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Abstract
We explore the structure of the bosonic analogues of the k-clustered
‘parafermion’ quantum Hall states. We show how the many-boson
wavefunctions of k-clustered quantum Hall droplets appear naturally as matrix
elements of ladder operators in integrable representations of the affine Lie
algebra ŝu(2)k . Using results of Feigin and Stoyanovsky, we count the
dimensions of spaces of symmetric polynomials with given k-clustering
properties and show that as the droplet size grows the partition function
of its edge excitations evolves into the character of the representation.
This confirms that the Hilbert space of edge states coincides with the
representation space of the ŝu(2)k edge-current algebra. We also show that
a spin-singlet, two-component k-clustered boson fluid is similarly related to
integrable representations of ŝu(3). Parafermions are not necessary for these
constructions.

PACS numbers: 03.65.Fd, 02.20.Tw, 73.43.Cd
Mathematics Subject Classification: 81R10, 17B65

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Clustered quantum Hall states were introduced by Read and Rezayi [1] as a natural
generalization of the paired Moore–Read (or Pfaffian) state [2] that is thought to describe
the FQHE phase at ν = 5/2 [3–5]. The wavefunctions of these highly correlated electronic
states are constructed out correlators of parafermion operators [6] combined with a Laughlin
factor that serves to cancel unwanted poles and to maintain the overall anti-symmetry under
particle exchange. This construction results in the wavefunctions possessing extra zeros
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(i.e. beyond those required by the exclusion principle) that manifest themselves when k + 1
electron coordinates coincide. These vanishing conditions ensure that the clustered states are
exact zero-energy eigenstates for a Hamiltonian with a k-particle repulsive interaction. As is
the case with the Pfaffian state, the clustered phases host quasi-particle excitations which obey
non-Abelian statistics [7–9].

Read and Rezayi noted that the parafermion construction also yields k-clustered boson
states. It is possible that such states might be realized physically in rapidly spinning pancakes
of Bose fluid [10]. Even if their creation proves difficult, however, these incompressible
Bose fluids are worthy of study because they are in many ways simpler than their fermionic
siblings, yet they retain most of their exotic quantum properties. The simplification arises
because the k-clustered boson wavefunctions are precisely the correlators of the generating
currents of the SU(2), level-k, Wess–Zumino–Witten model—no extra Laughlin factor being
required. This observation suggests that the edge-state Hilbert space of a large droplet of such
an incompressible Bose fluid will coincide with the space of integrable representations of the
ŝu(2)k affine Lie algebra. It also explains why the effective action of the Pfaffian Bose fluid
is an SU(2), level-2, Chern–Simons theory [11, 12].

In order to confirm that the edge-state Hilbert space is indeed the representation space for
the current algebra, it is useful to count the number of independent symmetric wavefunctions
having the required k-particle vanishing conditions, and with a given polynomial degree. If
the droplet is confined in a parabolic trap, this degree will be proportional to the energy of
the corresponding edge state. The statistical partition function of the Bose droplet should
then coincide with the character for a representation of ŝu(2)k [13]. It turns out that this
count was made by Feigin and Stoyanovsky [14] some years before the k-clustered states
were introduced into physics. In this paper we will review Feigin and Stoyanovsky’s
construction of the k-clustered states and fill in the combinatoric details of their counting
method. We will also apply a slight modification of their construction to a two-component
k-clustered phase [15, 16] and show that this leads to the characters of the ŝu(3)k current
algebra.

In section 2 we review the basic properties of the integrable representations of the ŝu(2)k
current algebra. In section 3, we will show how the k-clustered polynomials are realized
as matrix elements in a subspace of these representations, and indicate how a suitable
limiting procedure (corresponding to filling the ‘Bose sea’) should allow us to construct
the entire representation space. We then confirm that this construction works by showing that
the counting formula for the k-clustered polynomials leads to the general level-k character.
We end section 3 by stating (without proof) the results for the character of ŝu(3)k . Details
of the derivation of that result will be presented in a forthcoming paper. In section 4 we
present a detailed derivation of the counting formula, needed to obtain the characters of
ŝu(2)k .

We wish to stress that there is little original mathematics in the present paper. With the
exception of our results on ŝu(3)k , nearly everything is to be found in [14]. That work is,
however, written for mathematicians and is consequently rather inaccessible to physicists,
amongst whom it deserves to be better known. We hope that our exegesis will be of use in this
regard.

2. The ŝu(2)k Lie algebra

To make our account self-contained, and in order to establish our notation, we begin with a
review of the well-known properties of ŝu(2)k and its representations.
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The finite su(2) Lie algebra is generated by the operators e ≡ J+ ≡ J1 + iJ2, f ≡ J− ≡
J1 − iJ2 and h ≡ 2J3 with commutation relations

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h. (1)

The symbols e, f, h are the conventional notation in the mathematical literature for a Lie
algebra written in the Chevalley basis. J±, J3 are more common in the physics literature.
Mathematicians prefer to take 2J3, rather than J3, as the diagonal generator, because its
eigenvalues λ ≡ 2j3 will be integers. They would also refer to this algebra as sl2, rather
than su(2), because the ‘i’ in the ladder operators J± make it a complexification of the real
su(2) algebra. We will retain the familiar physicist’s name for the algebra, but use the e, f, h

notation so as to facilitate comparison with [14].
The infinite-dimensional ŝu(2)k affine Lie algebra [17, 18] consists of linear combinations

of operators en, fn, hn, n ∈ Z, together with the central element k̂. In any irreducible
representation k̂ will be proportional to the identity. Because of this, we will usually omit the
‘hat’ and simply regard k as a number called the level of the representation. In all cases of
interest k will be a positive integer. It is also useful to adjoin a generator d̂ that counts the
‘momentum’ n. The commutation relations are then

[em, en] = [fm, fn] = 0

[em, k̂] = [fm, k̂] = [hm, k̂] = 0

[hm, en] = 2em+n, [hn, fm] = −2fm+n,

[em, fn] = hm+n + mk̂δn+m,0, [hm, hn] = 2mk̂δm+n,0,

[d̂, en] = nen, [d̂, fn] = nfn, [d̂, hn] = nhn.

(2)

The operators k̂, d̂ and h0 commute with each other and can be simultaneously
diagonalized. Representations of the algebra will therefore be spanned by vectors |m, λ, i〉
with

k̂|m, λ, i〉 = k|m, λ, i〉, d̂|m, λ, i〉 = m|m, λ, i〉, h0|m, λ, i〉 = λ|m, λ, i〉. (3)

The eigenvalues k,m and λ label the weights of the representation. The extra index i in
|m, λ, i〉 is necessary because the subspace with a given weight will usually have dimension
greater than one. We will omit it when the weight space is one dimensional. We also omit the
label k because it is the same for all states in any given irreducible representation.

A highest weight state |v0〉 is a state that is annihilated by all en, fn and hn with n > 0,
and also by e0. A highest weight representation is a representation containing such a state
and such that all other states in the representation may be obtained by repeated application
of the generators with n � 0 to this state. By adding a constant to d̂, if necessary, we can
always take the highest weight state to obey d̂|v0〉 = 0. Such a state can therefore be written
as |v0〉k,l = |0, l〉 where l ≡ λmax is the largest eigenvalue of h0 in a representation of the
{e0, f0, h0} finite su(2) sub-algebra.

For any n, the generators e−n, fn and h0 − nk form a finite su(2) sub-algebra. A
representation of the affine algebra will decompose into representations of this finite algebra.
If all such sub-representations are finite dimensional, the original representation is said to be
integrable. Integrable representations only occur when k is a positive integer, and for such
a k there can be no more than k + 1 inequivalent integrable representations. This restriction
comes about because |v0〉k,l , being killed by f1, will be lowest weight of a representation of
the {e−1, f1, h0 − k} sub-algebra. Now (h0 − k)|v0〉k,l = (l − k)|v0〉k,l , and (l − k), being a
lowest weight in an su(2) representation, must either be zero or a negative integer. Since l is
either zero or a positive integer, we see that k must be an integer, and that the only possible
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Figure 1. Part of the weight diagrams for the two integrable level k = 1 representations V1,0 and
V1,1. The number in a circle is the dimension multVk,l

(m, λ) of that weight space.

values of l are

l = 0, 1, 2, . . . , k. (4)

The constraints imposed by the other {e−n, fn, h0 − nk} sub-algebras are less restrictive,
and an integrable representation Vk,l exists for each of these l values. There will be exactly
(k − l) + 1 states in the λmax = l representation of {e−1, f1, h0 − k}, and so we will have
(e−1)

k−l+1|v0〉k,l = 0. This feature can be seen in figures 1 and 2, where we exhibit the small
|m| parts of the weight diagrams for the five integrable representations at levels k = 1, 2.

The weight diagram of a representation of a finite simple Lie algebra is symmetric under
the action of the Weyl group, which is generated by reflections in the planes perpendicular
to the root vectors. For su(2), the reflection is implemented by the action of S = eiπJ1 on
the representation. In the algebra, conjugation by S takes J3 → −J3 and J+ → J−. The
Weyl symmetry is an automorphism of the Lie algebra. In the affine algebra ŝu(2)k , the
weight diagram is symmetric under the action of the infinite affine Weyl group. This group
is generated by the finite S, together with powers of a translation T. The action of T on the
algebra corresponds to conjugation by the element g(θ) = e2π ihθ of the associated loop group
L̃SU(2). Here θ is a coordinate on the circle S1 parametrizing the loop, and the loop g(θ) is a
closed geodesic in the finite SU(2) group manifold. The affine Weyl group acts on the weight
space as

T n|m, λ〉 = |m − λn − kn2, λ + 2kn〉, S|m, λ〉 = |m,−λ〉. (5)

Weights related by this transformation will have the same multiplicities. We again see that
integrability requires k to be an integer. If it were not, the action of T would not preserve the
�λ = 2 spacing of the λ eigenvalues.

In figures 1 and 2 the larger circles with labels vn represent the orbit {|vn〉 ≡ T n|v0〉} of
the highest weight vector |v0〉 under the action of the translation part of the affine Weyl group.
(We omit the subscripts on |v0〉 when they are unnecessary.) The |vn〉 are non-degenerate. The
arrows indicate how the states in this orbit can be obtained from one another by the action of
suitable en.



Filling the Bose sea 621

3 5–5 –3 1

m=0

–1

–2

–3

–5

–6

7λ = –1–7–4 –2 0 2 4

1e e–1
m=0

–3

–4

–5

0 2 4–2–4

λ = –6 6

6 8–6 –8λ =

m=0

–1

–2

–3

–4

–5

–6

–7

–8

1

3

5

10 

16

1

2

4

7

1313

7

4

2

1

1

3

5

10 

1

22

1

1

3

5

10 

e–1e

e
3

e3

e–3

e
–3

1

e0e0

e
2

e2

e
–2

e–2

e–4

e–4

e
4

e4

e e

e

e

e

e
e

21 28 21

–2

–1

–6

–4

v

v

0

1v–1

1  

2

4 

7

13

35

55  

86

1  

2

4 

7

13

3535

13

7

4 

2

1  

1

3

5

10

16

28

43

7070

43

28

16

10

5

3

1

1

3

5

10 1101

5

3

1

vv

vv

1

2

4

8

14

24

40

2

4

8

14

24

40

1

2

4

8

14

24

2

4

8 1

2

4

8

14

24

1

2

4

8

v

v

v

v

0

–2

1 –1

2

3

–3

0

1

–1

–2

0–1

–2 1

21 

21 21 

Figure 2. Part of the weight diagram for the level k = 2 representations V2,0, V2,1 and V2,2.

We will also have cause to refer to the Virasoro algebra that acts on a representation Vk,l

by

Ln = 1

2(k + 2)
:

∑
i+j=n

(
eifj + fiej +

1

2
hihj

)
: . (6)

The normal-ordering symbols ‘: :’ means that operators with positive indices i, j are placed
to the right of those with negative indices. Acting on Vk,l , the Ln obey

[Ln,Lm] = (n − m)Ln+m +
c

12
n(n2 − 1)δn+m,0, (7)

with central charge c = 3k/(k + 2). The operator L0 acts on Vk,l as

L0 = j (j + 1)

(k + 2)
− d̂. (8)
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Thus L0 + d̂ is the affine analogue of the quadratic Casimir operator, and takes the same value
on every state in the representation Vk,l . We also have [L−n, em] = −mem−n, together with
two similar equations where em is replaced by fm and hm.

3. String functions, polynomials and characters

3.1. String functions and characters

The q-series generating function that encodes the multiplicities in the column labelled λ of the
weight diagram of Vk,l is the string function σ

k,l
λ (q). It is defined to be

σ
k,l
λ (q) =

∞∑
m=0

multVk,l
(m, λ)q−(m−m0). (9)

Here m0 is chosen to make the first power of q in the sum equal to q0 = 1.
Columns that are taken into each other by the action of the affine Weyl group have identical

string functions. Because of this the two k = 1 representations have only one distinct string
function. For example

σ
1,0
0 (q) = 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 + · · · = 1

(q)∞
. (10)

Here the standard notation (q)n means

(q)n ≡
n∏

m=1

(1 − qm), (11)

and, in particular,

(q)∞ ≡
∞∏

m=1

(1 − qm). (12)

The expression Zboson ≡ 1/(q)∞ is the partition function for a free chiral boson with periodic
boundary conditions, but no winding numbers.

The representations V2,0 V2,2 contain two Weyl-inequivalent columns, and so there are
two distinct string functions

σ
2,0
0 (q) = 1 + q + 3q2 + 5q3 + 10q4 + 16q5 + 28q6 + · · · = 1

(q)∞

∑
n even

qn2/2

(q)n
,

(13)

σ
2,0
2 (q) = 1 + 2q + 4q2 + 7q3 + 13q4 + 21q5 + 35q6 + · · · = q−1/2

(q)∞

∑
n odd

qn2/2

(q)n
.

The other level-2 representation has only one distinct string function

σ
2,1
1 (q) = 1 + 2q + 4q2 + 8q3 + 14q4 + 24q5 + 40q6 + · · · = 1

(q)∞

∑
n even

qn(n−1)/2

(q)n
,

= 1

(q)∞

∑
n odd

qn(n−1)/2

(q)n

= 1

(q)∞

∞∏
n=1

(1 + qn). (14)
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The three equalities in (14) can be extracted from the more general q-series [19]
∞∑

n=0

qn(n−1)/2xn

(q)n
= (1 + x)(1 + xq)(1 + xq2) · · · . (15)

The product

Z+
Majorana ≡

∞∏
n=1

(1 + qn) (16)

appearing in the last line of (14) is the partition function for an arbitrary number (i.e. chemical
potential zero) of free chiral Majorana fermions with periodic boundary conditions. Combining
the sum over the even and odd integers that occurs in the l = 0, 2 representations gives

∞∑
n=0

qn2/2

(q)n
= Z−

Majorana ≡
∞∏

n=1

(1 + qn+1/2), (17)

which is the partition function for an arbitrary number of free chiral Majorana fermions
with anti-periodic boundary conditions. The sum over even integers captures that part of the
partition function with an even number of Majorana particles and the sum over the odd integers
the part with an odd number of particles3.

The string functions are assembled into the characters

chVk,l
(q, x) =

∑
m,λ

multVk,l
(m, λ)q−mxλ. (18)

Thus, for example,

chV1,0(q, x) = 1

(q)∞

∞∑
n=−∞

qn2
x2n, chV1,1(q, x) = 1

(q)∞

∞∑
n=−∞

qn(n+1)x2n+1. (19)

3.2. Symmetric polynomials

To obtain the many-boson wavefunctions, we begin by defining the field

e(z) =
∞∑

n=−∞
enz

−n−1. (20)

This is not quite the e(z) appearing in [14], but is the customary expansion of a field of
conformal dimension one. With our definition, for example,

[L−1, e(z)] = ∂ze(z) [L0, e(z)] = e(z) + z∂ze(z). (21)

Because en|v0〉 = 0 for all n � 0, the equation (e−1)
k+1−l|v0〉 = 0 can be written as

(e(z))k+1−l|v0〉|z=0 = 0. (22)

Also the equation (e(z))k+1 = 0 holds as an operator identity in any integrable representation of
level k. That this is true for the Vk,0 representation follows immediately from (e(0))k+1|v0〉 = 0
by using the infinitesimal translation property of L−1, coupled with that fact that
L−1|v0〉k,0 = 0. We can show, by manipulations with the primary fields of the associated
WZW model, that (e(z))k+1 = 0 remains true in the other integrable representations.

3 The ubiquity of Majorana fermions at k = 2 is connected with the three primary WZW fields φ
j=1
m , m = −1, 0, 1,

having scaling dimension 1/2, and so being identifiable as linear combinations of the triplet of Majorana fermion
fields that generate the k = 2 current algebra [11].
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Now consider an integrable representation V = Vk,l , and in it the sub-space W spanned
by a state of the form e−i1e−i2 . . . e−im |v0〉. We construct the matrix elements

Fv(z1, z2, . . . , zp) ≡ 〈v|e(z1)e(z2) . . . e(zp)|v0〉 (23)

where |v〉 lies in one of the weight spaces in V . There are at most a finite number of products
of e−n that can take us from |v0〉 to |v〉, and so Fv(z1, z2, . . . , zp) will be a polynomial in
the variables zi . Because the en commute with each other, Fv(z1, z2, . . . , zp) is a symmetric
polynomial. If |v〉 = |m, λ, i〉, this polynomial will be homogeneous of degree deg(Fv), with

−m = deg(Fv) + p, λ = l + 2p. (24)

The equations (e(z))k+1 = 0 and (e−1)
k+1−l|v0〉 = 0 force the polynomials to possess the

following properties:

(i) For all v, the polynomial Fv(z1, z2, . . . , zp) must vanish when more than k of the zi

coincide. (It may also vanish when k or fewer points coincide.)
(ii) For all v, the polynomial Fv(z1, z2, . . . , zp) must vanish if k + 1− l of the zi become zero.

(Again, it may also vanish when fewer than this number of zi gather at z = 0.)

The Fv thus have the k-cluster vanishing properties, and, in addition, have extra zeros located
at the origin that correspond to the insertion there of k − l quasi-holes. When multiplied
by a suitable Gaussian factor exp

(−

∑

i |zi |2/4
)

and with z = x + iy, they become the
many-body wavefunctions of the two-dimensional, k-clustered, Bose gas phase.

There is a one-to-one correspondence between states in the sub-space W and the those in
the space

F =
∞⊕

p=0

Fp, (25)

where Fp is the space of polynomials Fv in p variables. To see why this is so, we need first
to realize that the Fv are really labelled by the bra vector 〈v|, which is an element of the dual
space W ∗. We are therefore claiming that the linearly independent k-clustered symmetric
polynomials form a basis for W ∗. If there were no dependences between the ei then W ∗

would be the entire space of symmetric polynomials—this being the usual correspondence
between the first- and second-quantized version of a bosonic Fock space. There are, however,
linear relations between the vectors e−i1e−i2 . . . e−ip |v0〉 due to the vanishing of the Fourier
components of (e(z))k+1. Thus

Sm =
∑

i1+i2+···+ik+1=m

ei1ei2 · · · eik+1 = 0, (26)

where we can restrict the sum to ei with i < 0. There are also relations arising from (e−1)
k−l+1

being zero when acting on the vacuum. The Sm, together with (e−1)
k−l+1, generate an ideal I

in the free commutative algebra U(e) consisting of linear combinations of monomials in the
ei, i < 0. The space W can be identified with the quotient algebra U(e)/I. In order to be
uniquely defined as an element of W ∗, any 〈v| ∈ W ∗ must give zero when paired with a state in
the space I|v〉0. This, however, is precisely what the vanishing properties of the polynomials
enforce. The linearly independent polynomials do therefore form a basis for W ∗.

We now observe that, although W and W ∗ are both infinite dimensional, the individual
weight spaces are finite dimensional. There is therefore a one-to-one correspondence between
|m, λ, i〉 ∈ W and the dual basis 〈m, λ, i| ∈ W ∗. The dimensions of the space of k-clustered
polynomials of appropriate degree, and in an appropriate number of variables, do therefore
coincide with the dimensions of the weight spaces in W .
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Not every state in V can be obtained as e−i1e−i2 . . . e−ip |v0〉. Since each application of
an e−n moves us one step to the right and n steps down, we cannot reach any weight to the
left of the central column in the weight diagram. Furthermore, we can reach weights close
to the central column via fewer distinct products e−i1e−i2 . . . e−ip than the dimension of the
weight space. Because of this paucity of paths, even if all the e−i1e−i2 . . . e−ip |v0〉 were linearly
independent, we would only be able to obtain a restricted class of states in the weight space. If,
however, we look at weights in columns far to the right in the weight diagram, the number of
distinct products leading to a given weight grows rapidly, whilst the dimensions of the weight
spaces near the head of any such column remain small. It is plausible, therefore (and we will
see that it is true), that we can obtain all states in such a weight space by applying suitable
products of e−n to |v0〉. Thus, by counting the number of symmetric polynomials with the
given vanishing properties, we can obtain the early terms in the string functions. Then, by
taking suitable limits, we can obtain all the terms in the string functions.

3.3. Filling the sea

To illustrate these ideas, consider the two k = 1 representations. The general p-variable
symmetric polynomial satisfying the l = 0 vanishing conditions is

F(z1, z2, . . . , zp) = S(z1, z2, . . . , zp)
∏
i<j

(zi − zj )
2, (27)

where S(z1, z2, . . . , zp) is a general symmetric polynomial in p variables. The number of
general symmetric polynomials of degree n in p variables is given by the coefficient of qn in
1/(q)p, and the degree of the remaining factor is p(p − 1). Using −m = deg(F ) + p and
λ = 2p, we find that the contribution of the e−i1 . . . e−p

|v0〉 ∈ W to the chV1,0 character is

chW(q, x) =
∞∑

p=0

1

(q)p
qp2

x2p. (28)

Comparing this with the full character (19), and observing that the first p terms in 1/(q)p and
1/(q)∞ coincide, we see that the first p weights in each column are correctly counted.

For the case k = 1, l = 1, the general polynomial is

F(z1, z2, . . . , zp) = S(z1, z2, . . . , zp)
∏
i,j

(zi − zj )
2

p∏
i=1

zi . (29)

The product factors have degree p2. The contribution of the e−i1 . . . e−ip |v0〉 states is therefore

chW(q, x) =
∞∑

p=0

1

(q)p
qp(p+1)x2p+1. (30)

Again comparison with (19) shows that the first p states in each column are correctly
counted.

To get the entire representation we therefore look at the states near the heads of the
columns surrounding |vN 〉. We map these weights back to the neighbourhood of |v0〉 by using
the Weyl translation T −N and so find all the states near the highest-weight ‘vacuum’. We then
send N to infinity, and so find all the states in an arbitrarily large neighbourhood |v0〉.

The state |vN 〉 corresponds to an undeformed droplet containing kN bosons. In mapping
it back via the affine Weyl group to the ‘vacuum’ state |v0〉 = T −N |vN 〉 we also map the
original highest-weight state to |v−N 〉, which becomes the new no-particle state. The relation

|v0〉 = el
0e

k−l
1 |v−1〉, (31)
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k

m
1

m
k–1

m

α = k

k–1α =

Figure 3. Young diagram representing a k-restricted partition of p.

which is illustrated by the arrows in the weight diagrams can be generalized to

|v0〉 = (
el

0e
k−l
1

)(
el

2e
k−l
3

)
. . .

(
el

2N−2e
k−l
2N−1

)|v−N 〉. (32)

This process of adding Nk particles to the no-particle state corresponds to building up the
droplet by filling the ‘Bose sea’. That we only get a full representation of the current algebra
in the limit of a large droplet is familiar from the case of the ν = 1 Hall effect [21].

3.4. Level-k characters

We now write the q-series generating function that counts the general level-k polynomials.
Because it is rather lengthy, we defer the proof of this counting formula to the next section.

When there are p variables zi , the generating function takes the form of a sum over the
partitions of p into parts, each of which is no larger than k. These k-restricted partitions
are most conveniently pictured as Young diagrams whose shape is described by the integers
m1, . . . , mk . Here mα is the number of rows containing α boxes. These definitions are
illustrated in figure 3.

For the spaces Fp(d) of k-clustered symmetric polynomials of degree d in p variables,
Feigin and Stoyanovsky show that [14]∑

d

mult(p, d)qd = q−p
∑

k-restricted
partitions

ofp

qmt Mm+dt m

(q)m1(q)m2 . . . (q)mk

. (33)

Here the mα are the positive integers describing the partition of p, and so they are constrained
by

m1 + 2m2 + · · · + kmk = p. (34)

The matrix M has entries Mαβ = min(α, β). The vectors m and d are defined by

m = (m1,m2, . . . , mk)
t , (35)

d = (0, . . . , 0, 1, 2, . . . , l)t , (36)

the non-zero entries in d beginning at α = k − l + 1.
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From (33) we obtain the contribution to the character of the states in the restricted subspace
W . We do this by setting −m = d + p, λ = 2p + l, and summing over p. Thus

chWk,l
(q, x) =

∞∑
p=0

x2p+l

 ∑
m1+2m2+···+kmk=p

qmt Mm+dt m

(q)m1(q)m2 . . . (q)mk

 . (37)

The quadratic form in the exponent can be diagonalized by setting

N1 = m1 + m2 + · · · + mk,

N2 = m2 + · · · + mk,
(38)

...

Nk = mk,

whence

mtMm = N2
1 + N2

2 + · · · + N2
k . (39)

In terms of the Nα , we have

chWk,l
(q, x) =

∞∑
p=0

x2p+l

 ∑
N1+···+Nk=p

qN2
1 +N2

2 +···+N2
k +Nk−l+1+Nk−l+2+···+Nk

(q)N1−N2(q)N2−N3 . . . (q)Nk

 . (40)

Here the Nα are restricted by N1 � N2 � · · · � Nk � 0.
The diagonalized version of the character makes it easier to express the partial character

that counts the states in the pulled-back space T −NW . Applying T −N to the weights in

chWk,l
(q, x) =

∑
λ,m

multW(λ,m)xλq−m, (41)

we obtain

chT −NWk,l
(q, x) =

∑
λ,m

multW(λ,m)xλ−2kNq−m−λN+kN2
. (42)

To apply this transformation, we observe that

λ ≡ 2p + l = 2(N1 + N2 + · · · + Nk) + l, (43)

and that there are l terms in the linear part of the exponent

Nk−l+1 + Nk−l+2 + · · · + Nk.

This suggests that we complete the squares in the quadratic form, and then change variables
Nα → Nα − N . We end up obtaining

chT −NWk,l
(q, x)=

∞∑
p=0

x2(p−Nk)+l

 ∑
N1+···+Nk=p−Nk

qN2
1 +N2

2 +···+N2
k +Nk−l+1+Nk−l+2+···+Nk

(q)N1−N2(q)N2−N3 . . . (q)Nk−1−Nk
(q)Nk+N

 ,

(44)

where N1 � N2 � · · · � Nk � −N . It is now straightforward to take the limit N → ∞ and
recover the character for the complete representation

chVk,l
(q, x) = lim

N→∞
chT −NWk,l

(q, x). (45)

We find

chVk,l
(q, x) = 1

(q)∞

∑
N1�N2�···�Nk

x2N1+2N2+···+2Nk+lqN2
1 +N2

2 +···+N2
k +Nk−l+1+Nk−l+2+···+Nk

(q)N1−N2(q)N2−N3 . . . (q)Nk−1−Nk

, (46)
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where N1 � N2 � · · · � Nk ∈ Z. This is indeed the full character of the Vk,l representation
[13], and so we have verified the assertion that all states are obtainable by application of
products of e−n to the no-particle state |v−∞〉k,l .

The effect of filling the Bose sea is to make the width k part of the Young diagram extend
indefinitely upwards. This infinite tail corresponds to an undisturbed core of k-clustered
bosons, whilst the α < k part represents a halo of partially disrupted clusters composing the
edge excitations.

We close this subsection with a rather appealing form of the character (46), which will
also establish the notation used in the next subsection. This form is obtained by using the
inverse of transformation (38), with the result

chVk,l
(q, x) = 1

(q)∞

∑
m1,m2,...,mk−1�0

mk∈Z

x2p+l q
1
2 mt 2Mm+dt m

(q)m1(q)m2 . . . (q)mk−1

, (47)

where p = ∑k
α=1 αmα . In the context of the clustered quantum Hall states, the matrix 2M

first appeared in [22]. After performing a final transformation

mk = p − ∑k−1
α=1 αmα

k
, (48)

the character takes the form

chVk,l
(q, x) =

∑
p∈Z

xA1p+lq
pA1p

2k
+ lp

k

(
1

(q)∞

∑
m1,...,mk−1

′ q
1
2 mt A1A−1

k−1m−(A−1
k−1m)k−l

(q)m1(q)m2 . . . (q)mk−1

)
, (49)

where A−1
k−1 is the inverse Cartan matrix of su(k). Explicitly,

(
A−1

k−1

)
αβ

= min(α, β) − αβ

k

and (Ak−1)αβ = 2δα,β − δ|α−β|,1, where α, β = 1, . . . , k − 1. We used the convention that(
A−1

k−1m
)
k−l

is zero for l = 0 and l = k.

Note that A1 = 2. The prime indicates the constraint
∑k−1

α=1 αmα = p mod k. The
appealing feature of this form of the character is that it is explicitly expressed in terms of the
string functions, which are proportional to the expression in parenthesis (cf equation (18)). In
addition, the character is determined by k, l, the Cartan matrix of su(2) and the Cartan matrix
of su(k + 1).

3.5. The case ŝu(3)k

In [15], spin-singlet analogues of the spin-polarized Read–Rezayi states were proposed (see
[16] for more details). These states have the same clustering property, namely that the
wavefunction vanishes if any k + 1 electron coordinates coincide. We can exploit the ladder
operator strategy to construct characters of ŝu(3)k in a manner analogous to that of the previous
sections for ŝu(2)k . However, because of the presence of the two spin components, the situation
is slightly more involved. We will be brief in this section, and refer to a forthcoming paper
[20] for details.

We will here consider only the vacuum representation Vk of ŝu(3)k (see [20] for arbitrary
representations). In the vacuum representation, consider the subspace W , that is spanned
by states of the form eα1,−i1eα1,−i2 . . . eα1,−im1

fα2,−i1fα2,−i2 . . . fα2,−im2
|v0〉. This is not the

subspace W exploited by Feigin and Stoyanovsky [14]. They consider the sub-space generated
by the action of eα1,−i and eα2,−j on |v0〉. This may seem more natural from the viewpoint
of Lie theory—after all α1 and α2 are the simple roots of the algebra—but our space has the
advantage that eα1,−i and fα2,−j commute.
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2

1

α1

2

ω

ω

Figure 4. The roots and weights of su(3). The vectors α1 and α2 are the simple roots, and ω1 and
ω2 are the fundamental weights.

As in ŝu(2)k case, we construct the functions

Fv
(
z
↑
1 , z

↑
2 , . . . , z↑

p1
; z

↓
1 , z

↓
2 , . . . , z↓

p2

)
≡ 〈v|eα1

(
z
↑
1

)
eα1

(
z
↑
2

)
. . . eα1

(
z↑
p1

)
fα2

(
z
↓
1

)
fα2

(
z
↓
2

)
. . . fα2

(
z↓
p2

)|v0〉. (50)

With our choice of commuting operators, these functions are symmetric polynomials in
the variables z

↑
i , and separately in the variables z

↓
i . The polynomials Fv can therefore be

interpreted as the coordinate part of wavefunctions of quantum Hall states, in which the
spin-up (spin-down) electrons are located at z

↑
i

(
z
↓
j

)
respectively.

In [14] the objects corresponding to Fv are rational functions (which therefore cannot be
interpreted as wavefunctions for the spin-singlet quantum Hall systems), and the presence of
poles complicates the derivation of the character.

For similar reasons to those adduced the ŝu(2)k case, we have a set of relations(
eα1(z)

)k+1−a(
fα2(z)

)a = 0, a = 0, 1, . . . , k + 1, which are valid in any integrable
representation. For the special case of the vacuum representation, we have additional relations(
eα1,−1

)k+1|v0〉 = 0 and fα2,0|v0〉 = 0. From these relations, it follows that Fv must be zero if
any k + 1 variables coincide (and it may vanish when fewer variables coincide).

Before we can state the character of the subspace W , we first have to introduce a labelling
of the weight spaces. As was the case for ŝu(2)k , the representations of ŝu(3)k are spanned by
vectors |v〉 = |m, λ, i〉. In this case, however, λ ≡ λ1ω1 + λ2ω2 is a weight of su(3). Here ω1

and ω2 are the fundamental weights (the highest weights of the 3 and 3̄ representations) and λ1

and λ2 are integers. For |v〉 = |m, λ, i〉, the polynomial Fv
(
z
↑
1 , z

↑
2 , . . . , z

↑
p1; z

↓
1 , z

↓
2 , . . . , z

↓
p2

)
is of homogeneous degree deg(Fv), with (compare with the analogous relations for ŝu(2)k
in (24))

−m = deg(Fv) + p1 + p2 λ = (λ1, λ2) = (2p1 + p2,−(p1 + 2p2)). (51)

The character for the subspace W now takes the following form,

chWk,0,0(q, x1, x2) =
∑

m1,...,mk�0
n1,...,nk�0

(x1)
2p1+p2(x2)

−(p1+2p2)q
1
2 (mt 2Mm+nt 2Mn+mt 2On)∏k

α=1(q)mα
(q)nα

, (52)

where the matrix O has entries Oαβ = max(0, α + β − k), p1 = ∑k
i=1 imi and p2 = ∑k

i=1 ini .
The matrix corresponding to bilinear form in (52) first appeared in the context of the non-
Abelian quantum Hall states in [22].

To find the character of the vacuum representation, we have to fill the sea by applying the
appropriate Weyl translation T −n

α1−α2
, in a manner similar to the ŝu(2)k case (cf equation (5)).
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We then take the limit n → ∞. The resulting character can be written in the following form,

chVk,0,0(q, x1, x2) = 1

(q)2∞

∑
p1,p2∈Z

(x1)
2p1+p2(x2)

−(p1+2p2)q
1

2k
pt Ā2p

∑
m1,...,mk−1�0
n1,...,nk−1�0

′ q
1
2 at A2⊗A−1

k−1a∏k−1
i=1 (q)mi

(q)ni

,

(53)

where at = (m1, . . . , mk−1, n1, . . . , nk−1), F1 = ∑k−1
α=1 αmα , F2 = ∑k−1

β=1 βnβ and
pt = (p1, p2). Ā2 is obtained from the Cartan matrix of su(3) by changing the sign of
the off-diagonal elements. The prime indicates two constraints,

∑k−1
α=1 αmα = p1 mod k and∑k−1

β=1 βnβ = −p2 mod k.
We have restricted the discussion to the vacuum representation, because the other

representations involve some additional complications, which will be described in [20].
The character formula (53) for the vacuum representation of ŝu(3)k can be generalized to

representations Vk,λ with λ = lwi of any simply-laced affine Lie algebra ĝk . To do this, we
need to replace A2 by the Cartan matrix Cr of the corresponding finite Lie algebra g, whose
rank we denote by r. In addition, we need to change the dependence on xj .

At the end, the character of the vacuum representation takes the following form,

chVĝk
(q, {xi}) = 1

(q)r∞

∑
p1,...,pr∈Z

r∏
i=1

(xi)
(Cr p)i q

1
2k

pt Cr p
∑

m
(1)
1 ,...,m

(1)
k−1�0

...

m
(r)
1 ,...,m

(r)
k−1�0

′ q
1
2 mt Cr⊗A−1

k−1m∏r
j=1

∏k−1
α=1(q)

m
(j)
α

, (54)

where pt = (p1, . . . , pr) and mt = (
m

(1)
1 , . . . , m

(1)
k−1; · · · ;m

(r)
1 , . . . , m

(r)
k−1

)
, while the prime

indicates the constraints
∑k−1

α=1 αm
(j)
α = pj mod k, for j = 1, . . . , r . The character for the

basic representation of ŝu(3)k , equation (53), can be brought into the form of equation (54) by
changing the sign of the summation variable p2. Note that the character formula (54) appeared
earlier, in [23, 24]. The strategy of our proof, which will appear in a future publication [20],
is the same as the approach used in this paper for ŝu(2)k and is rather different from the
combinatorical approach of [24].

4. Counting the polynomials

In this section we expand on the sketch provided in [14] and explain how to derive (33).
This requires us to compute the dimensions of the spaces Fp(d) of degree-d, symmetric
polynomials in p variables that satisfy the k-cluster vanishing conditions and are additionally
zero when z1 = z2 = · · · = zk−l+1 = 0. We will do this by introducing a filtration associated
with k-restricted partitions of p on the total space

Fp =
∞⊕

d=0

Fp(d) (55)

of such functions. Our discussion is a simplified version of that appearing in [25].
In this section we will follow the convention that partitions are labelled by greek letters

such as λ and µ. The context should prevent confusion with the eigenvalues of h0. We
represent a partition λ by a Young diagram whose shape is parametrized by positive integers
mα , as described in the previous section and illustrated in figure 3. We order the partitions of
p lexicographically—i.e. we say that λ > µ, if, as we read down from the top of the Young
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diagram and come to the first row that differs between the two partitions, the row in λ is the
longer. This is a total order relation: any two partitions λ and µ are either identical or one is
strictly greater than the other.

To define the filtration we write the variables zi into the boxes of the partition λ in any
order. We will relabel them so that z

(α)
ij is the variable in the j th column of the ith row of

length α. Given a partition we now define the evaluation map ϕλ that acts on a function in Fp

by setting the variables in each row equal to a common value z
(α)
i . The result is a polynomial

in
∑

mα variables that is symmetric under the interchange of variables with the same value of
α—i.e. deriving from rows of the same length. We claim that the image Hλ of Fp under the
action of ϕλ is the space of linear combinations of polynomials of the form

H
({

z
(α)
i

}) = h
({

z
(α)
i

})
Hλ, (56)

where h
({

z
(α)
i

})
is any function symmetric under the interchange of variables with the same

value of α, and

Hλ =
k∏

α=k−l+1

mα∏
i=1

(
z
(α)
i

)α−k+l
∏

(α,i)>(α′,i ′)

(
z
(α)
i − z

(α′)
i ′

)2Mαα′
. (57)

Here Mαβ = min(α, β), and we are thinking of the row index i increasing downward as
is customary when writing matrices, so—perhaps perversely—we order the indices so that
(α, i) > (α′, i ′) if α > α′, or, if α = α′, then i < i ′. Now set

�λ =
⋂
µ>λ

ker ϕλ, �′
λ =

⋂
µ�λ

ker ϕλ. (58)

Thus �λ is the space of functions that annihilated by every evaluation map for µ > λ. Clearly
�λ ⊂ �µ if λ > µ. This nested set of subspaces of F is the filtration that we require.

Observe that �′
λ ⊂ �λ, and �′

(1p) = 0 because ϕ(1p) conflates no variables, and is therefore
an isomorphism. We can therefore define the graded space

Gr� =
⊕

λ

Grλ� (59)

where Grλ� = �λ/�′
λ and the sum is over partitions of p. Our strategy is to prove that

ϕλ : Grλ� → Hλ (60)

is an isomorphism of graded vector spaces. We must therefore show that this map is well
defined, and that it is both injective and surjective. Because of this isomorphism, we can use
the polynomials in Hλ rather than the polynomials in Fp to calculate the character, which
makes the problem tractable.

We begin by showing that the map is injective and well-defined. To do this first observe
that the image of �′

λ under the action ϕλ is automatically zero as a consequence of the
definition of �′

λ. There is therefore no problem in defining the action of ϕλ on the quotient
space Grλ� = �λ/�′

λ. Furthermore, by definition, the difference of any two functions in �λ

that map down to the same function in Hλ lies in �′
λ. The map is therefore injective.

To complete the demonstration that the map is well-defined, we must show our
characterization of the space Hλ is correct in that its elements are indeed of the form claimed
in (56) and (57). To show that f ∈ Hλ implies that ϕλ(f ) has a zero of at least 2 min(α, β)

when z
(α)
i = z

(β)

i ′ , it is sufficient to consider the dependence of f on the two sets of variables{
z
(α)
ij

}α

j=1 and
{
z
(β)

i ′j
}β

j=1, with α � β. We can carry out the evaluation map in two steps:
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ϕλ = ϕ1 ◦ ϕ2. Here ϕ1 consists of conflating all sets of variables except the
{
z
(β)

i ′j
}β

j=1, and ϕ2

consists of setting z
(β)

i ′1 = · · · = z
(β)

i ′β = z
(β)

i ′ . Let

f1
(
z
(α)
i ; z

(β)

i ′1 , . . . , z
(β)

i ′β
) = ϕ1[f ({zi})]. (61)

Now, by definition f (zi) is annihilated by all ϕµ with µ > λ. Therefore

f1
(
z
(α)
i ; z

(β)

i ′1 , . . . , z
(β)

i ′β
)∣∣

z
(β)

i′j =z
(α)
i

= 0 j = 1, . . . , β, (62)

because this corresponds to an evaluation at some partition larger than λ. Therefore,

f1
(
z
(α)
i ; z

(β)

i ′1 , . . . , z
(β)

i ′β
) =

β∏
j=1

(
z
(α)
i − z

(β)

i ′j
)
f̃ 1

(
z
(α)
i ; z

(β)

i ′1 , . . . , z
(β)

i ′β
)
. (63)

Now f1
(
z
(α)
i ; z

(β)

i ′1 , . . . , z
(β)

i ′β
)

was obtained from a symmetric function, and so, for each j ,

∂f1

∂z
(α)
i

∣∣∣∣∣
z
(β)

i′j =z
(α)
i

= α
∂f1

∂z
(β)

i ′j

∣∣∣∣∣
z
(β)

i′j =z
(α)
i

. (64)

However (63) tells us that, again for each j ,

∂f1

∂z
(α)
i

∣∣∣∣∣
z
(β)

i′j =z
(α)
i

= − ∂f1

∂z
(β)

i ′j

∣∣∣∣∣
z
(β)

i′j =z
(α)
i

=
β∏

j ′=1

′ (
z
(α)
i − z

(β)

i ′j ′
)
f̃ 1

∣∣∣∣∣∣
z
(β)

i′j =z
(α)
i

, (65)

the prime on the product meaning that the term with j ′ = j is to be omitted. The only way to
reconcile (64) with (65) is for f̃ 1|z(β)

i′j =z
(α)
i

to be zero. Thus the zero at z
(β)

i ′j = z
(α)
i is at least a

double zero:

f1
(
z
(α)
i ; z

(β)

i ′1 , . . . , z
(β)

i ′β
) =

β∏
j=1

(
z
(α)
i − z

(β)

i ′j
)2

f̃ 2
(
z
(α)
i ; z

(β)

i ′1 , . . . , z
(β)

i ′β
)
. (66)

We now evaluate the right-hand side of (66) at z
(β)

i ′1 = · · · = z
(β)

i ′β = z
(β)

i ′ and, recalling the
condition that α � β, we have

ϕλ[f ({zi})] = (
z
(α)
i − z

(β)

i ′
)2 min(α,β)

f̃ . (67)

Now we must establish that the image of ϕλ acting on f ∈ F has a zero of order at least
max(0, α − k + l) whenever z

(α)
i = 0. To see that this is so, consider the dependence of f on

the variables z1, . . . zα , with α > k − l, which are set equal to each other under the mapping
ϕλ. We carry out the map by setting the variables equal to zero consecutively. The function

g(zk−l+1, . . . , zα; . . .) = f |z1=...=zk−l=0, (68)

has a factor
∏α

i=k−l+1 zi because it is zero if any of the remaining variables are set equal to
zero. Therefore if any of the zα

i in the evaluation mapping are set to zero, the image has a zero
of at least degree α − k + l.

The last, and hardest, task is to establish surjectivity. In other words, to show that there is
at least one pre-image function in Fp for every function of the form (56), (57) that we claim
constitutes the image Hλ.

Let λ be a fixed partition and consider a function F({zi}) of the form

F({zi}) = Symf ({zi}) (69)
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Figure 5. The pattern on pairwise products appearing in equation (70). The top figure is for the
case α = β and the second for α > β. Each line joining the centres of a box corresponds to a
factor (zi − zj ).

where the symmetrization is over the variables zi and

f ({zi}) = h̃({zi})
∏

(α,i)>(β,i ′)

(
z
(α)
ij − z

(β)

i ′j
)(

z
(α)
i,j+1 − z

(β)

i ′j
) ∏

α>k−l

∏
i

j>k−l

z
(α)
ij , (70)

where h̃ is a polynomial, and z
(α)
i,α+1 ≡ z

(α)
i,1 . The pattern of pairwise products is illustrated in

figure 5. We claim that the function F is an element of �λ. (Note that F({zi}) with all α, β, . . .

equal to k and h̃({zi}) = 1 is the wavefunction for the clustered quantum Hall state without
quasi-holes [1]. A different realization of these states was given in [26].)

We first observe that if any k + 1 of the zi are set equal, the factor
∏ (

z
(α)
ij − z

(β)

i ′j
)

is zero:
consider the Young diagram corresponding to λ. There are most k columns. Since we are
equating k +1 variables, at least two of them are forced to be in the same column and so give to
a zero factor. It is easy to check that F satisfies the vanishing conditions z1 = . . . = zk−l+1 = 0.
It is therefore an element of Fp.

We next show that F is in the kernel of ϕλ for any µ > λ: we arrange the variables z
(α)
ij in

the boxes of the Young diagram corresponding to µ and recall that variables in the same row
are set equal to each other under the evaluation map. Thus no two variables from the same
column in λ may appear in the same row in µ if the prefactor

∏ (
z
(α)
ij − z

(β)

i ′j
)

is to be non-zero.
Since µ > λ, this is impossible: let the lengths of the rows in the partitions be denoted by λi

and µi , with the index i increasing downwards. Suppose that µi = λi for i = 1, . . . , j and
µj > λj . All the variables from the rows λi = k must appear in the rows of µ with the same
length, similarly for rows of length k − 1, and so on. But in row j of µ there can be at most λj

variables from row j of λ, and at least another variable must come from row j ′ with j ′ > j .
But λj ′ � λj , and hence this variable belongs to the same column of λ as some variable in
row j . Therefore under the evaluation mapping the image of F is zero.

Now we turn to the factor h̃ which is to give rise to the symmetric function h in (56). We
can take as a basis for such functions the symmetrized monomials

h =
∏
α

∑
σ∈Smα

σ

(∏ (
z
(α)
i

)λ
(α)
i

)
. (71)

Here λ(α) is a partition with not more than mα rows, these rows being of length λ
(α)
i . The

symmetrization is over each set of variables
(
z
(α)
1 , . . . z(α)

mα

)
for fixed α. Let

h̃({zi}) =
k∏

α=1

[
mα∏
i=1

(
z
(α)
i1

)λ
(α)
i

]
(72)

be the function appearing in (70). We claim that ϕλ(F ) is a scalar multiple of the function H
in (56) with h as in (71).
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To see that this claim is correct consider the sum over the symmetric group Sp∑
σ∈Sp

f (σ ({zi})). (73)

Suppose that for some σ , we have σ
(
z
(β)

ab

) = z
(γ )

cd with (γ, c) < (β, a), and that (β, a) is
the largest row for which this is true. This means that all rows above (β, a) undergo only a
permutation within the row. Suppose that the prefactor

ϕλ ◦ σ

 ∏
(α,i)>(α′,i ′)

(
z
(α)
ij − z

(α′)
i ′j

)(
z
(α)
i,j+1 − z

(α′)
i ′j

) (74)

is to be non-zero. Then z
(γ )

cd cannot be in a column directly below or to the left of the
permutation image of any other element from row (β, a)—but this means that at least another
element from row (β, a) should be mapped to a row below (β, a). If it is mapped to the (γ, c) it
can appear in any column other than d. If it mapped to any other row, it can appear in any other
column than d and an adjacent column (to the right or left depending on whether it is above or
below (γ, c)). Now we repeat this argument for this new element, concluding that at least one
more element of row (β, a) is mapped to a lower row, and so forth, until eventually we find
that all elements are permuted to a row below (β, a). If the elements are permuted to the same
row, they can be placed adjacent columns. Elements which are permuted to different rows
cannot be placed in adjacent columns, this being due to the factor linking adjacent columns in
the prefactor. There are at most β columns in λ in rows below (β, a), and hence the elements
must all appear in the same row, which is therefore of length β. Thus all the variables in
rows of length β are mapped to another row of length β, for the same reason. As a result,
the only permutations which give a non-zero contribution to ϕλ ◦ σ are those that permute
variables within each row, or those that permute rows of equal length. Under the evaluation
map, the former contribute equal terms to the sum, while row interchanges correspond to the
symmetrization over z

(α)
i in (71).

We have now completed the proof that the map ϕλ : Grλ� → Hλ is an isomorphism. This
map is clearly degree preserving, and so it only remains to count the number of polynomials
in each space Hλ.

Referring back to (57) we see that the minimal degree of a polynomial associated
with a partition l receives a contribution from the second product of 2mαmβ min(α, β) for
each pair α > β, and αmα(mα − 1) for each α. The first product makes a contribution∑

α mα min(0, α − k + l). The total minimal polynomial degree is therefore∑
αβ

mαMαβmβ −
∑

α

αmα +
∑

α

mα min(0, α − k + l). (75)

Using
∑

α αmα = p, the total number of variables, this becomes

mtMm + dtm − p, (76)

where m = (m1, . . . , mk)
t and d has entries di = min(0, α − k + l). The generating functions

for the number of symmetric polynomials h
({

z
(α)
i

})
of degree d are

(∏
α(q)mα

)−1
. Putting

the parts together, we therefore have∑
mult(p, d)qd = q−p

∑
k-restricted
partitions

ofp

qmt Mm+dt m

(q)m1(q)m2 . . . (q)mk

, (77)

as claimed in (33).
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5. Conclusion

We have shown that a planar droplet of bosons in a strongly correlated Read–Rezayi k-clustered
phase [1] will have low-energy excitations that can be identified with states in representations
of the ŝu(2)k current algebra. This simple picture applies provided that the energies of these
excited states are sufficiently low that only the edge of the droplet is perturbed, a central
core being left intact. This picture provides a physical interpretation for the observation [14]
that the space of k-clustered symmetric polynomials in an arbitrary number of variables is
in one-to-one correspondence with states in the integrable representations of the Lie algebra
ŝu(2)k . We also presented a generalization of these results to a two-component spin-singlet
system, whose excitations are classified by the ŝu(3)k algebra.
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character formulas in terms of Kostka polynomials J. Algebra 279 147
[26] Cappelli A, Georgiev L S and Todorov I T 2001 Parafermion Hall states from coset projections of Abelian

conformal theories Nucl. Phys. B 599 499


