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Abstract
Using a form factor approach, we define and compute the character of the
fusion product of rectangular representations of ŝu(r + 1). This character
decomposes into a sum of characters of irreducible representations, but with
q-dependent coefficients. We identify these coefficients as (generalized) Kostka
polynomials. Using this result, we obtain a formula for the characters of
arbitrary integrable highest weight representations of ŝu(r + 1) in terms of the
fermionic characters of the rectangular highest weight representations.

PACS numbers: 03.65.Fd, 02.20.Tw, 11.25.Hf

1. Introduction

In an earlier paper [1] (which we will refer to as I) we provided a physics application of the
ideas of Feigin and Stoyanovsky (FS) [2], who showed that by counting the number of linearly
independent symmetric polynomials that vanish when k + 1 of their variables coincide one
may obtain fermionic formulae [3] for the characters of integrable representations of the affine
Lie algebra ŝu(2)k [4]. We also sketched how a similar count of the number of symmetric
polynomials in two types of variables allows the computation of the character of the vacuum
representation of ŝu(3)k . The reason for the restriction to the vacuum representation of ŝu(3)k
was that a naı̈ve application of the FS strategy to most representations of higher rank groups
does not yield the characters. Here we will explain both why the naı̈ve method fails, and what
must be done to correct it. To be more precise, we explain the ideas behind the corrected
character formulae in a form accessible to physicists. We will not give all the technical details
of the proofs. The mathematical details and the proofs are given in [5].

The basic idea of [2] is most simply explained in the language of conformal field theory:
we compute matrix elements of ladder-operator currents between the highest weight state that
defines the representation of interest and any other weight state in the representation. These
matrix elements are rational functions (in the ŝu(2) case they are symmetric polynomials) in
the co-ordinates of the current operators and have certain restrictions imposed on them by
relations in the Lie algebra, and by the highest weight condition. By counting the number
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of possible functions satisfying these constraints, we are able to count the dimension of all
weight subspaces.

For ŝu(r + 1), and for a representation whose top graded component forms a finite-
dimensional representation of su(r + 1) having only one non-zero Dynkin index (and hence
corresponds to a rectangular Young diagram), it is not difficult to count the dimensions of the
function space. For a general representation, it is hard. We find, however, that by introducing a
fusion-product representation we can retain a function space whose dimensions we can count.
The price to be paid is that the fusion-product representation is reducible. The generating
function for the dimensions, although of fermionic form, is therefore a sum of characters
of irreducible representations, moreover one with coefficients that are polynomials in the
variable 1/q. These q-dependent coefficients can be identified as being generalized Kostka
polynomials [6, 7]. The decomposition may then be inverted to obtain the character of any
desired irreducible representation in terms of the fermionic fusion-product characters.

Kostka polynomials and their generalizations are polynomials in q, with coefficients
which are non-negative integers. The classical Kostka polynomials are known in the theory
of symmetric functions [8] as the transition coefficients between Hall–Littlewood and Schur
polynomials. In physics, the Kostka polynomials made their first appearance in the study of
the completeness of Bethe ansatz states in the Heisenberg spin chain [9, 10]. The methods
introduced there, together with the theory of crystal bases, are the basis for the subsequent
studies of [7, 6, 11].

In order to establish our notation, in section 2 we provide a brief review of affine Lie
algebras. In section 3 we introduce the ‘principal subspace’ of Feigin and Stoyanovsky, and
the function spaces that are dual to them. In section 4 we show how the affine Weyl translations
allow us, in the special case of rectangular representations, to use the character of the principal
subspace to compute the character of the full space. This is the process that in I we called
‘filling the bose sea’. In section 5 we explain why the naı̈ve extension of the method to
non-rectangular representations fails, and exhibit the subtractions necessary to obtain correct
formulae for the characters. These formulae were originally obtained numerically. In section 6
we show how these correct formulae find their explanation in characters of reducible fusion-
product representations, and also explain the origin of the q-dependent Kostka polynomial
coefficients in the fusion-product decomposition. In section 7, we make the connection
between these Kostka polynomials and the WZW conformal field theory. Finally, in section 8,
we combine all the results to obtain a character formula for arbitrary highest weight
representations of ŝu(r + 1)k , equation (8.2). Section 9 is devoted to the conclusions and
an outlook. Details concerning the characters of the principal subspaces can be found in
appendix A, while appendix B contains details about the explicit formula for the (generalized)
Kostka polynomials.

2. Notation

A simple Lie algebra g gives rise to the affine Lie algebra ĝ′ = g ⊗ C[t, t−1] ⊕ ĉC with
commutation relations

[a ⊗ tm, b ⊗ tn] = [a, b] ⊗ tn+m + ĉn〈a, b〉δm+n,0. (2.1)

Here 〈a, b〉 denotes the Killing form, normalized so that a long root has length
√

2. The
element ĉ is central, and so commutes with all a ∈ ĝ. It is convenient to adjoin to this algebra
a grading operator d̂ that also commutes with ĉ, and such that [d̂, a ⊗ tn] = n(a ⊗ tn). The
algebra with the adjoined operator d̂ is denoted by ĝ. We will often write a ⊗ tn ≡ a[n].
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The affine algebra is defined for polynomials in t, t−1. We will later need to extend the
definition of functions which are rational functions in t, or more generally, Laurent series in
t−1. If f (t) and g(t) are such series, we can write the commutation relations as

[a ⊗ f, b ⊗ g] = [a, b] ⊗ fg +
ĉ〈a, b〉

2π i

∮
f ′g dt. (2.2)

Here the integral treats the otherwise formal parameter t as a complex variable taking values
on a circle surrounding t = 0. The result of the integration, Rest=0(f

′g dt), involves only a
finite sum because of the polynomial condition on the negative powers of t in f , g.

We will use the Chevalley basis for the generators of the simple algebra g, in which
each simple root αi is associated with a step-up ladder operator eαi

≡ Eαi , a step-down
ladder operator fαi

≡ E−αi and the co-root element of the Cartan algebra hαi
≡ 2αi ·H

‖αi‖2 . The
commutation relations of these generators are[

hαi
, hαj

] = 0,
[
hαi

, eαj

] = (Cr )jieαj
,[

hαi
, fαj

] = −(Cr )jifαj
,

[
eαi

, fαj

] = δijhαi
.

(2.3)

The remaining generators are obtained by repeated commutators of these, subject to the Serre
relations [

ad
(
eαi

)]1−(Cr )ji
eαj

= 0,
[
ad

(
fαi

)]1−(Cr )ji
fαj

= 0. (2.4)

In these expressions (Cr )ij denotes the elements of the Cartan matrix of g:

(Cr )ij
def= 2(αi · αj )

‖αj‖2
. (2.5)

In the case g = su(r + 1) the elements of the Cartan matrix are given by (Cr )ij = 2δi,j −
δ|i−j |,1. We will also have cause to use the inverse Cartan matrix whose elements (for g =
su(r + 1)) are

(
C−1

r

)
ij

= min(i, j) − ij

r+1 .
Our interest is in integrable representations of ĝ, and in particular of ŝu(r + 1). An

integrable representation is one that, under restriction to any subgroup of ĝ isomorphic to
su(2), decomposes into a set of finite-dimensional representations of this su(2). From the
work of Kac [12] it is known that in any irreducible integrable representation the generator ĉ

will act as a positive integer multiple of the identity, ĉ 
→ kI, and we will follow the physics
convention of appending the integer k, the level of the representation, to the name of the group,
and so write ĝk . These integrable representations are all highest weight representations whose
highest weight vector is annihilated by eαi

[n], n � 0, and by hαi
[n], fαi

[n] with n > 0. The top
d-graded subspaces (where d̂ is taken to act as zero) form finite-dimensional representations
of the simple algebra g, but not all representations of g can form top components of integrable
representations of ĝk . In the case of ŝu(r + 1)k the restriction on the representations of
su(r + 1) that can appear as top components is that the number of columns in the Young
diagram labelling the representation must be � k.

We wish to obtain the dimensions mult(µ̂) of the weight spaces µ̂ ≡ (µ; k; d) in an
irreducible integrable level-k representation Hλ̂ of ĝk , whose highest weight is λ̂ = (λ; k; 0).
Here λ and µ denote a highest weight and an arbitrary weight, respectively, of the associated
finite-dimensional simple algebra g, and d, a non-positive integer, is the eigenvalue of the
grading operator d̂ . The character of the representation is then defined to be

ch Hλ̂(q, x) =
∑

µ̂

mult(µ̂)x
µ1
1 x

µ2
2 · · · xµr

r q−d . (2.6)

Here µ1, . . . , µr are the components of the weight µ in the basis of the fundamental
weights of the finite-dimensional algebra ωi = ∑

j

(
C−1

r

)
ji

αj , i.e. µ = ∑r
i=1 µiωi , and
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x = (x1, . . . , xr ). Because the eigenvalues d are zero or negative, the character is a formal
series in positive powers of q.

In this paper, we present fermionic formulae for the characters of all highest weight
integrable representations of ŝu(r + 1). These formulae are inspired by the construction of
Feigin and Stoyanovsky, which we present below.

3. The principal subspace

In this section we briefly review the strategy of Feigin and Stoyanovsky [2], as we presented
it in I. The reader should refer to I for more details.

Let |̂λ〉 be the highest weight state of the irreducible representation Hλ̂. Recall that eαi

and fαi
are the step-up and step-down ladder operators corresponding to simple root αi in the

finite-dimensional algebra g, and eαi
[n] and fαi

[n] are their ĝ relatives. Since Hλ̂ is irreducible,
by acting on |̂λ〉 with products of eαi

[n], n < 0, and fαi
[n], n � 0, we generate the entire

space Hλ̂. If we restrict ourselves to products containing only the fαi
[n], n � 0, we obtain

what is known as the principal subspace Wλ̂.
Note that in I we used a commuting set of operators applied to the highest weight state

to generate a principal subspace (in the case of su(2) and su(3)). This subspace had the
advantage for physics applications that the resulting correlation functions were polynomials,
rather than rational functions. For the purposes of this paper, however, it is necessary to use
the Feigin–Stoyanovsky subspace, in order to obtain the simple closed-form formulae for the
principal subspace multiplicities for arbitrary representations that we report here.

Consider, for example, su(2) where there is only one simple root α1 and so the root label is
redundant. Here, since each application of an f [−n] moves us one step to the left and n steps
down in the weight diagram, we cannot reach any weight to the right of the column lying below
λ. (See figure 2 where the upper part of the weight diagram of the vacuum representation of
ŝu(2)2 is displayed.) Furthermore, we can reach weights close to this column via fewer distinct
products f [−n1]f [−n2] · · · f [−nm] than the dimension of the weight space. Because of this
paucity of paths, even if all the f [−n1]f [−n2] · · · f [−nm]|̂λ〉 were linearly independent, we
would be able to obtain only a subspace in each weight space. If, however, we look at weights
in columns far to the left in the weight diagram, the number of distinct paths leading to a given
weight grows rapidly, whilst the dimensions of the weight spaces near the head of any such
column remain small. It is plausible, and indeed true, that we can obtain all states in such a
weight space by applying suitable products of f [−n]’s to |̂λ〉. Thus, by counting the number
of linearly independent paths, we can obtain the multiplicity of these distant weights. Because
the weight diagram is invariant under the action of affine Weyl translations, as we explain in
section 4, this information provides the dimension of all the weight spaces, and hence the
complete character.

We could in principle use Lie algebra relations to determine the number of independent
paths between the weights. It is easier, however, to obtain the dimensions of the weights µ̂

appearing in the principal subspace by counting the number of linearly independent functions
F that arise as matrix elements

F({z(1)}, {z(2)}, . . .) = 〈v|R{
fα1

(
z
(1)
1

) · · · fα1

(
z
(1)

m(1)

)
fα2

(
z
(2)
1

) · · · fα2

(
z
(2)

m(2)

) · · · }|̂λ〉, (3.1)

where |v〉 is an element of a weight space µ̂.
In addition, fαi

(z) denotes the current operator

fαi
(z) =

∞∑
n=−∞

fαi
[n]z−n−1, (3.2)
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and R denotes ‘radial ordering’, meaning that operators f (z) with larger |z| are placed to the
left of those with smaller |z|’s1. By duality, the number of linearly independent functions F
with m(i) currents fαi

(z) and the fixed total degree N is equal to the dimension, in the principal
subspace Wλ̂ of the weight

µ̂ =
(

λ −
∑

i

m(i)αi; k;−N −
∑

i

m(i)

)
. (3.3)

Thus, the numbers m(i) correspond to the number of roots αi which need to be subtracted
from λ to obtain µ, hence, in terms of the fundamental weights, we have µ =∑r

i=1

(
li − ∑

j (Cr )ijm
(j)

)
ωi , where the li are the components of λ, i.e. λ = ∑

i liωi .
The linear dependencies between products of fαi

[n] due to relations in the Lie algebra,
the integrability, and the properties of the highest weight vector |̂λ〉 translate, through duality,
into conditions satisfied by the function F. For example, operators fαi

(z) corresponding to the
same simple root commute with each other. The function F is therefore a symmetric function
in the m(i) variables z

(i)
j for fixed i. It must also possess certain poles and zeros whose exact

form we will specify below. Once we know all these properties, we can set out to count the
number of independent functions. It is not, however, easy to be sure that we have obtained a
complete set of constraints on F. If we have missed some, we will over-count the multiplicities.

In the case of ŝu(r + 1)k representations with only one non-zero Dynkin index, i.e.
λ = lωp, it is not too hard to find all the constraints on functions F

({
z
(i)
j

})
. We already

observed that F
({

z
(i)
j

})
is symmetric under the exchange of the variables z

(i)
j ↔ z

(i)
j ′ . Next we

observe that the commutator[
fαi

, fαi+1

] = fαi+αi+1 (3.4)

implies the operator product

fαi
(z)fαi+1(w) = fαi+αi+1(w)

(z − w)
+ regular terms, (3.5)

and this in turn implies that F
({

z
(i)
j

})
can have a pole of at most order one when the coordinates

of two currents corresponding to adjacent simple roots coincide, z
(i)
j = z

(i+1)
j ′ . (There is no

pole for non-adjacent indices because αi + αj is not a root unless j = i ± 1.) We will refer
to the index i as the colour of the variables. In the representation λ = lωp, and for l > 0, we
have that fαp

[0]|̂λ〉 �= 0, and sincefαp
[0] comes with coefficient z−1, the function F

({
z
(i)
j

})
may have a pole of order one at z

(p)

j = 0. (Note that fαi
[0]|̂λ〉 = 0 for i �= p.) These are the

only possible poles, and we make them explicit by writing

F
({

z
(i)
j

}) = f
({

z
(i)
j

})∏
j

(
z
(p)

j

) ∏r−1
i=1

∏
j,j ′

(
z
(i)
j − z

(i+1)
j ′

) , (3.6)

where f
({

z
(i)
j

})
is now a polynomial symmetric under the exchange of variables of the same

colour: z
(i)
j ↔ z

(i)
j ′ . Because of relations in the algebra and properties of the representation

f
({

z
(i)
j

})
is not an arbitrary symmetric polynomial, but must possess certain zeros. We now

describe these as follows:

(i) The integrability condition requires that
[
fαi

(z)
]k+1

annihilates any vector in the

representation. This tells us that f
({

z
(i)
j

}) = 0 when z
(i)
1 = z

(i)
2 = · · · = z

(i)
k+1, for

any colour i.

1 Strictly speaking, we regard z
(α)
i ’s as formal variables and consider matrix elements of all possible orderings of the

roots αi . We then count the resulting number of linearly independent functions in the formal variables z
(α)
i .
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(ii) The integrability properties of the top component of the representation with highest weight
λ = lωp tell us that f l+1

αp
[0]|̂λ〉 = 0. The function f

({
z
(i)
j

})
must therefore have a zero

when l + 1 of the z
(p)

j becomes zero.
(iii) The Serre relations (2.4) are[

fαi
,
[
fαi

, fαi+1

]] = [
fαi+1 ,

[
fαi+1 , fαi

]] = 0, (3.7)

and indicate that F should have no pole if two currents of colour i are made to coincide
with a current of adjacent colour. This requires that f

({
z
(i)
j

})
has a pole-cancelling zero

when

z
(i)
1 = z

(i)
2 = z

(i+1)
1 or when z

(i)
1 = z

(i+1)
1 = z

(i+1)
2 , for i = 1, . . . , r − 1.

To summarize: we find that the polynomial f
({

z
(i)
j

})
is symmetric in the variables

corresponding to the same colour, and vanishes when any of the following conditions holds:

z
(i)
1 = · · · = z

(i)
k+1, ∀i (3.8)

z
(i)
1 = z

(i)
2 = z

(i+1)
1 , z

(i)
1 = z

(i+1)
1 = z

(i+1)
2 , i = 1, . . . , r − 1, (3.9)

z
(p)

1 = · · · = z
(p)

l+1 = 0. (3.10)

We will denote the space of rational functions F
({

z
(i)
j

})
(3.6) such that f

({
z
(i)
j

})
satisfies

(3.8), (3.9) and (3.10) by F lωp;k . We now define the character of this space to be

ch Flωp;k(q, x)
def= xl

p

∑
{F(z)}

qdeg(F )+
∑r

i=1 m(i)

(
r∏

i=1

x
− ∑

j (Cr )jim
(j)

i

)
, (3.11)

where the sum is over all the functions F
({

z
(i)
j

})
in the space Flωp;k . The powers of q and

xi are motivated by the form of the weights (3.3), which we rewrite here in terms of the
fundamental weights ωi

µ̂ =
λ −

∑
i,j

m(j)(Cr )jiωi; k;−N −
∑

i

m(i)

 . (3.12)

As a reminder, m(i) is the number of variables of colour (i), which corresponds to the
number of roots αi subtracted from the highest weight λ = lωp. Note that the exponent of q
is not just the total degree of F(z), but is shifted by

∑
i m

(i) (compare with (3.3)). The reason
is that the currents fαi

(z) are defined by equation (3.2), in which the power of z is shifted by
the scaling dimension.

Counting the dimensions of these function spaces is an intricate but tractable problem.
We will explain the structure of this character in the appendix A, and refer to [5] for details
and the proof. The result is the function-space character

ch Flωp;k(q, x) = xl
p

∑
i=1,...,r
a=1,...,k

m
(i)
a �0

(
r∏

i=1

x
− ∑

j (Cr )jim
(j)

i

)
q

1
2 m

(i)
a (Cr )i,j Aa,bm

(j)

b −Aa,lm
(p)
a∏r

i=1

∏k
a=1(q)

m
(i)
a

, (3.13)

where it is understood that repeated indices are summed over. Here various symbols need to
be defined: (i) the matrix A has the entries Aa,b = min(a, b); (ii) for any integer m > 0, we
define (q)m = ∏m

i=1(1 − qi) and (q)0 = 1; (iii) the sum over integers m(i)
a is to be understood

as a sum over partitions of m(i), where m(i)
a denotes the number of rows of length a in partition

(i). That is
∑k

a=1 am(i)
a = m(i), see figure 1 for an example.
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m
(1)
1

m
(1)
2

m
(1)
3

(1)

Figure 1. A partition of m(1) = 13.

The space of functions Flωp;k is dual to the principal subspace Wlωp;k . It follows that the
character (3.13) is the character of the principal subspace

ch Wlωp;k(q, x) = ch Flωp;k(q, x). (3.14)

In the next section, we will explain how we can use the affine Weyl translations to obtain
characters for the full representation from the characters of the principal subspaces.

We would like to note that it is straightforward to generalize the function space Flωp;k ,

by changing the constraint (3.10) to z
(i)
1 = · · · = z

(i)
li+1 = 0 for i = 1, . . . , r and taking the

product over all p in the denominator of (3.6). We will denote this function space by Fl;k ,
where l = (l1, . . . , lr )

T . The character of this function space is

chFl;k(q, x) =
r∏

i=1

x
li
i

∑
i=1,...,r
a=1,...,k

m
(i)
a �0

(
r∏

i=1

x
− ∑

j (Cr )jim
(j)

i

)
q

1
2 m

(i)
a (Cr )i,j Aa,bm

(j)

b −Aa,li
m

(i)
a∏r

i=1

∏k
a=1(q)

m
(i)
a

. (3.15)

We would like to stress that this character is not the character of the principal subspace Wλ;k ,
where λ = ∑

i liωi . However, it can be interpreted as a character of a somewhat larger space,
as we will see below.

4. Affine Weyl translations

In this section, we will exploit the symmetry of the representation spaces under the affine Weyl
group. Elements of the affine Weyl group map weights of a highest weight representation to
other weights in the same representation, in such a way that the weight-space multiplicities
are preserved.

Elements of the affine Weyl group can be thought of as a product of a finite Weyl reflection
and an affine Weyl translation. We will focus on the abelian subgroup generated by the affine
Weyl translations, because they will enable us to obtain the character of the full integrable
representation from the character of the principal subspace.

The affine Weyl translation T Ni
αi

acts on a weight λ̂ = (λ; k; d), where λ = ∑
i liωi ,

by ‘translating’ it to λ + Niαi (no summation implied) and shifting the value of d (see, for
instance, [12], equation (6.5.2))

T Ni

αi
(λ; k; d) = (

λ + kNiαi; k; d − Nili − N2
i k

)
. (4.1)
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2 10 21 28 21 10 2

1 5 13 16 13 5 1

3 7 10 7 3

1 4 5 4 1

v−1 2 3 2 v1

1 1 1

v0

−6

−5

−4

−3

−2

−1

d = 0

−6 −4 −2 0 2 4 6λ =

f [1]

f [1]

f [3]

f [3]

f [−3]

f [−1]

f [−1]

Figure 2. The top part of the weight diagram of the vacuum representation of ŝu(2)2. The numbers
denoted the dimension of the corresponding weight space.

More generally, we have

r∏
i=1

T Ni

αi
(λ; k; d) =

(
λ + k

r∑
i=1

Niαi; k; d −
r∑

i=1

Nili − k

2
NT · Cr · N

)
, (4.2)

where N = (N1, . . . , Nr)
T , and Cr is the Cartan matrix of su(r + 1).

We can use these affine Weyl translations to obtain the characters of the full representation.
To illustrate how this works, we will use an explicit example, namely the vacuum representation
of ŝu(2)2. The top part of the weight diagram of this representation is given in figure 2.

From this figure, we see that we can obtain the whole representation by acting with
an arbitrary combination of the operators e[i] and f [i], with i < 0 on the highest weight
state |λ̂〉 ≡ |v0〉 (we dropped the subscript α1). Under the affine Weyl translation T 1, this
weight is mapped to the weight |v1〉. We can also generate the whole representation by acting
with operators e[i] and f [j ] on this state. In this case, we need to act with an arbitrary
combination of operators taken from the sets {e[i]|i < −2} and {f [j ]|j < 2}. In general, the
whole representation can be obtained by acting on the state |vN 〉 = T N |v0〉 with the operators
{e[i]|i < −2N} and {f [j ]|j < 2N}. We can now take the limit N → ∞, and obtain that, we
can generate the whole representation by acting on |v∞〉 with only the step-down operators
{f [j ]|j ∈ Z}, see [13, 14] for the proof of this statement.

Let us come back to the principal subspace. As a reminder, the principal subspace Wλ̂

is the space generated by acting with the operators f [j ], with j < 0 on |v0〉 (again, we are
focusing on the vacuum representation of ŝu(2)2). We can define a sequence of subspaces, by
acting with the affine Weyl translation, i.e. W(N) = T NWλ̂. The subspace W(N) is obtained
by acting with the operators {f [j ]|j < −2N} on the state |vN 〉. So, in the limit N → ∞, we
find that W(∞) is obtained by acting with {f [j ]|j ∈ Z}, on the state |v∞〉. Comparing this
subspace with the description of the full representation of the previous paragraph, we find that
they are in fact the same.
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Using this result, we can obtain the characters of the integrable representation by acting
with the affine Weyl translation T N on the character of the principal subspace, and taking the
limit N → ∞.

In our paper [1], we showed that the effect of acting with the affine Weyl translation and
taking the limit of N → ∞ only alters the character of the principal subspaces of ŝu(2)k in the
following two ways. First of all, the summation over the variable m

(1)
k � 0 is extended to the

negative integers. Secondly, the factor 1
(q)

m
(1)
k

is replaced by 1
(q)∞

. In physical terms (see [1]),

this corresponds to ‘filling the Bose sea’, and considering the excitations on top of a ‘large
droplet’. In [5], we showed that this procedure also works in the case ŝu(r + 1)k . Using this
result, we obtain the characters for rectangular highest weight representations

ch Hlωp;k(q, x) = 1

(q)r∞
xl

p

∑
m

(i)
k ∈Z

m
(i)
a<k∈Z�0
i=1,...,r

(
r∏

i=1

x
− ∑

j (Cr )jim
(j)

i

)
q

1
2 m

(i)
a (Cr )i,j Aa,bm

(j)

b −Aa,lm
(p)
a∏r

i=1

∏k−1
a=1(q)

m
(i)
a

. (4.3)

The character (4.3) can be written in a form which allows all li to be non-zero, namely, in
the same way as the character chFl;k , equation (3.15)

ch F∞
l;k(q, x)

def= 1

(q)r∞

(
r∏

i=1

x
li
i

) ∑
m

(i)
k ∈Z

m
(i)
a<k∈Z�0
i=1,...,r

(
r∏

i=1

x
− ∑

j (Cr )jim
(j)

i

)
q

1
2 m

(i)
a (Cr )i,j Aa,bm

(j)

b −Aa,li
m

(i)
a∏r

i=1

∏k−1
a=1(q)

m
(i)
a

.

(4.4)

We cannot however interpret this character as the character of the highest weight representation
Hλ̂, where the finite part of λ̂ is given by λ = ∑

i liωi . This is because we did not take all
the constraints into account for arbitrary representations. For example, for general highest
weight, our restrictions on the space do not ensure that fα[1]|̂λ〉 = 0 whenever α is not a
simple positive root. However, as we will show in the next section, the characters chF∞

l;k are
an essential ingredient of the characters ch Hλ̂;k for arbitrary highest weights.

5. Arbitrary highest weight representations

As mentioned above, we do not expect the function-space characters chF∞
l;k defined in

equation (4.4) to be the characters of arbitrary highest weight representations Hλ̂. This
is because we have not yet imposed all the conditions on the function spaces. We have
not imposed the remaining conditions, because the complexity of the resulting space makes
counting its dimensions intractable.

We anticipate, therefore, that the function-space character (4.4) over-counts the
dimensions of the weight spaces whenever λ is not a rectangular representation. Nevertheless
it is reasonable to conjecture some sort of relation between ch Hλ̂ and chF∞

l;k .
To seek such a relation we used Mathematica R© to compare the multiplicities given by

chF∞
l;k with those in the representation Hλ̂, obtained by using the affine version of Freudenthal’s

recursion formula (see for instance, [15], page 578). We found that whenever more than one
Dynkin index is non-zero, the character chF∞

l;k does indeed over-count, and subtractions are
necessary. It turns out that these subtractions can be written as a sum over chF∞

l′;k , where the
coefficients are polynomials in q−1.

To illustrate this we give a table expressing the characters of integrable level-4
representations of ŝu(4) in terms of the characters chF∞

l′;k .
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ch H1,1,0;4 = chF∞
1,1,0;4 − 1

q
chF∞

0,0,1;4

ch H2,1,0;4 = chF∞
2,1,0;4 − 1

q
chF∞

1,0,1;4 +
1

q2
chF∞

0,0,0;4

ch H1,2,0;4 = chF∞
1,2,0;4 − 1

q
chF∞

0,1,1;4 +
1

q2
chF∞

1,0,0;4

ch H1,1,1;4 = chF∞
1,1,1;4 −

(
1

q
+

1

q2

)
chF∞

0,1,0;4 − 1

q
chF∞

2,0,0;4 − 1

q
chF∞

0,0,2;4

ch H3,1,0;4 = chF∞
3,1,0;4 − 1

q
chF∞

2,0,1;4 +
1

q2
chF∞

1,0,0;4

ch H2,2,0;4 = chF∞
2,2,0;4 − 1

q
chF∞

1,1,1;4 +

(
1

q2
+

1

q3

)
chF∞

0,1,0;4 +
1

q2
chF∞

2,0,0;4

ch H2,1,1;4 = chF∞
2,1,1;4 −

(
1

q
+

1

q2

)
chF∞

1,1,0;4 − 1

q
chF∞

3,0,0;4

− 1

q
chF∞

1,0,2;4 +

(
1

q2
+

1

q3

)
chF∞

0,0,1;4

ch H1,3,0;4 = chF∞
1,3,0;4 − 1

q
chF∞

0,2,1;4 +
1

q2
chF∞

1,1,0;4 − 1

q3
chF∞

0,0,1;4

ch H1,2,1;4 = chF∞
1,2,1;4 −

(
1

q
+

1

q2

)
chF∞

0,2,0;4 − 1

q
chF∞

2,1,0;4

− 1

q
chF∞

0,1,2;4 +
1

q2
chF∞

1,0,1;4 − 1

q3
chF∞

0,0,0;4.

(5.1)

In addition, we found evidence for the relation

ch Hl1,0,l3;k = chF∞
l1,0,l3;k − 1

q
chF∞

l1−1,0,l3−1;k, (5.2)

for l1, l3 > 0 and k � 4.
It is interesting that the characters ch Hλ;k can still be expressed in terms of chF∞

l;k , but
the pattern of subtractions is at first sight obscure. However, inverting the relations so as to
express the characters chF∞

l;k in terms of the characters of the full representations gives a clue
as to what is happening. We find

chF∞
1,1,0;4 = ch H1,1,0;4 +

1

q
ch H0,0,1;4

chF∞
1,1,1;4 = ch H1,1,1;4 +

(
1

q
+

1

q2

)
ch H0,1,0;4 +

1

q
ch H2,0,0;4 +

1

q
ch H0,0,2;4

chF∞
2,1,0;4 = ch H2,1,0;4 +

1

q
ch H1,0,1;4

chF∞
1,2,0;4 = ch H1,2,0;4 +

1

q
ch H0,1,1;4

chF∞
3,1,0;4 = ch H3,1,0;4 +

1

q
ch H2,0,1;4

chF∞
1,3,0;4 = ch H1,3,0;4 +

1

q
ch H0,2,1;4



Fusion products 9193

chF∞
2,2,0;4 = ch H2,2,0;4 +

1

q
ch H1,1,1;4 +

1

q2
ch H0,0,2;4

chF∞
2,1,1;4 = ch H2,1,1;4 +

(
1

q
+

1

q2

)
ch H1,1,0;4 +

1

q
ch H3,0,0;4 +

1

q
ch H1,0,2;4 +

1

q2
ch H0,0,1;4

chF∞
1,2,1;4 = ch H1,2,1;4 +

(
1

q
+

1

q2

)
ch H0,2,0;4 +

1

q
ch H2,1,0;4 +

1

q
ch H0,1,2;4 +

1

q2
ch H1,0,1;4.

(5.3)

In addition, we have

chF∞
l1,0,l3;k =

min(l1,l3)∑
j=0

1

qj
ch Hl1−j,0,l3−j ;k. (5.4)

All the signs on the right-hand side of the above decompositions are positive. This suggests
that the chF∞

l;k are indeed characters of ŝu(r + 1) representations, but these representations
are reducible. We need to understand which representations are occurring, and why the
coefficients of their characters are polynomials in q−1. This we will do in the next section.

6. Kostka polynomials

In this section we will introduce Feigin and Loktev’s q-refinement [16] of the Littlewood–
Richardson coefficients that occur in the decomposition of tensor products of the finite-
dimensional su(r + 1) representations [17].

Let ωi denote the fundamental weights of the finite-dimensional su(r + 1) algebra. A
finite-dimensional irreducible representation labelled by the Dynkin indices li ∈ Z�0 has the
highest weight λ = ∑r

i=1 liωi and corresponds to a Young diagram with l1 columns containing
one box, l2 columns with two boxes, and so on.

l3 l2 l1

.

The Littlewood–Richardson rules [17] provide a product that allows us to make the space
of Young diagrams into an associative algebra. The multiplication operation in this algebra
mirrors the multiplication and decomposition of the Schur functions corresponding to the
Young diagrams, and, these being the characters of the associated su(r + 1) representations,
reflect the decomposition of su(r + 1) tensor product representations into their irreducible
components. For example, using the notation Vl1,l2,l3 for the su(4) representation with Dynkin
indices l1, l2, l3, the Young diagram manipulation

⊗ = ⊕ ⊕ ⊕

corresponds to the decomposition

V1,1,0 ⊗ V2,0,0 = V3,1,0 ⊕ V1,2,0 ⊕ V2,0,1 ⊕ V0,1,1. (6.1)



9194 E Ardonne et al

The coefficients are not always unity. For example

⊗ ⊗ = ⊕ ⊕ ⊕ 2

,

or

V0,0,1 ⊗ V0,1,0 ⊗ V1,0,0 = V1,1,1 ⊕ V0,0,2 ⊕ V2,0,0 ⊕ 2V0,1,0. (6.2)

This last expression is to be compared with the decomposition of our ŝu(4)k=4 function
space

chF∞
1,1,1;4 = ch H1,1,1;4 +

1

q
ch H0,0,2;4 +

1

q
ch H2,0,0;4 +

(
1

q
+

1

q2

)
ch H0,1,0;4. (6.3)

If we set q = 1 in the coefficients in this decomposition, we recover the integers appearing
in (6.2). All representations appearing in (5.3) are similarly accounted for: the Hλ̂i

appearing
in the decomposition of chF∞

l1,l2,l3;4 are precisely the ŝu(4) representations whose top grades
are the Vλi

in the decomposition of the product Vl1,0,0 ⊗ V0,l2,0 ⊗ V0,0,l3 , and if q → 1 their
q-coefficients reduce to the multiplicity of these Vλi

.
We need to understand why the coefficients are q-dependent. Following Feigin and

Loktev [16], we now show that these q-polynomial coefficients can be introduced even for
finite-dimensional su(r + 1) representations. Let Vλi

denote a collection of irreducible finite-
dimensional highest weight representations of a Lie algebra g, and consider the tensor product

Vλ1 ⊗ · · · ⊗ VλN
. (6.4)

To each Vλi
we associate a distinct complex number ζi (to be thought of as ‘where’ the

representation is located). We then introduce the algebra g[t] ≡ g ⊗ C[t] of g-valued
polynomials in t, with Lie bracket

[a ⊗ tm, b ⊗ tn] = [a, b] ⊗ tm+n. (6.5)

(Since only non-negative powers of t are being allowed, there is no non-trivial central extension,
so this is not the affine Lie algebra associated with g.)

The representation Vλi
gives rise to the evaluation representation of g[t] by setting

(a ⊗ tm)|u〉 = ζm
i a|u〉, for |u〉 ∈ Vλi

. (6.6)

We similarly define the action of g on the tensor product space. If a ∈ g, and |ui〉 ∈ Vλi
, we

set

(a ⊗ tm)(|u1〉 ⊗ · · · ⊗ |uN 〉) =
∑

i

ζm
i (|u1〉 ⊗ · · · ⊗ a|ui〉 ⊗ · · · ⊗ |uN 〉). (6.7)

We will call this action the geometric, or fusion, co-product. For m = 0 it reduces to the usual
co-product action of g on the product space

a → �(a) =
∑

I ⊗ · · · ⊗ a ⊗ · · · ⊗ I. (6.8)

If |λi〉 are the highest weight (and hence cyclic) vectors for the representations Vλi
, then,

with the usual co-product action of g, the vector |v〉 ≡ |λ1〉 ⊗ · · · ⊗ |λN 〉 is the highest weight
vector for only one of the irreducible representations occurring in the decomposition of the
tensor product of the Vλi

. Under the action of g[t], however, and provided that the ζi are all
distinct, |v〉 is a cyclic vector for the entire tensor product space. This is because the matrix
ζ

j

i is invertible, and so any vector |u1〉 ⊗ · · · ⊗ a|uj 〉 ⊗ · · · ⊗ |uN 〉 is obtainable as a linear
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combination of (a ⊗ tm)(|u1〉 ⊗ · · · ⊗ |uN 〉) for different m, and any vector |ui〉 in each of the
Vλi

is obtainable by the action of suitable a on |λi〉.
The Lie algebra g[t] is graded by the degree of the polynomial in t. This grading extends

to the universal enveloping algebra U(g[t]) and gives rise to a filtration—a nested set of vector
spaces—

F 0 ⊆ · · · ⊆ F i ⊆ F i+1 ⊆ · · · (6.9)

where

F i = U�i (g[t])|v〉. (6.10)

Here, U�i (g[t]) denotes the elements of the universal enveloping algebra U(g[t]), which have
degree in t less than or equal to i. The action of g, considered as the zero-grade component
of g[t], preserves this filtration and so has a well-defined action on each of the components
of the associated graded spaces gri[F ] ≡ F i/F i−1. Each of the irreducible representations in
the tensor product space will appear in one of these graded subspaces.

As an illustration, consider the simplest case g = su(2) where

[e, f ] = h, [h, e] = +2e, [h, f ] = −2f. (6.11)

In the usual physics spin-j notation, we have the decomposition 1
2 ⊗ 1

2 = 1 ⊕ 0, or in our
Dynkin index language

V1 ⊗ V1 = V2 ⊕ V0. (6.12)

The repeated action of the step-down operator f on the state

|v〉 = |↑〉 ⊗ |↑〉 (6.13)

(where |↑〉 and |↓〉 denote the states of weight 1 and −1, respectively) generates only the three
states appearing in the spin-1 representation V2, which therefore constitutes the space F 0. The
action of f ⊗ t , however, yields

(f ⊗ t)|v〉 = ζ1|↓〉 ⊗ |↑〉 + ζ2|↑〉 ⊗ |↓〉,
= 1

2 (ζ1 − ζ2)(|↓〉 ⊗ |↑〉 − |↑〉 ⊗ |↓〉) + 1
2 (ζ1 + ζ2)(|↓〉 ⊗ |↑〉 + |↑〉 ⊗ |↓〉), (6.14)

which, since |↓〉 ⊗ |↑〉 + |↑〉 ⊗ |↓〉 lies in F0, is equivalent in F 1/F 0 to
1
2 (ζ1 − ζ2)(|↓〉 ⊗ |↑〉 − |↑〉 ⊗ |↓〉). (6.15)

This last vector is the highest weight (indeed the only weight) in the spin-0 representation.
While the highest weight vectors of each representation occurring in the tensor product

must appear somewhere in this construction, their coefficients depend quite non-trivially on the
ζi , and some of these coefficients might vanish at non-generic points even for non-coincident
ζi . It is therefore not obvious that the grade at which a given representation first appears is
independent of the choice of the ζi . Feigin and Loktev conjecture that this is the case, and if
this is true, the graded character

chq

(
Vλ1 ⊗ · · · ⊗ VλN

) =
∑

d

qdch(grd [F ]) (6.16)

should be independent of the ζi . In [5], we provide a proof of this conjecture by Feigin and
Loktev in the spacial case where g = su(r + 1) and when the λi correspond to rectangular
representations.

In the su(2) example the ζi independence is manifest, and we have

chq(V1 ⊗ V1) = ch V2 + q ch V0. (6.17)
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Applying this construction to su(4) we would find

chq(V0,0,1 ⊗ V0,1,0 ⊗ V1,0,0) = ch V1,1,1 + (q + q2) ch V0,1,0 + q ch V2,0,0 + q ch V0,0,2, (6.18)

which looks like (6.3), but with q ↔ 1/q to reflect the fact that Feigin and Loktev define their
grading in the opposite direction to the one which is natural for the affine algebra.

To obtain the characters for arbitrary representations of ŝu(r + 1), we only need to consider
the fusion product of r rectangular representations V1, . . . , Vr , such that the highest weight λi

of Vi is given by λi = niωi , with ni � 0. We will denote the q-polynomial coefficients in the
decomposition of the character of this fusion product by Kl,n(q). Here, l is the vector whose
entries are the Dynkin indices of the representations present in the fusion product. The entries
of n are the ni . In appendix B, we show how these q-polynomials can be calculated. The
result is the fermionic formula (B.6). Details can be found in our paper [5], where we also
showed that the q-polynomials are in fact generalized Kostka polynomials [6, 7]. Note that
we will always assume that

∑
i ni � k, so we do not impose the level-restriction conditions in

calculating the Kostka polynomials2. This restriction is always met in our case of obtaining
characters of general ŝu(r + 1) representations.

Thus, we have the following expression for the character of the fusion product of
rectangular representations

chq(V1 ⊗ V2 ⊗ · · · ⊗ Vr) =
∑

l

Kl,n(q) ch Vl. (6.19)

These q-polynomial Kl,n(q) coefficients that reduce for q = 1 to the Littlewood–
Richardson coefficients are generalized Kostka polynomials. As a result, we conclude that the
sum in equation (6.19) is finite.

Classical Kostka polynomials are parametrized by two Young diagrams, λ and µ, such
that |λ| = |µ|. Generalized Kostka polynomials [6], which we consider in this paper, are
parametrized by a Young diagram λ and a set of rectangular diagrams {µi}, such that the total
number of boxes in the set {µi} is the same as the number of boxes in λ. Note that these
Young diagrams are associated to glr+1. In our notation used above, the Young diagrams
are associated to slr+1, which can be obtained from the glr+1 diagrams by ‘stripping off’ the
columns of height r + 1 (see [5] for more details).

The classical Kostka polynomial is a special case of the generalized Kostka polynomial,
where the set {µi} case is the set of single-row diagrams, each equal to a single row of the
diagram µ.

In both cases, the integer Kλ,{µi }(1) is equal to the multiplicity of the gln-module Vλ in
the tensor product of representations Vµ1 ⊗ · · · ⊗ VµN

. The Kostka polynomial is therefore a
refinement of tensor product multiplicities, or a grading.

7. Wess–Zumino–Witten conformal theory

Although the geometric, or fusion, co-product and the evaluation representation were initially
defined for the finite-dimensional Lie algebra g, they are motivated by the action of the affine
Lie algebra ĝ in Wess–Zumino–Witten (WZW) conformal field theory [19].

We will focus on the holomorphic half of a level-k WZW model defined on the Riemann
sphere. The symmetry algebra of this model is g ⊗ M(ζ), consisting of g-valued meromorphic
functions with possible poles at the points ζi (where ζ = (ζ1, . . . , ζN)).

Let λ denote the highest weight of a finite-dimensional representation Vλ of the finite-
dimensional algebra g, and suppose that the corresponding (in that its top graded component

2 Level-restricted generalized Kostka polynomials [18] are also important, but do not play a role in our calculations.
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is Vλ) representation Hλ̂ of the level-k affine Lie algebra ĝ is integrable. Then, the Wess–
Zumino primary field ϕλ(ζ ) acts on the vacuum at the origin ζ = 0 there to create the highest
weight state |̂λ〉 = ϕλ(0)|0〉 of Hλ̂. If

a(z) =
∞∑

n=−∞
a[n]z−n−1 (7.1)

is the WZW current associated with the element a ∈ g, and γ is any contour surrounding the
origin then

a[n] = 1

2π i

∮
γ

zna(z) dz (7.2)

has its usual action as an element of ĝ on this representation.
More generally, for integrable λ̂i we create highest weight states |̂λi〉ζi

at the points ζi by
acting on the vacuum at these points with ϕλi

(ζi) on the vacuum at ζi . The current algebra
acts on the tensor product Hλ̂1

⊗ · · · ⊗ Hλ̂N
of these spaces. We recall how this comes about.

Letf (t) denote a function meromorphic on the Riemann sphere, and having poles at no more
than the ζi . If 
 is a contour surrounding ζ1, . . . , ζN , then we insert 1

2πi

∮



f (t)a(t) dt into
a suitable correlation function. The contour can be deformed to a sum of contours γi each
enclosing only one of the ζi , and the a[n] acting on the representation space at ζi are the local
mode-expansion coefficients a(z) = ∑

n a[n](z − ζi)
−n−1, or

a[n] = 1

2π i

∮
(t − ζi)

na(t) dt. (7.3)

Consequently, if

f (t) =
∞∑

n=−pi

fn(ζi)(t − ζi)
n (7.4)

is the Laurent expansion of f about ζi then a ⊗ f acts on a state |v〉ζi
∈ Hλi

as
∞∑

n=−pi

fn(ζi)a[n]|v〉ζi
, (7.5)

and on Hλ̂1
⊗ · · · ⊗ Hλ̂N

as

�ζ1,...,ζN
(a ⊗ f )(|v1〉ζ1 ⊗ · · · ⊗ |vN 〉ζN

)

=
∑

i

|v1〉ζ1 ⊗ · · · ⊗
( ∞∑

n=−pi

fn(ζi)a[n]|vi〉ζi

)
⊗ · · · ⊗ |vN 〉ζN

, (7.6)

where �ζ1,...,ζN
is the ‘geometric’ co-product [20]

�ζ1,...,ζN
(a ⊗ f ) =

∑
i

I ⊗ · · · ⊗
( ∑

n=−pi

fn(ζi)a[n]

)
⊗ · · · ⊗ I. (7.7)

This co-product makes the tensor products of any number of level-k representations into a
level-k representation. With the conventional co-product, the level would be Nk.

In the particular case that f (t) = tn, the Laurent expansion about ζi is

tn =
n∑

m=0

(
n

m

)
ζ n−m
i (t − ζi)

m. (7.8)

If |v〉ζi
is a top-component state on which a[n] with n > 0 acts as zero, the action on |v〉ζi

is as ζ n
i a[0]|v〉ζi

. Since the zero-grade elements of ĝ form an algebra isomorphic to g, we
recognize our evaluation co-product action [16] described in equation (6.7).
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When the contour 
 encloses all insertions of ϕλ’s on the Riemann sphere, it can be
contracted away, and the algebra acts trivially. This observation motivates the definition of
the space H(ζ, {λ}) of conformal blocks. A conformal block � ∈ H(ζ; {λ}) is a mapping

� : Hλ̂1
⊗ · · · ⊗ Hλ̂N

→ C, (7.9)

invariant under the action of any a ⊗ f, a ∈ g, withf having poles at no more that the ζi .
It may be shown [21] that such a mapping is uniquely specified by its evaluation on the top
graded component Vλ1 ⊗ · · · ⊗ VλN

, and that the dimension dim(H(ζ, {λ})) of the space of
conformal blocks is the multiplicity of the identity operator in the fusion product of the ϕλi

.
This definition coincides with the physicist’s picture where

�(ζ1, . . . , ζN) ≡ �
(|µ1〉ζ1 ⊗ · · · ⊗ |µN 〉ζN

) = 〈0|R{
ϕµ1(ζ1) . . . ϕµN

(ζN)
}|0〉, (7.10)

with µi weights in Vλi
, is thought of as a radial-ordered correlation function of the primary

fields ϕµi
. This correlator is not uniquely defined because the chiral primary fields are not

mutually local. It is, however, a solution of the Knizhnik–Zamolodchikov equations, whose
solution space is precisely the space of conformal blocks as identified above. In the operator
language this comes about because the 〈0| could be the dual of any of the copies of the highest
weight state of the vacuum representation that occur in the fusion-product.

We now recognize what it is that our function-space character is counting. It is the number
of linear independent functions of the form

F
({

z
(i)
j

}) = 〈v|R{
fα1

(
z
(1)
1

) · · · fαr

(
z
(r)

m(r)

)
ϕλ1(ζ1) · · · ϕλr

(ζr )
}|0〉,

≡
∑

�
(|v∗〉∞ ⊗ |v1〉ζ1 ⊗ · · · ⊗ |vN 〉ζN

)
. (7.11)

Here the ϕλi
(ζi) create rectangular representations with the highest weight λi = liωi (no sum

on i) by acting on the vacuum at the points ζi . The state 〈v|, analogous to the 〈v| of (3.1),
is the dual of |v〉, which lies in a weight space in one of the integrable representations Hλ̂

occurring in the fusion product. The sum is over the |vj 〉 produced by the action of the fα on
the |̂λi〉. The state |v∗〉∞ is in the dual representation H ∗

λ̂
that is located at the point ∞ on the

Riemann sphere. The (left action) g weight of |v∗〉 is minus that of |v〉. (The correspondence
〈v| ↔ |v∗〉∞ is explained in [21].)

The fusion product of primary fields in the WZW model coincides with the finite-
dimensional algebra Littlewood–Richardson rules only when k is infinite. For finite k we
must use the level-restricted fusion rules of the Verlinde algebra. The level restrictions have
no effect, however, when we build up an integrable representation of ĝ by concatenating
integrable rectangular representations, as we are doing in this paper. The representations
appearing in our WZW fusion product therefore coincide with those appearing in the g[t]
fusion product, which in turn are given by the Littlewood–Richardson rules of g.

The fusion product itself is not a graded space. However, we can define a filtration on this
space, in the same way as in the Feigin–Loktev fusion product. This filtration is inherited from
the filtration of the algebra U(n− ⊗ C(t−1)), where we assign a degree zero to the product
of primary fields. The associated graded space has the character (4.4), which we can regard
as the character of the fusion product. It is a sum over irreducible characters with a certain
shift in the overall degree. We can regard this as the statement that the vector 〈v| in the matrix
element belongs to a highest weight representation, with a highest weight on which d acts
by some negative integer instead of 0. (For an alternative point of view, where the space of
highest weight vectors is interpreted as a quotient of the integrable representation—which is
naturally graded—see [22].)

We would like to stress again that the characters of this space do not depend on the
locations ζi of the rectangular representations!
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8. Characters for arbitrary ŝu(r + 1)k representations

In this section, we will combine the results of the previous section and give explicit character
formulae for arbitrary (integrable) representations of ŝu(r + 1)k . There is one more ingredient
needed to do this, namely an explicit formula for the (generalized) Kostka polynomials, which
form an essential ingredient in the character formulae, as explained before. In this section,
we will give the character formulae in terms of the generalized Kostka polynomials. How to
obtain an explicit formula will be described in appendix B (we refer to [5] for the details).
The resulting formula for the generalized Kostka polynomials is stated in equation (B.6).

We can write the decomposition of the character F∞
n;k(q, x) in the following way:

chF∞
n;k(q, x) =

∑
l

Kl,n

(
1

q

)
ch Hl;k(q, x). (8.1)

We need to make a few remarks about the sum in the decomposition (8.1). First of all, we
would like to note that this sum is finite. To show this, we introduce the notion of the threshold
level, which is the lowest level for which a highest weight λ corresponds to a highest weight
representation. We will denote this threshold level by k(l). For ŝu(r + 1), it is simply given by
k(l) = ∑r

i=1 li . The only l for which the Kostka polynomial Kl,n(q) is non-zero are the l such
that k(l) � k(n). The only non-zero Kl,n(q) with k(l) = k(n) is when l = n, in which case
Kn,n(q) = 1, see equation (B.7). Using these results, we can view the Kostka polynomials
Kn,l(q) as elements of a square matrix K, which is upper triangular and 1’s on the diagonal.
Hence, this matrix is invertible, if we order the ‘highest weights’ l according to the increasing
threshold level. Note that we did not specify an ordering for weights with the same threshold
level, but any ordering of those weights gives an upper triangular matrix.

Now we established that the Kostka matrix K is invertible, we can invert the relation (8.1)
to obtain explicit character formulae for arbitrary (integrable) highest weight representations
of ŝu(r + 1)k

ch Hl;k(q, x) =
∑

n

(K−1)n,l

(
1

q

)
chF∞

n;k(q, x). (8.2)

Again, the (finite) sum is over the highest weights n with the threshold level k(n) � k(l).

9. Conclusion

We have shown how the introduction of the fusion product representation allows us to
generalize the Feigin–Stoyanovsky strategy for computing characters of affine ŝu(r + 1) to all
integrable representations. We found that for non-rectangular representations, the character is
not of fermionic type, but can be written as a linear combination of fermionic characters. The
coefficients are polynomials in 1/q and are related to the generalized Kostka polynomials.

It is rather straightforward to generalize the Feigin–Stoyanovsky construction to arbitrary
affine Lie algebras. In that case, even characters of rectangular representations are not always
of fermionic type. It turns out that the character of those representations can be written in terms
of characters of the so-called ‘Kirillov–Reshetikhin’ modules [23]. Details will be provided
in a forthcoming publication.
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Appendix A. The structure of the character of the principal subspace

In this appendix, we will explain the structure of the character of the principal subspace of
rectangular representations of ŝu(r +1), equation (3.13). To this end, we will explain the zeros
of the function f (z) which appears in (3.6).

The exponent of q in the character is the total degree of the polynomials f
({

z
(i)
j

})
, which

ensure that the vanishing conditions hold, combined with the explicit poles in F
({

z
(i)
j

})
. The

strategy presented in [1] and [5], which we will outline here briefly, is to find the minimal
amount of zeros necessary to enforce the vanishing conditions.

Let us first focus on the case where we have 2k variables. We need to find a polynomial
which does not vanish when k variables are set to the same location, but does vanish when
k + 1 variables are set to the same location. Of course, the condition (3.8) allows for functions
which vanish when less than k + 1 variables are set to the same location, but we will deal with
those later. A symmetric polynomial in the variables z1, z2, . . . , z2k with the lowest possible
degree which satisfies this property is (S denotes symmetrization over all variables)

S[(z1 − zk+1)(z2 − zk+1)(z2 − zk+2) · · · (zk − z2k−1)(zk − z2k)(z1 − z2k)]. (A.1)

We can display these zeros nicely in a graphical way in terms of a Young diagram. The
boxes on the top row correspond to the variables z1, . . . , zk while the boxes on the second row
correspond to zk+1, . . . , z2k . A line connecting the boxes of zi and zj corresponds to the factor
(zi − zj ):

k

,

where ‘periodic boundary conditions’ are assumed, to obtain the zero (z1 − z2k). It easily
follows that if we pick k variables, and set all of them to the same value, there will always
be a term in the symmetrization of equation (A.1) which is not zero. However, setting k + 1
variables to the same location gives a zero for each term in the symmetrization.

We will now discuss the general case, i.e. we allow for functions which vanish when fewer
than k + 1 variables are set equal, and we also allow for a general number of variables.

To do this, we need to label the polynomials by r partitions (or Young diagrams), one for
each type of variable. These are partitions of the integers m(i), with the property that the width
of the rows is maximally k, because the polynomials should vanish when k + 1 variables are
set to the same value.

The number of rows of width a of partition (i) is given by m(i)
a , i.e. the partitions

have the form
(
km

(i)
k , (k − 1)m

(i)
k−1 , . . . , 2m

(i)
2 , 1m

(i)
1
)
. It follows that we have the relation

m(i) = ∑k
a=1 am(i)

a . See figure 1 for an example where m(1) = 13.
To each box of the partition (i), we associate a variable z

(i)
j . Let z1, . . . , za be the variables

associated to a row of length a, of partition (i) and z̄1, . . . , z̄a′ to a row of length a′, also from
partition (i), such that a′ � a.

We need to assign the following zero corresponding to these variables

(z1 − z̄1)(z2 − z̄1)(z2 − z̄2)(z3 − z̄2) · · · (za′ − z̄a′)(za′+1 − z̄a′).

We will identify za+1 = z1. Pictorially, we can represent these zeros as
a

a′ .
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Again, each box corresponds to a variable, and a line connecting two boxes indicates a zero
when the two corresponding variables have the same value. We obtain all the zeros needed to
satisfy the integrability condition by multiplying all the zeros associated to each pair of rows
belonging to the same partition

r∏
i=1

∏
pairs of rows

of partition (i)
of length a,a′

a�a′

a′∏
j=1

(
z
(i)
j − z̄

(i)
j

)(
z
(i)
j+1 − z̄

(i)
j

)
. (A.2)

To clarify this, we will look at one particular variable (which will correspond to the black
box in the diagram below), and show with which other variables it has a zero. These other
variables are given by the grey boxes.

(i)

. (A.3)

To obtain all the zeros, we need to take the product over all ‘black boxes’, but without double
counting the zeros. Finally, we need to take the product over all partitions i = 1, . . . , r . It is
not too hard to convince oneself that these zeros do imply the integrability condition.

We will now focus on the zeros we have to include in the polynomials f
({(

z
(i)
j

})
to

ensure that the Serre relations are taken into account properly. Let z
(i)
j be a variable associated

to a row of length a of the partition of m(i). This variable has zeros with variables z
(i+1)
j ′

which belong to a row of the partition of m(i+1) of length a′. In particular, these zeros are∏
j ′ �=j

(
z
(i)
j − z

(i+1)
j ′

)
. We obtain all the zeros associated to the pair of partitions (i) and (i + 1)

by multiplying all the zeros associated to each variable of partition (i).

r−1∏
i=1

∏
rows of

partition (i)

∏
rows of

partition (i+1)

∏
j,j ′
j ′ �=j

(
z
(i)
j − z

(i+1)
j ′

)
. (A.4)

Pictorially, these zeros are given by

(i) (i + 1)

. (A.5)
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Again, we need to take the product over all ‘black boxes’ and over i = 1, . . . , r − 1. Again,
it is easy to check that these zeros, combined with the zeros which enforce integrability, give
rise to the Serre conditions.

Finally, we need to include the zeros to make sure the highest weight condition is satisfied.
For a row of length a > l of the partition of m(p), we need to include the zeros∏

rows of
partition p

∏
j>l

z
(p)

j , (A.6)

or, pictorially, the zeros are given by the grey boxes

l (p)

. (A.7)

Counting the total degree of the zeros implied by (A.3), (A.5) and (A.7), combined with
the degree corresponding to the poles in (3.6) and the extra term

∑r
i=1 m(i) in the definition

(3.11) precisely give the exponent of q in the character formula (3.13).
Apart from the zeros discussed above, f

({
z
(i)
j

})
can contain additional symmetric

polynomials. The degree of these symmetric polynomials is taken into account by the factors
1

(q)m
in (3.13) (see [5] for the details). The factor 1

(q)m
is the generating function for the

symmetric polynomials in m variables. The coefficient of qd in the expansion of 1
(q)m

is the
number of symmetric polynomials of degree d in m variables.

Appendix B. Obtaining the Kostka polynomials

In the main text, we explained how the characters of the fusion product of rectangular
representations can be decomposed into characters of arbitrary highest weight representations.
In this appendix we will outline a strategy to obtain an explicit expression for the ‘expansion
coefficients’, which turn out to be generalized Kostka polynomials. We refer to our paper [5]
for the details of the proof.

We need to consider matrix elements of the form

Gλ,µ(ζ) = 〈uλ|fα1

(
z
(1)
1

) · · · fαr

(
z
(r)

m(r)

)
v1(ζ1) ⊗ · · · ⊗ vr(ζr), (B.1)

where 〈uλ| is dual to the state |u∗
λ〉∞, as explained in the discussion following equation (7.11).

The vi(ζi) are the highest weights of the rectangular representations Hniωi
(ζi). Thus,

the rectangular representations inserted at the points ζi are given by niωi . We define
n = (n1, . . . , nr)

T . In addition, we define µ = ∑
i niωi and the coefficients li are determined

by λ = ∑
i liωi .

To obtain a formula for the generalized Kostka polynomials, we should only consider
the bra’s 〈uλ| at infinity, which are the highest weights of the ‘bottom component’ of the
representation located at infinity. Note that the representation which is located at infinity is
turned ‘upside down’, because we chose 1

z
as the local variable at infinity.

We need to find the conditions such that the matrix elements (B.1) are non-zero. First of
all, we need that λ = µ − ∑

i m
(i)αi , which translates into

m = C−1
r · (n − l). (B.2)
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As usual, we also need to impose the highest weight conditions f ni+1
αi

[0]|vi〉 = 0 and the Serre
relations. Finally, we need to incorporate a new ingredient, which is a degree restriction on
the functions in the function space. These degree restrictions can be derived by letting the f ’s
in the matrix elements (B.1) act to the left on uλ. Now, fα[n] acts trivially at ∞ if n � 0,
which translates a degree restriction on the functions.

The space of functions which we need to consider is spanned by rational functions in the
variables z

(i)
j , which are symmetric under the exchange z

(i)
j ↔ z

(i)
j ′ . There can be poles of

order 1 at the positions z
(i)
j = z

(i+1)
j ′ and at z

(i)
j = ζi ; that is,

G(z) = g(z)∏r
i=1

∏
j

(
ζi − z

(i)
j

) ∏r−1
i=1

∏
j,j ′

(
z
(i)
j − z

(i+1)
j ′

) . (B.3)

The polynomial g(z) (which is symmetric under the exchange of variables of the same colour)
vanishes when any of the following conditions holds:

z
(i)
1 = z

(i)
2 = z

(i+1)
1 , z

(i)
1 = z

(i+1)
1 = z

(i+1)
2 , i = 1, . . . , r − 1, (B.4)

z
(i)
1 = z

(i)
2 = · · · = z

(i)
li+1 = ζi, ∀i. (B.5)

Note that we do not impose the integrability conditions, because k will always be large enough,
i.e. k �

∑
i n

(i). Finally, we need to impose the degree restriction on the function G(z). For
each variable, we have that deg

z
(i)
j

� 2, which follows from the fact that we use 1
z

as a local

variable at infinity. In [5], we showed that this leads to the following polynomials:

Kl;n(q) =
∑

m
(i)
a �0

i=1,...,r

m=(C−1
r )·(n−l)

q
1
2 m

(i)
a (Cr )i,j Aa,bm

(j)

b

∏
i,a

[
Aa,n(i) − (Cr )i,j Aa,bm

(j)

b + m(i)
a

m(i)
a

]
q

, (B.6)

where [ ]q denotes the q-binomial, which is defined to be
[
n+m
m

]
q

= (q)n+m

(q)n(q)m
for m, n ∈ Z�0 and

zero otherwise. The coefficient of qd in the expansion of
[
n+m
m

]
q

is the number of symmetric

polynomials of total degree d, in m variables, where the degree of each variable is maximally
n. These q-binomials arise because of the degree restrictions on the polynomials G(z). Note
that the Kostka polynomials do not depend on the positions ζi , which follows from the fact
that the degree of the rational functions (B.3) does not depend on these positions.

In [5], we showed that the functions Kl;n(q) of (B.6) are polynomials in q, and are related
in a simple way to the generalized Kostka polynomials of [6, 7]. In particular, by setting
q = 1, we obtain the Littlewood–Richardson coefficients.

Let us make a few remarks about the structure of the polynomials Kl;n(q). Let
k(l) = ∑

i li , which is the lowest level at which λ = ∑
i liωi corresponds to an integrable

representation (i.e. k(l) is the threshold level). We then have the following results:

Kl;l(q) = 1 Kl;n(q) = 0 if


k(l) > k(n)

k(l) = k(n) and l �= n∑
i ili �= ∑

i in
(i) mod r + 1.

(B.7)

These results are obtained by making use of the constraint m = (Cr )
−1(n− l) and the fact that

all the summation variables m = (m1, . . . , mr) have to be non-negative integers in the sum in
equation (B.6).

We can view the polynomials Kl;n as the entries of a (square) matrix K, with entries
(K)l;n(q) = Kl;n(q). The relations (B.7) imply that there is an ordering such that the matrix
K is upper triangular with 1s on the diagonal. Thus, the matrix K is invertible.
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Before we move on and give the character formulae for arbitrary highest weight
representations, we will first give an example of the ‘Kostka matrix’ related to ŝu(4). We use
the following ordering of the entries l:

(0, 0, 0); (1, 0, 1), (0, 2, 0); (2, 1, 0), (0, 1, 2); (4, 0, 0), (2, 0, 2), (1, 2, 1), (0, 4, 0), (0, 0, 4).

With this ordering, we obtain the following Kostka matrix

K(q) =



1 q 0 0 0 0 q2 0 0 0
0 1 0 q q 0 q q2 0 0
0 0 1 0 0 0 0 q + q2 0 0
0 0 0 1 0 0 0 q 0 0
0 0 0 0 1 0 0 q 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


. (B.8)

The inverse is

K−1(q) =



1 −q 0 q2 q2 0 0 −q3 0 0
0 1 0 −q −q 0 −q q2 0 0
0 0 1 0 0 0 0 −q − q2 0 0
0 0 0 1 0 0 0 −q 0 0
0 0 0 0 1 0 0 −q 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


. (B.9)

Using the results of sections 6 and 7, we can now write down explicit character formulae
for arbitrary integrable highest weight representations of ŝu(r + 1), in terms of the characters
chF∞

n;k(q, x) and the inverse matrix K−1
(

1
q

)
.

First of all, we have the result that we can decompose the characters chF∞
n;k(q, x) in

terms of the characters of arbitrary integrable highest weight representations ch Hl;k(q, x) as
follows:

chF∞
n;k(q, x) =

∑
l

k(l)�k(n)

Kl;n

(
1

q

)
ch Hl;k(q, x). (B.10)

We can invert this relation to obtain explicit character formulae for arbitrary integrable highest
weight representations of ŝu(r + 1)

ch Hl;k(q, x) =
∑

n
k(n)�k(l)

(K−1)n;l

(
1

q

)
chF∞

n;k(q, x). (B.11)

We would like to note that we have a similar formula for the character of the principal subspace
of the general highest weight representations

ch Wl;k(q, x) =
∑

n
k(n)�k(l)

(K−1)n;l

(
1

q

)
chFn;k(q, x), (B.12)
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where the character Fl;k(q, x) is given by

chFl;k(q, x)
def=

(
r∏

i=1

x
li
i

) ∑
m

(i)
a ∈Z�0

a=1,...,k
i=1,...,r

(
r∏

i=1

x
− ∑

j (Cr )jim
(j)

i

)
q

1
2 m

(i)
a (Cr )i,i′ Aa,a′m(i′)

a′ −Aa,li
m

(i)
a∏r

i=1

∏k
a=1(q)

m
(i)
a

. (B.13)

This character can be viewed as the ‘untranslated’ version of the character (4.4), because
applying the affine Weyl translation (as explained in section 4) results in (4.4).
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