,6
6 = F 3,6̄,6

3 = F 6,3̄,3
6 = F 6,6,6̄

6 = F 6,6̄,3
3 = F 6,6̄,6̄

6̄ = 1√
$5% + 1

→ 1 (A.7)

F 3,6,3̄
6 = F 3,6̄,3̄

6̄ = F 6,3,6̄
3 = F 6,3̄,6̄

3̄ = − 1√
$5% + 1

→ −1 (A.8)

F 3,3̄,6̄
6̄ = F 3,6,6̄

3 = F 6,3,3̄
6 = F 6,6̄,3̄

3̄ = −$2%
$3%

→ −1 (A.9)

F 3,6,8
8 = F 3,8,8

6̄ = F 6,3,8
8 = F 6,8,8

3̄ = F 8,3,6
8 = F 8,3̄,6̄

8 = F 8,6,3
8 = F 8,6̄,3̄

8

= F 8,8,3
6̄ = F 8,8,3̄

6 = F 8,8,6
3̄ = F 8,8,6̄

3 = − 1√
2$2%

√
$2% + $3%
$3% − 1

→ −1 (A.10)

F 3,6̄,3
8 = F 3,6̄,8

6 = F 3,8,3
6 = F 6,3̄,6

8 = F 6,3̄,8
3 = F 6,8,6

3 = F 8,3,6̄
3̄ = F 8,3̄,6

3 = F 8,6,3̄
6̄

= F 8,6̄,3
6 = 1

$4%
→ 1 (A.11)

F 6,6̄,8
8 = F 6,8,8

6 = F 8,6,6̄
8 = F 8,6̄,6

8 = F 8,8,6
6 = F 8,8,6̄

6̄ = − 1
$4%

→ −1 (A.12)

F 3,8,6
8 = F 6,8,3

8 = F 6,8,6̄
8 = F 8,3,8

6̄ = F 8,3̄,8
6

= F 8,6,8
3̄ = F 8,6,8

6 = F 8,6̄,8
3 = F 8,6̄,8

6̄ = $3%
$3% + $5%

→ 1 (A.13)

F 6,6̄,6
6 = 1

$5% + 1
→ 1. (A.14)

The remaining 72 symbols correspond to 18 different labelings of the external lines. We
give these 18 matrices explicitly below. Again, the internal labels e and f have to be inferred
from the others, and the ordering in the matrices is always according to 1, 3, 3̄, 6, 6̄, 8:

F 3,3̄,3̄
3̄ = F 3,3,3̄

3 =




−1√
$3%

$3%−1√
$5%+1

$3%−1√
$5%+1

1√
$3%



 →
(

−1/
√
φ 1/φ

1/φ 1/
√
φ

)
(A.15)

F 3,3̄,3
3 =




1

$3%
$2%

√
$3%−1

$3%
$2%

√
$3%−1

$3%
−1
$3%



 →
(

1/φ 1/
√
φ

1/
√
φ −1/φ

)
(A.16)

F 3,3̄,8
8 = F 8,8,3̄

3̄ = F 8,8,3
3 =




1√

$3%+$5%
−1
$2%

$4%+1√
2$2%

√
$5%+$4%+1

√
$2%+$3%√

2$2%



 →
(

1/
√
φ −1/φ

1/φ 1/
√
φ

)
(A.17)

F 3,8,8
3 = F 8,3̄,3

8 = F 8,3,3̄
8 =




1√

$3%+$5%
$4%+1√

2$2%
√

$5%+$4%+1

−1
$2%

√
$2%+$3%√

2$2%



 →
(

1/
√
φ 1/φ

−1/φ 1/
√
φ

)
(A.18)

F 3,3,3
8 = F 3,3,8

3̄ = F 3,8,3
3̄ = F 8,3̄,3̄

3 = F 8,3,3
3̄ =




−1
$2%

√
$3%

$2%
√

$3%
$2%

1
$2%



 →
(

−1/φ 1/
√
φ

1/
√
φ 1/φ

)
(A.19)
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F 3,8,3̄
8 = F 8,3̄,8

3̄ = F 8,3,8
3 =




−1

$3%+$5% − $3%
$2%2

√
$3%

$5%+1

− $3%
$2%2

√
$3%

$5%+1
$3%
$2%2



 →
(

−1/φ −1/
√
φ

−1/
√
φ 1/φ

)
(A.20)

F 8,8,8
8 =

( 1
$3%+$5%

1√
$3%+$5%

1√
$3%+$5%

$3%−$2%−4
2($2%+$3%)

)

→
(

1/φ 1/
√
φ

1/
√
φ −1/φ

)
. (A.21)

A.5. The R-symbols for su(3)2

We give the R-symbols below. We use the following symmetries to shorten the list

Ra,b
c = Rb,a

c Ra,b
c = Rā,b̄

c̄ . (A.22)

With our conventions, we have

R1,a
a = 1 (A.23)

R3,3̄
1 = q− 4

3 R6,6̄
1 = q− 10

3 R8,8
1 = q−3 (A.24)

R3̄,3̄
3 = −q− 2

3 R3̄,6
3 = q− 5

3 R3,8
3 = q− 3

2 R6̄,8
3 = −q− 5

2 (A.25)

R3,3
6 = q

1
3 R3̄,8

6 = −q− 1
2 R6̄,6̄

6 = q− 5
3 (A.26)

R3,3̄
8 = q

1
6 R3,6

8 = −q
5
6 R8,8

8 = q
3
2 . (A.27)

Appendix B. The case su(3)3/Z3

In this appendix, we give the topological data for the theory su(3)3/Z3, namely the q-CG
coefficients, as well as the F and R symbols. This theory contains four particles, which we
denote by 1, 8, 10 and 10, where the last two correspond to the su(3) representations (3, 0)

and (0, 3), respectively; the weights of these representations are given in figure B1. We note
that this theory is a ‘sub-theory’ of the full, modular su(3)3 theory. However, the theory under
consideration is not modular.

The fusion rules are given in table B1.
The quantum dimensions of the particles are given by d1 = 1, d8 = $3%+ $5% → 3, d10 =

d10 = ($3% − 1)$5% → 1, where the numerical value is for q = e2π i/6. The twist factors are
given by θ1 = 1, θ8 = q3 and θ10 = θ10 = q6. The Frobenius–Schur indicator of the self-dual
particles 1 and 8 is the same as for su(3)2, namely fb1 = fb8 = 1, while also fb10 = fb10 = 1.

B.1. q-CG coefficients for su(3)3/Z3

In this section, we give the q-CG coefficients in the case of su(3)3/Z3. The Clebsch–Gordan
coefficients for the 1 and 8 in the 8×8 are given in the section containing the Clebsch–Gordan
coefficients for su(3)2.
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(3, 0)

(1, 1)

(−1, 2) (2, −1)

(−3, 3) (0, 0)

(−2, 1) (1, −2)

(−1, −1)

(0, −3)

(0, 3)

(1, 1)

(−1, 2) (2, −1)

(3, −3)(0, 0)

(−2, 1) (1, −2)

(−1, −1)

(−3, 0)

Figure B1. The weights of the su(3) representations 10 and 10.

Table B1. The fusion rules of su(3)3/Z3.

× 8 10 10

8 1 + 8 + 8 + 10 + 10
10 8 10
10 8 1 10

B.1.1. 8 × 8 = 1 + 8 + 8′ + 10 + 10.
(1, 1) (−1, 2) (2, −1) (0, 0)+ (0, 0)− (−2, 1) (1, −2) (−1, −1)

(1, 1) 0 q
3
4√

$4%−1
q

1
2
√

$2%−1√
2($4%−1)

− q
1
2
√

$2%−1√
2($4%−1)

X

(−1, 2) −
√

$2%−1√
2($4%−1)

− q
1
4
√

$3%
2
√

$4%−1
−q− 1

4 +q
1
4 +q

3
4

2
√

$4%−1 X − q
1
2
√

$2%−1√
2($4%−1)

(2, −1)
√

$2%−1√
2($4%−1)

q
1
4
√

$3%
2
√

$4%−1
−q− 1

4 +q
1
4 +q

3
4

2
√

$4%−1 X q
1
2
√

$2%−1√
2($4%−1)

(0, 0)+ 0 q− 1
4
√

$3%
2
√

$4%−1 − q− 1
4
√

$3%
2
√

$4%−1 X X q
1
4
√

$3%
2
√

$4%−1 − q
1
4
√

$3%
2
√

$4%−1 0

(0, 0)− − q− 3
4√

$4%−1
−q− 3

4 −q− 1
4 +q

1
4

2
√

$4%−1
−q− 3

4 −q− 1
4 +q

1
4

2
√

$4%−1 X X −q− 1
4 +q

1
4 +q

3
4

2
√

$4%−1
−q− 1

4 +q
1
4 +q

3
4

2
√

$4%−1
q

3
4√

$4%−1

(−2, 1) − q− 1
2
√

$2%−1√
2($4%−1)

X − q− 1
4
√

$3%
2
√

$4%−1
−q− 3

4 −q− 1
4 +q

1
4

2
√

$4%−1 −
√

$2%−1√
2($4%−1)

(1, −2) q− 1
2
√

$2%−1√
2($4%−1)

X q− 1
4
√

$3%
2
√

$4%−1
−q− 3

4 −q− 1
4 +q

1
4

2
√

$4%−1

√
$2%−1√

2($4%−1)

(−1, −1) X q− 1
2
√

$2%−1√
2($4%−1)

− q− 1
2
√

$2%−1√
2($4%−1)

0 − q− 3
4√

$4%−1

The q-CG coefficients for the 8′ (when m &= (0, 0)±) in 8 × 8.

(1, 1) (−1, 2) (2, −1) (0, 0)+ (0, 0)− (−2, 1) (1,−2) (−1, −1)

(1, 1) − q
1
4√

$4%−1

(−1, 2) q− 1
4 +q

1
4 −q

3
4

2
√

$4%−1

(2, −1) q− 1
4 +q

1
4 −q

3
4

2
√

$4%−1

(0, 0)+
−q− 3

4 +q
3
4

2
√

$4%−1 0

(0, 0)− 0 2(−q− 1
4 +q

1
4 )−q− 3

4 +q
3
4

2
√

$4%−1

(−2, 1) −q− 1
4 −q

1
4 +q− 3

4

2
√

$4%−1

(1, −2) −q− 1
4 −q

1
4 +q− 3

4

2
√

$4%−1

(−1, −1) q− 1
4√

$4%−1

The q-CG coefficients for the 8′ (for m = (0, 0)−) in 8 × 8.
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(1, 1) (−1, 2) (2,−1) (0, 0)+ (0, 0)− (−2, 1) (1,−2) (−1,−1)

(1, 1) 0

(−1, 2) − q
1
4
√

$3%
2
√

$4%−1

(2,−1) q
1
4
√

$3%
2
√

$4%−1

(0, 0)+ 0 −q− 3
4 +q

3
4

2
√

$4%−1

(0, 0)−
−q− 3

4 +q
3
4

2
√

$4%−1 0

(−2, 1) − q− 1
4
√

$3%
2
√

$4%−1

(1,−2) q− 1
4
√

$3%
2
√

$4%−1

(−1,−1) 0

The q-CG coefficients for the 8′ (for m = (0, 0)+) in 8 × 8.

(1, 1) (−1, 2) (2,−1) (0, 0)+ (0, 0)− (−2, 1) (1,−2) (−1,−1)

(1, 1) q
1
4√
$2%

√
$2%+1√

2$2%$3%

√
$2%−1√

2$2%$3%
q− 1

4√
$2%$3%

q− 1
4√

$2%$3%
q− 1

2

$2%
√

$3%

(−1, 2) q
3
4√

$2%$3%
q

1
2

√
$2%+1√

2$2%$3%
q

1
2

√
$2%−1√

2$2%$3%
q

1
4√
$2%

1
$2%

√
$3%

q− 1
4√

$2%$3%

(2,−1) − q− 1
4√

$2% − q− 3
4√

$2%$3%
(1−q− 1

2 )
√

$2%+1√
2$2%$3%

(1+q− 1
2 )

√
$2%−1√

2$2%$3%
1

$2%
√

$3%
q− 1

4√
$2%$3%

(0, 0)+ −
√

$2%+1√
2$2%$3% − q− 1

2
√

$2%+1√
2$2%$3%

(−1+q
1
2 )

√
$2%+1√

2$2%$3%
(q

1
2 −q− 1

2 )($2%+1)

2$2%
√

$3%
1
2

q
1
2

√
$2%+1√

2$2%$3%
(1−q− 1

2 )
√

$2%+1√
2$2%$3%

√
$2%+1√

2$2%$3%

(0, 0)− −
√

$2%−1√
2$2%$3% − q− 1

2
√

$2%−1√
2$2%$3%

(−1−q
1
2 )

√
$2%−1√

2$2%$3% − 1
2

(q− 1
2 −q

1
2 )($2%−1)

2$2%
√

$3% − q
1
2

√
$2%−1√

2$2%$3%
(−1−q− 1

2 )
√

$2%−1√
2$2%$3% −

√
$2%−1√

2$2%$3%

(−2, 1) − q
1
4√

$2%$3% − q− 1
4√

$2% − 1
$2%

√
$3% − q− 1

2
√

$2%+1√
2$2%$3%

q− 1
2

√
$2%−1√

2$2%$3% − q− 3
4√

$2%$3%

(1,−2) − q
1
4√

$2%$3% − 1
$2%

√
$3%

(−1+q
1
2 )

√
$2%+1√

2$2%$3%
(1+q

1
2 )

√
$2%−1√

2$2%$3%
q

3
4√

$2%$3%
q

1
4√
$2%

(−1,−1) − q
1
2

$2%
√

$3% − q
1
4√

$2%$3% − q
1
4√

$2%$3% −
√

$2%+1√
2$2%$3%

√
$2%−1√

2$2%$3% − q− 1
4√

$2%

The q-CG coefficients for the 10 in 8 × 8.

B.1.2. 10 × 8 = 8.

(1, 1) (−1, 2) (2, −1) (0, 0)+ (0, 0)− (−2, 1) (1, −2) (−1, −1)

(3, 0) q
3
4

√
$2%√

$5%
q

3
4

√
$2%√

$5%

(1, 1) −
√

$2%($2%+1)√
2$3%$5% −

√
$2%($2%−1)√

2$3%$5%
q

5
4

√
$2%√

$3%$5% − q
− 1

4
√

$2%√
$3%$5% X

(−1, 2) q
− 3

4
√

$2%√
$3%$5% − q

1
2

√
$2%($2%+1)√
2$3%$5% − q

1
2

√
$2%($2%−1)√
2$3%$5% X q

5
4

√
$2%√

$3%$5%

(2, −1) q
− 3

4
√

$2%√
$3%$5%

(−1+q
− 1

2 )
√

$2%($2%+1)√
2$3%$5%

(−1−q
− 1

2 )
√

$2%($2%−1)√
2$3%$5% X q

5
4

√
$2%√

$3%$5%

(−3, 3) q
− 1

4
√

$2%√
$5% − q

1
4

√
$2%√

$5%

(0, 0) − q
− 3

2√
$3%$5%

q
− 1

2√
$3%$5%

q
− 1

2√
$3%$5% X X − q

1
2√

$3%$5% − q
1
2√

$3%$5%
q

3
2√

$3%$5%

(−2, 1) − q
− 5

4
√

$2%√
$3%$5% X q

− 1
2

√
$2%($2%+1)√

2$3%$5% − q
− 1

2
√

$2%($2%−1)√
2$3%$5% − q

3
4

√
$2%√

$3%$5%

(1, −2) − q
− 5

4
√

$2%√
$3%$5% X (1−q

1
2 )

√
$2%($2%+1)√

2$3%$5%
(−1−q

1
2 )

√
$2%($2%−1)√

2$3%$5% − q
3
4

√
$2%√

$3%$5%

(−1, −1) X − q
− 5

4
√

$2%√
$3%$5%

q
1
4

√
$2%√

$3%$5%

√
$2%($2%+1)√

2$3%$5% −
√

$2%($2%−1)√
2$3%$5%

(−3, 0) − q
− 3

4
√

$2%√
$5% − q

− 3
4

√
$2%√

$5%

The q-CG coefficients for the 8 (for m &= (0, 0)±) in 10 × 8.
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(1, 1) (−1, 2) (2, −1) (0, 0)+ (0, 0)− (−2, 1) (1,−2) (−1,−1)
(3, 0)

(1, 1) q
√

$2%($2%+1)√
2$3%$5%

(−1, 2) −
√

$2%($2%+1)√
2$3%$5%

(2, −1) (−1+q
3
2 )

√
$2%√

2$3%$5%($2%+1)

(−3, 3)

(0, 0) q−1+q− 1
2 −q

1
2 −q

2
√

$3%$5% − $2%
2
√

$5%

(−2, 1)
√

$2%($2%+1)√
2$3%$5%

(1, −2) (1−q− 3
2 )

√
$2%√

2$3%$5%($2%+1)

(−1, −1) − q−1√$2%($2%+1)√
2$3%$5%

(−3, 0)

The q-CG coefficients for the 8 (for m = (0, 0)+) in 10 × 8.

(1, 1) (−1, 2) (2, −1) (0, 0)+ (0, 0)− (−2, 1) (1,−2) (−1, −1)
(3, 0)

(1, 1) q
√

$2%($2%−1)√
2$3%$5%

(−1, 2) −
√

$2%($2%−1)√
2$3%$5%

(2, −1) (−1−q
3
2 )

√
$2%√

2$3%$5%($2%−1)

(−3, 3)

(0, 0) $2%
2
√

$5%
−q−1+q− 1

2 −q
1
2 +q

2
√

$3%$5%

(−2, 1) −
√

$2%($2%−1)√
2$3%$5%

(1, −2) (−1−q− 3
2 )

√
$2%√

2$3%$5%($2%−1)

(−1, −1) q−1√$2%($2%−1)√
2$3%$5%

(−3, 0)

The q-CG coefficients for the 8 (for m = (0, 0)−) in 10 × 8.

B.1.3. 10 × 10 = 10.

(3, 0) (1, 1) (−1, 2) (2, −1) (−3, 3) (0, 0) (−2, 1) (1, −2) (−1, −1) (−3, 0)

(3, 0) q
3
4√

$4%
q

3
4√
$4%

q
3
4√
$4%

q
3
4√

$4%

(1, 1) −q
1
4√

$4%
−

√
$2%√

$3%$4%
q

5
4√

$3%$4%
−q−1

√
$3%$4%

q
√

$2%√
$3%$4%

q
3
4√

$4%

(−1, 2) q− 1
4√

$4%
q− 3

4√
$3%$4%

−q
1
2
√

$2%√
$3%$4%

−
√

$2%√
$3%$4%

q
5
4√

$3%$4%
q

3
4√

$4%

(2, −1) −q
3
4√

$3%$4%
−q

1
4√

$4%
−q

1
2
√

$2%√
$3%$4%

−
√

$2%√
$3%$4%

−q
1
4√

$4%
−q− 1

4√
$3%$4%

(−3, 3) −q− 3
4√

$4%
q− 1

4√
$4%

−q
1
4√

$4%
q

3
4√

$4%

(0, 0)
√

$2%√
$3%$4%

q− 1
2
√

$2%√
$3%$4%

q− 1
2
√

$2%√
$3%$4%

(q− 1
2 −q

1
2 )

√
$2%√

$3%$4%
−q

1
2
√

$2%√
$3%$4%

−q
1
2
√

$2%√
$3%$4%

−
√

$2%√
$3%$4%

(−2, 1) −q− 3
4√

$4%
−q− 5

4√
$3%$4%

√
$2%√

$3%$4%
q− 1

2
√

$2%√
$3%$4%

−q
3
4√

$3%$4%
−q

1
4√

$4%

(1, −2) q
1
4√

$3%$4%

√
$2%√

$3%$4%
q− 1

4√
$4%

q− 1
4√

$4%
q− 1

2
√

$2%√
$3%$4%

q− 3
4√

$3%$4%

(−1, −1) −q− 3
4√

$4%
−q−1√$2%√

$3%$4%
−q− 5

4√
$3%$4%

q
1
4√

$3%$4%

√
$2%√

$3%$4%
q− 1

4√
$4%

(−3, 0) −q− 3
4√

$4%
−q− 3

4√
$4%

−q− 3
4√

$4%
−q− 3

4√
$4%

The q-CG coefficients for the 10 in 10 × 10.
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Table B2. The parameters s1, s2 and s3 in the symmetry relations between the q-CG coefficients
for su(3)3/Z3.

j 1 j 2 j s1 s2 s3

8 8 1 0 0 0
8 8 8 0 0 0
8 8 8′ 1 0 1
8 8 10 1 1 0
8 10 8 1 1 0

10 10 10 1 1 0
10 10 1 0 0 0

B.1.4. 10 × 10 = 1.

(0, 3) (1, 1) (−1, 2) (2,−1) (0, 0) (3,−3) (−2, 1) (1,−2) (−1,−1) (0,−3)

(3, 0) q
3
2

(1, 1) −q

(−1, 2) q
1
2

(2,−1) q
1
2

(−3, 3) −1
(0, 0) −1

(−2, 1) q− 1
2

(1,−2) q− 1
2

(−1,−1) −q−1

(−3, 0) q− 3
2

The q-CG coefficients for the 1 in 10 × 10. Each symbol has an additional factor 1√
$5%($3%−1)

.

B.2. The relation between the q-CG coefficients

In table B2, we specify the coefficients s1, s2 and s3, which appear in the symmetry relations
between the various q-CG coefficients as explained in section 5.4.

B.3. The F- and R-symbols for su(3)3/Z3

Because the expressions are rather involved, we will not give the F-symbols for su(3)3/Z3 as
a function of q, but only for the specialization q = e2π i/6. In principle, it is straightforward to
obtain them as a function of q from the q-Clebsch–Gordan coefficients.

All the one-dimensional F-symbols with a 1 on an outer line are 1. However, in the case
of the presence of a vertex with three 8’s, one has two-dimensional objects:

F 1,8,8
8 = F 8,1,8

8 = F 8,8,1
8 = F 8,8,8

1 =
(

1 0
0 1

)
. (B.1)

The following non-trivial symbols are 1:

F 8,10,8
10 = F 8,10,8

10
= F 8,10,8

10 = F 8,10,8
10

= F 10,8,10
8 = F 10,8,10

8 = F 10,8,10
8 = F 10,8,10

8

= F 10,10,10
10 = F 10,10,10

10
= 1. (B.2)
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The following symbols are −1:

F 8,8,10
10 = F 8,8,10

10
= F 8,8,10

10 = F 8,8,10
10

= F 8,10,10
8 = F 8,10,10

8 = F 8,10,10
8 = F 8,10,10

8

= F 10,10,8
8 = F 10,10,8

8 = F 10,10,8
8 = F 10,10,8

8 = F 10,8,8
10 = F 10,8,8

10
= F 10,8,8

10 = F 10,8,8
10

= F 10,10,10
10 = F 10,10,10

10
= F 10,10,10

10 = F 10,10,10
10

= −1. (B.3)

In addition, we have

F 8,8,8
10 = F 8,8,10

8 = F 8,10,8
8 = F 10,8,8

8 =
(

− 1
2 −

√
3

2√
3

2 − 1
2

)

(B.4)

F 8,8,8
10

= F 8,8,10
8 = F 8,10,8

8 = F 10,8,8
8 =

(
− 1

2

√
3

2

−
√

3
2 − 1

2

)

. (B.5)

Finally, the most interesting F-symbol reads

F 8,8,8
8 =





1
3

1√
3

0 0 1√
3

− 1
3 − 1

3
1√
3

− 1
2 0 0 1

2
1√
12

1√
12

0 0 1
2

1
2 0 1

2 − 1
2

0 0 1
2

1
2 0 − 1

2
1
2

1√
3

1
2 0 0 − 1

2
1√
12

1√
12

− 1
3

1√
12

− 1
2

1
2

1√
12

1
3

1
3

− 1
3

1√
12

1
2 − 1

2
1√
12

1
3

1
3





. (B.6)

Here, we used the following basis. The first row corresponds to the case for which j12 = 1.
The next four rows correspond to j12 = 8. In this case, there are two vertices with three
external 8 lines, which each are two-dimensional. The second and fifth row correspond to the
cases in which we took the vertices to be ‘the same’, while the third and fourth row correspond
to the ‘off-diagonal’ cases. Finally, rows 6 and 7 correspond to the 10 and 10, respectively.
Note that this matrix is not symmetric, but F 8,8,8

8 · F 8,8,8
8

T = 1, as it should. The R symbols
read

R1,x
x = 1 (B.7)

R8,8
1 = q−3 → −1 R8,8

8,1 = q− 3
2 → −i R8,8

8,2 = −q− 3
2 → i R8,8

10 = −1 (B.8)

R8,10
8 = −q−3 → 1 (B.9)

R10,10
10

= −q−3 → 1 (B.10)

R10,10
1 = q−6 → 1. (B.11)

We verified that the symbols above satisfy the pentagon and both hexagon equations.
Because of the relevance for the quantum dimension and Frobenius–Schur indicator, we

give the following F-symbols as a function of q:

(
F 8,8

8,8

)
1,1 = 1

$3% + $5%
(
F 10,10

10,10

)
1,1 = 1

($3% − 1)$5%
. (B.12)
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(0, 1)

(1, −1)

(−1, 1)

(0, −1)

(1, 0)

(−1, 2)

(0, 0)

(1, −2)

(−1, 0)

Figure C1. The weights of the so(5)1 representations 4 and 5.

Appendix C. The case so(5)1

The Cartan matrix, its inverse and the quadratic form matrix for so(5) read

A =
(

2 −2
−1 2

)
A−1 = 1

2

(
2 2
1 2

)
Fqf = 1

2

(
2 1
1 1

)
. (C.1)

The second root is short, and we have t1 = 1 and t2 = 2, where ti = 2
(αi ,αi )

. For so(5), one
has that ' = '. The weight spaces of the representations 4 = (0, 1) and 5 = (1, 0), relevant
for so(5)1, are given in figure C1.

The non-trivial fusion rules of so(5)1 are

4 × 4 = 1 + 5 4 × 5 = 4 5 × 5 = 1, (C.2)

namely the fusion rules of su(2)2 or the Ising conformal field theory.
Continuing with the topological data, the quantum dimensions are given by d1 = 1, d4 =

$5%2 − 1 →
√

2 and d5 = $4% + 1 → 1, where the numerical values are obtained by setting
q = e2π i/4. The twist factors are given by θ4 = q

5
4 and θ5 = q2 and the Frobenius–Schur

indicators by fb1 = fb5 = 1 and fb4 = −1. Finally, the central charge is 5
2 .

C.1. The q-CG coefficients for so(5)1

In this section, we give the q-CG coefficients for so(5)1.

C.1.1. 4 × 4 = 1 + 5.

(0, 1) (1,−1) (−1, 1) (0,−1)

(0, 1) q
1
8√

$2%3

q
1
8√

$2%3

1
$2%3

(1,−1) −q− 1
8√

$2%3

q
1
4

$2%3

q
1
8√

$2%3

(−1, 1) −q− 1
8√

$2%3

−q− 1
4

$2%3

q
1
8√

$2%3

(0,−1) −1
$2%3

−q− 1
8√

$2%3

−q− 1
8√

$2%3√
5

The q-CG coefficients for the 5 in 4 × 4.

(0, 1) (1,−1) (−1, 1) (0,−1)

(0, 1) q
1
2√

$5%2−1

(1,−1) −q
1
4√

$5%2−1

(−1, 1) q− 1
4√

$5%2−1

(0,−1) −q− 1
2√

$5%2−1 √
5

The q-CG coefficients for the 1 in 4 × 4.
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C.1.2. 4 × 5 = 4.

(1, 0) (−1, 2) (0, 0) (1, 2) (−1, 0)

(0, 1) q
1
2√

$5%2

q
3
8
√

$2%2√
$5%2

q
3
8
√

$2%2√
$5%2

(1,−1) −q
1
8
√

$2%2√
$5%2

−1√
$5%2

q
3
8
√

$2%2√
$5%2

(−1, 1) q
−3
8

√
$2%2√

$5%2

−1√
$5%2

−q
−1
8

√
$2%2√

$5%2

(0,−1) q
−3
8

√
$2%2√

$5%2

q
−3
8

√
$2%2√

$5%2

q
−1
2√

$5%2

The q-CG coefficients for the 4 in 4 × 5.

We note that the coefficients for 5 × 4 = 4 are obtained by using the relation
[

4 5 4
m1 m2 m1 + m2

]

q

=
[

5 4 4
m2 m1 m1 + m2

]

1
q

from section 5.4.

C.1.3. 5 × 5 = 1.

(1, 0) (−1, 2) (0, 0) (1,−2) (−1, 0)

(1, 0) q
3
4√

$4%+1

(−1, 2) −q
1
4√

$4%+1

(0, 0) 1√
$4%+1

(1,−2) −q− 1
4√

$4%+1

(−1, 0) q− 3
4√

$4%+1

The q-CG coefficients for the 1 in 5 × 5.

C.2. The F- and R-symbols for so(5)1

The F-symbols which are not unity are give by

F 4,4,5
5 = F 4,5,5

4 = F 5,4,4
5 = F 5,5,4

4 = 1√
$4% + 1

→ 1 (C.3)

F 4,5,4
5 = F 5,4,5

4 = −$3%2

$5%2
→ −1 (C.4)

F 5,5,5
5 = 1

$4% + 1
→ 1. (C.5)

In addition, we have

F 4,4,4
4 =




−1

$5%2−1 −
√

$5%2

$2%2
2
√

$4%+1

−
√

$5%2

$2%2
2
√

$4%+1
$3%2

($2%2)2



 →
(

−1/
√

2 −1/
√

2
−1/

√
2 1/

√
2

)

. (C.6)

The values of the R-matrix are as follows:

R1,a
a = Ra,1

a = 1 (C.7)
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(0, 1)

(1, −1)

(−1, 2)

(0, 0)

(1, −2)

(−1, 1)

(0, −1)

Figure D1. The weights of the G2 representation 7.

R4,4
5 = −q− 1

4 R4,4
1 = −q− 5

4 (C.8)

R4,5
4 = R5,4

4 = q−1 (C.9)

R5,5
1 = q−2. (C.10)

Appendix D. The case G2, k = 1

The Cartan matrix, its inverse and the quadratic form matrix for G2 read

A =
(

2 −3
−1 2

)
A−1 =

(
2 3
1 2

)
Fqf = 1

3

(
6 3
3 2

)
; (D.1)

thus, the second root is short, and we have t1 = 1 and t2 = 3, where ti = 2
(αi ,αi )

. For G2, one
has that ' = '. The weight spaces of the representation 7 = (0, 1) is given in figure D1.

The only non-trivial fusion rule is 7 × 7 = 1 × 7, i.e. the Fibonacci fusion rule.
Furthermore, d7 = $11%3 − $7%3 + $3%3 = $7%3($5%3 − $3%3 − 1) → φ, where we used
q = e2π i/5. The twist factor is θ7 = q2. In addition, we find fb1 = fb7 = 1, while the central
charge is 14

5 .

D.1. The q-CG coefficients for G2, k = 1

(0, 1) (1,−1) (−1, 2) (0, 0) (1,−2) (−1, 1) (0,−1)

(0, 1) q
1
2 q

5
12

√
$2%3 q

5
12

√
$2%3 q

1
3

(1,−1) −q
1
4
√

$2%3 −q
1
6 q

1
2 q

5
12

√
$2%3

(−1, 2) q− 1
4
√

$2%3 −q
1
6 −1 q

5
12

√
$2%3

(0, 0) −q− 1
2 q− 1

6 q− 1
6 q− 1

6 − q
1
6 −q

1
6 −q

1
6 q

1
2

(1,−2) −q− 5
12

√
$2%3 1 q− 1

6 −q
1
4
√

$2%3

(−1, 1) −q− 5
12

√
$2%3 −q− 1

2 q− 1
6 q− 1

4
√

$2%3

(0,−1) −q− 1
3 −q− 5

12
√

$2%3 −q− 5
12

√
$2%3 −q− 1

2

The q-CG coefficients for the 7 in 7 × 7. Each coefficient is to be multiplied by 1√
$7%3−1 .
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(0, 1) (1,−1) (−1, 2) (0, 0) (1,−2) (−1, 1) (0,−1)

(0, 1) q
5
6

(1,−1) −q
2
3

(−1, 2) q
1
6

(0, 0) −1
(1,−2) q− 1

6

(−1, 1) −q− 2
3

(0,−1) q− 5
6

The q-CG coefficients for the 1 in 7 × 7. Factor: 1√
$11%3−$7%3+$3%3

.

D.2. The F- and R-symbols

The only F-symbols which are not equal to 1 are the following (the numerical values are for
q = e2π i/5):

F 7,7,7
7 =

(
1

$11%3−$7%3+$3%3
− 1√

$11%3−$7%3+$3%3

− 1√
$11%3−$7%3+$3%3

− $3%3−2
$5%3−$3%3

)

→
(

1/φ −1/
√
φ

−1/
√
φ −1/φ

)
. (D.2)

In addition, we obtain the following R-symbols:

R1,a
a = Ra,1

a = 1 R7,7
1 = q−2 R7,7

7 = −q−1. (D.3)

Appendix E. The case su(2)k

For completeness, we give an explicit expression for the q-Clebsch–Gordan coefficients, as
well as the F- and R-symbols in the case of su(2)k (see, for instance, [31]), using the same
basis conventions as we used throughout this paper. In particular, this formula yields 1 for any
F-symbol with an identity on any of the outer lines. We use the Dynkin notation to denote
the particles; thus, the labels of the particles take the values a = 0, 1, 2, . . . , k, in the case of
su(2)k .

The fusion rules can be written as

a × b =
min(a+b,2k−a−b)∑

c=|a−b|
c, (E.1)

where c increases in steps of two. The quantum dimensions simply read da = $a + 1%; the
twist factors are θa = qa(a+2)/4, while the Frobenius–Schur indicators are fba = (−1)a .

To write the q-Clebsch–Gordan coefficients, we define $n%! = $n%$n − 1% · · · $1% and
$0%! = 1. Furthermore, for a " b + c, b " a + c, c " a +b and a +b + c = 0 mod 2, we define

#(a, b, c) =

√
$(a + b − c)/2%!$(a − b + c)/2%!$(−a + b + c)/2%!

$(a + b + c + 2)/2%!
. (E.2)

With these conventions, the q-Clebsch–Gordan coefficients can, for instance, be written in the
following way (see [32] for this particular form, and various others, as well as [33]):
[
a b c

k l m

]

q

= q((a+b−c)(a+b+c+2)+2(al−bk))/16#(a, b, c)

×
√

$(a − k)/2%!$(a + k)/2%!$(b − l)/2%!$(b + l)/2%!$(c − m)/2%!$(c + m)/2%!$c + 1%
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×
∑

n

′ (−1)n/2q−n(a+b+c+2)/8

$n/2%!$(a − k − n)/2%!$(b + l − n)/2%!

× 1
$(a + b − c − n)/2%!$(c − b + k + n)/2%!$(c − a − l + n)/2%!

, (E.3)

where the sum over n is over (non-negative) even integers, such that max(0,−(c−b+k),−(c−
a − l)) " n " min(a + b − c, a − k, b + l), in order that the arguments of the q-factorials are
non-negative integers.

One way of writing the F-symbols is as follows [31]:
(
Fa,b,c

d

)
e,f

= (−1)(a+b+c+d)/2#(a, b, e)#(c, d, e)#(b, c, f )#(a, d, f )
√

$e + 1%
√

$f + 1%

×
∑

n

′ (−1)n/2$(n + 2)/2%!
$(a + b + c + d − n)/2%!$(a + c + e + f − n)/2%!$(b + d + e + f − n%!

× 1
$(n− a − b − e)/2%!$(n− c − d − e)/2%!$(n− b − c − f )/2%!$(n − a − d − f )/2%!

,

(E.4)

where the sum over n is over (non-negative) even integers, such that max(a + b + e, c + d +
e, b + c + f, a + d + f ) " n " min(a + b + c + d, a + c + e + f, b + d + e + f ).

In addition, the R-symbols read as follows:

Ra,b
c = (−1)(a+b−c)/2q

1
8 (c(c+2)−a(a+2)−b(b+2)). (E.5)

Appendix F. The pentagon and hexagon equations

We note that in the presence of fusion multiplicities, the vertices carry an additional label. For
completeness, we give the appropriate form of the pentagon and hexagon equations here. The
greek index α, associated with a vertex with labels (a, b, c), runs over the values 1, 2, . . . , Nc

a,b,
where nc

a,b is the number of times c appears in the fusion product of a × b. With this
notation, we have the following condition, for all possible j1, j2, j3, j4, j, j12, j123, j34, j234

and α, β, γ, η, ι, κ:
∑

j23,δ,ε,ζ

(
F

j1,j2,j3
j123

)
(j12,α,β;j23,δ,ε)

(
F

j1,j23,j4
j

)
(j123,ε,γ ;j234,ζ,η)

(
F

j2,j3,j4
j234

)
(j23,δ,ζ ;j34,ι,κ)

=
∑

λ

(
F

j12,j3,j4
j

)
(j123,β,γ ;j34,ι,λ)

(
F

j1,j2,j34
j

)
(j12,α,λ;j234,κ,η)

. (F.1)

To write down the hexagon equations, we assume that twisting a vertex does not change
the internal label, or in other words, the fusion channel. With that restriction, the hexagon
equations read, for all j1, j2, j3, j, j12, j13 and α, β, γ, δ,

R
j1,j2
j12

(
F

j2,j1,j3
j

)
(j12,α,β;j13,γ,δ)

R
j1,j3
j13

=
∑

j23,ε,ζ

(
F

j2,j1,j3
j

)
(j12,α,β;j23,ε,ζ )

R
j1,j23
j

(
F

j2,j3,j1
j

)
(j23,ε,ζ ;j13,γ,δ)

,

(F.2)

and a similar equation for R−1.
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