Journal of Algebra 466 (2016) 141-146

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Classification of metaplectic modular categories $\stackrel{\diamond}{\approx}$

ALGEBRA

Eddy Ardonne^a, Meng Cheng^b, Eric C. Rowell^{c,*}, Zhenghan Wang^d

^a Department of Physics, Stockholm University, Albanova University Center, SE-106 91 Stockholm, Sweden

 $^{\rm b}$ Microsoft Station Q, University of California, Santa Barbara, CA 93106-6105, USA

 $^{\rm c}$ Department of Mathematics, Texas A&M University, College Station, TX 77843, USA

^d Microsoft Station Q and Dept of Mathematics, University of California, Santa Barbara, CA 93106-6105, USA

ARTICLE INFO

Article history: Received 10 March 2016 Available online 5 August 2016 Communicated by Nicolás Andruskiewitsch

Keywords: Modular category Quantum groups at roots of unity Metaplectic category Anyons

ABSTRACT

We obtain a classification of metaplectic modular categories: every metaplectic modular category is a gauging of the particle-hole symmetry of a cyclic modular category. Our classification suggests a conjecture that every weakly-integral modular category can be obtained by gauging a symmetry (including the fermion parity) of a pointed (super-)modular category.

© 2016 Published by Elsevier Inc.

 $^{\pm}$ The first author is supported in part by the Swedish Research Council. The third and fourth authors are partially supported by NSF grants DMS-1410144 and DMS-1411212 respectively.

* Corresponding author.

E-mail addresses: ardonne@fysik.su.se (E. Ardonne), mcheng@microsoft.com (M. Cheng), rowell@math.tamu.edu (E.C. Rowell), zhenghwa@microsoft.com (Z. Wang).

http://dx.doi.org/10.1016/j.jalgebra.2016.08.001 0021-8693/© 2016 Published by Elsevier Inc.

1. Introduction

Achieving a classification of modular categories analogous to the classification of finite abelian groups is an interesting mathematical problem [4,5]. In this note, we classify metaplectic modular categories. Our classification suggests a close connection between finite abelian groups and weakly-integral modular categories via gauging, thus leads to a potential approach to proving the Property F conjecture for weakly-integral modular categories [2,6,14].

A simple object X is weakly-integral if its squared quantum dimension d_X^2 is an integer. A modular category is weakly-integral if every simple object is weakly-integral. Inspired by the applications to physics and topological quantum computation, we focus on weakly-integral modular categories [7,8]. An important class of weakly-integral modular categories is the class of metaplectic modular categories—unitary modular categories with the fusion rules of $SO(N)_2$ for some odd integer N > 1 [11,12]. The metaplectic modular categories first appeared in the study of parafermion zero modes, which generalize the Majorana zero modes. The name *metaplectic* comes from the fact that the resulting braid group representations from the generating simple objects in $SO(N)_2$ are the metaplectic representations, which are the symplectic analogues of the spinor representations. Our main result is a classification of metaplectic modular categories: every metaplectic modular category is a gauging of the particle—hole symmetry of a cyclic modular category.

The property F conjecture says that all braid group representations afforded by a weakly-integral simple object have finite images. For $SO(N)_2$, the property F conjecture follows from [15]. It is possible that all weakly-integral modular categories can be obtained by gauging symmetries of pointed modular categories including fermion parities of pointed super-modular categories [3]—categories with all simple objects having their quantum dimension equal to 1. Our classification supports this possibility. If this is true, then a potential approach to the property F conjecture for all weakly-integral modular categories would be to prove that gauging preserves property F.

2. Cyclic modular categories

Definition 2.1. Let \mathbb{Z}_n be the cyclic group of n elements. A \mathbb{Z}_n -cyclic modular category is a modular category whose fusion rule is the same as the cyclic group \mathbb{Z}_n for some integer n.

A \mathbb{Z}_n -cyclic modular category is determined by a non-degenerate quadratic form $q:\mathbb{Z}_n \to \mathbb{U}(1)$ (see [13] and [10, Appendix D]). We will denote the \mathbb{Z}_n -cyclic modular category determined by such a quadratic form q as $\mathbb{C}(\mathbb{Z}_n, k)$ for $q(j) = e^{2\pi i s_j}$, $s_j = \frac{kj^2}{n}$, $0 \leq j \leq n-1$, (k,n) = 1. We will mostly be interested in the case n odd, for which there is always a symmetric bicharacter β such that $q(j) = \beta(j, j)$, from which the braiding on $\mathbb{C}(\mathbb{Z}_n, k)$ is obtained.

First for M, N relatively prime, $\mathcal{C}(\mathbb{Z}_{MN}, k)$ is a direct product of $\mathcal{C}(\mathbb{Z}_M, kN)$ and $\mathcal{C}(\mathbb{Z}_N, kM)$. The simple object types, j, of $\mathcal{C}(\mathbb{Z}_{MN}, k)$ can be labeled by pairs (a, b), where j = aM + bN and $0 \le a \le N - 1$, $0 \le b \le M - 1$. The fusion rules are

$$j_1 \times j_2 = (a_1, b_1) \times (a_2, b_2) = ([a_1 + a_2]_N, [b_1 + b_2]_M),$$
 (2.1)

and the topological twists are $\theta_j = e^{2\pi i s_j}$:

$$s_j = \frac{kj^2}{MN} = \frac{k(aM+bN)^2}{MN} = \frac{kMa^2}{N} + \frac{kNb^2}{M} + 2abk.$$
 (2.2)

Therefore, we have shown that $\mathcal{C}(\mathbb{Z}_{MN}, k) = \mathcal{C}(\mathbb{Z}_M, kN) \boxtimes \mathcal{C}(\mathbb{Z}_N, kM)$.

Next we find all distinct \mathbb{Z}_{p^a} -cyclic modular categories, where p is an odd prime.

For $\mathcal{C}(\mathbb{Z}_{p^a}, k)$, write $k = p^l m$, where $p \nmid m$. Note that if $l \geq 1$, the resulting category is not modular (since the form $q(x) = e^{2\pi i k x^2/p^a}$ is degenerate). Therefore, we must assume (k, p) = 1. The twist of the *j*-th simple object is $e^{\frac{2\pi i k}{p^a}j^2}$. If for n_1 and n_2 , the categories are isomorphic, it means that one can solve the congruent equation

$$\frac{n_1}{p^a} \equiv \frac{n_2 j^2}{p^a} \pmod{1},$$
 (2.3)

for some j such that $p \nmid j$ (so that j is a generator of \mathbb{Z}_{p^a}). We need to solve $j^2 \equiv n_2^{-1}n_1 \pmod{p^a}$, which is solvable when $\left(\frac{n_1}{p^a}\right) = \left(\frac{n_2}{p^a}\right)$. Therefore, there are two distinct theories.

Braided tensor auto-equivalences of the \mathbb{Z}_n -cyclic-modular categories are group isomorphisms of \mathbb{Z}_n which preserve the quadratic form q [10]. The **particle-hole symmetry** of a \mathbb{Z}_n -cyclic modular category with n odd is the categorical symmetry \mathbb{Z}_2 of $\mathcal{C}(\mathbb{Z}_n, k)$, where the non-trivial element of \mathbb{Z}_2 acts on $\mathcal{C}(\mathbb{Z}_n, k)$ via the braided tensor autoequivalence that sends j to n - j.

3. Metaplectic modular categories

The unitary modular categories $SO(N)_2$ for odd N > 1 has 2 simple objects X_1, X_2 of dimension \sqrt{N} , two simple objects $\mathbf{1}, Z$ of dimension 1, and $\frac{N-1}{2}$ objects Y_i , $i = 1, \ldots, \frac{N-1}{2}$ of dimension 2. The fusion rules are:

 $\begin{array}{ll} (1) & Z \otimes Y_i \cong Y_i, \ Z \otimes X_i \cong X_{i+1} \ (\text{modulo } 2), \ Z^{\otimes 2} \cong \mathbf{1}, \\ (2) & X_i^{\otimes 2} \cong \mathbf{1} \oplus \bigoplus_i Y_i, \\ (3) & X_1 \otimes X_2 \cong Z \oplus \bigoplus_i Y_i, \\ (4) & Y_i \otimes Y_j \cong Y_{\min\{i+j,N-i-j\}} \oplus Y_{|i-j|}, \ \text{for} \ i \neq j \ \text{and} \ Y_i^{\otimes 2} = \mathbf{1} \oplus Z \oplus Y_{\min\{2i,N-2i\}}. \end{array}$

The fusion rules for the subcategory generated by Y_1 (with simple objects $\mathbf{1}, Z$ and all Y_i) are precisely those of the dihedral group of order 2N.

Definition 3.1. A metaplectic modular category is a unitary modular category \mathcal{C} with the same fusion rules as $SO(N)_2$ for some odd N > 1.

From a modular category \mathcal{C} admitting an action of a finite group G by braided autoequivalences one may sometimes construct a new modular category called the *gauging* of the symmetry (see [6]). This is a two step process: first one extends \mathcal{C} to a G-crossed braided fusion category \mathcal{C}_G^{\times} (a G-graded fusion category having \mathcal{C} as its identity component), then one takes the G-equivariantization to obtain a new modular category of dimension $|G|^2 \dim \mathcal{C}$.

Theorem 3.2.

- (1) Suppose \mathfrak{C} is a metaplectic modular category with fusion rules $SO(N)_2$, then \mathfrak{C} is a gauging of the particle-hole symmetry of a \mathbb{Z}_N -cyclic modular category.
- (2) For $N = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$ with distinct odd primes p_i , there are exactly 2^{s+1} many inequivalent metaplectic modular categories.

To prove the theorem, we start with two lemmas.

Lemma 3.3. The object Z is a boson: $\theta_Z = 1$.

Proof. Let Y be any of the $\frac{N-1}{2}$ simple objects of dimension 2. By orthogonality of the rows of the S-matrix, we find that $S_{YZ} = 2$. Observing that $Y \otimes Z \cong Y$, we apply the balancing equation (see e.g. [1]):

$$S_{ij}\theta_i\theta_j = \sum_{k=0}^{r-1} N_{i^*j}^k d_k\theta_k$$

to obtain: $2\theta_Y\theta_Z = S_{YZ}\theta_Y\theta_Z = \theta_Yd_Y = 2\theta_Y$. It follows that $\theta_Z = 1$. \Box

Since Z is a boson (i.e. $\dim(Z) = 1$ and $\theta_Z = 1$), we may condense ("de-equivariantize" in the categorical language) to obtain a \mathbb{Z}_2 -graded category [10]. Since Z interchanges $\mathbf{1} \leftrightarrow Z$ and $X_1 \leftrightarrow X_2$ and fixes the Y_i the resulting condensed category $\mathcal{D} := \mathbb{C}^{\mathbb{Z}_2}$ has N objects of quantum dimension 1 in the identity sector \mathcal{D}_0 and one object of dimension \sqrt{N} in the non-trivial sector \mathcal{D}_1 (see [2]). Clearly, the fusion rules of \mathcal{D}_0 must be identical to those of some abelian group A of order N. In the following, we show that $A \cong \mathbb{Z}_N$. As an aside, we point out that the category \mathcal{D} is a Tambara–Yamagami category [16].

Lemma 3.4. The fusion rules of \mathcal{D}_0 are the same as \mathbb{Z}_N .

Proof. It is enough to find a tensor generator for \mathcal{D}_0 , that is, a simple object U so that $\{U^{\otimes i} : i \geq 0\}$ contains all simple objects in \mathcal{D}_0 . Now under condensation each

object Y_i becomes the sum of two invertible simple objects in \mathcal{D}_0 . The image of Y_i under condensation is $Y_i^1 \oplus Y_i^2$, a sum of invertible simple objects in \mathcal{D}_0 . We denote by $\mathbf{1}_0$ the image of $\mathbf{1}$ and Z under condensation (i.e. the unit object in \mathcal{D}_0). We will proceed to show that Y_1^1 is a tensor generator for \mathcal{D}_0 .

From $Y_1^{\otimes \overline{2}} \cong \mathbf{1} \oplus Z \oplus Y_2$ we obtain

$$(Y_1^1)^{\otimes 2} \oplus (Y_1^2)^{\otimes 2} \oplus 2Y_1^1 \otimes Y_1^2 = 2\mathbf{1}_0 \oplus Y_2^1 \oplus Y_2^2.$$

This implies $Y_1^{1*} = Y_1^2$, so that Y_1^2 appears as some tensor power of Y_1^1 . Thus Y_1^1 is a tensor generator provided each $Y_i^{(j)}$ appears in some tensor power of $(Y_1^1 \oplus Y_1^2)$. Since every Y_i appears in some tensor power of Y_1 the result follows. \Box

Proof of Theorem 3.2. (1) By Lemmas 3.3, 3.4, each metaplectic modular category is obtained from gauging a \mathbb{Z}_2 -symmetry of a cyclic modular category. But the particle-hole symmetry is the only non-trivial \mathbb{Z}_2 -symmetry of a cyclic modular category. (2) As discussed above, there are exactly two cyclic modular categories for each prime power factor in N. When gauging the particle-hole symmetry, there is an additional choice parameterized by $H^3(\mathbb{Z}_2; U(1)) \cong \mathbb{Z}_2$ [9,2,6]. Therefore, the number of metaplectic modular categories is 2^{s+1} .

4. Witt classes and open problems

Gauging preserves Witt classes [6]. Therefore, the Witt classes of metaplectic modular categories are the same as those of the corresponding cyclic modular categories.

Proposition 4.1. The modular category $\mathcal{C}(\mathbb{Z}_{p^{2a}}, q)$ is a quantum double $\mathcal{Z}(\operatorname{Vec}_{\mathbb{Z}_n^a}^{\omega})$.

Proof. It is easy to see that regardless of the quadratic form q, the simple objects $[np^a]$ are all bosons, for $n = 0, 1, \ldots, p^a - 1$. They form a \mathbb{Z}_{p^a} fusion category. In fact, one can define a Lagrangian subalgebra $\bigoplus_{n=0}^{p^a-1} [np^a]$ of $\mathbb{C}(\mathbb{Z}_{p^{2a}}, q)$. This shows that $\mathbb{C}(\mathbb{Z}_{p^{2a}}, q)$ is indeed a quantum double. Now let us condense this subalgebra, which identifies [j] with $[j + np^a]$. Therefore, one can label the distinct simple objects after condensation by [j], $j = 0, 1, \ldots, p^a - 1$. Hence $\mathbb{C}(\mathbb{Z}_{p^{2a}}, q)$ must be a quantum double of \mathbb{Z}_{p^a} , generally twisted by a class in H^3 [10]. \Box

One open question is to prove property F for all metaplectic modular categories. Another one is to construct universal computing models from metaplectic modular categories by supplementing braidings with measurements [8].

References

 B. Bakalov, A. Kirillov Jr., Lectures on Tensor Categories and Modular Functors, University Lecture Series, vol. 21, Amer. Math. Soc., 2001.

- [2] M. Barkeshli, P. Bonderson, M. Cheng, Z. Wang, Symmetry, defects, and gauging of topological phases, arXiv:1410.4540, 2014.
- [3] P. Bruillard, C. Galindo, T. Hagge, S.H. Ng, J. Plavnik, E.C. Rowell, Z. Wang, Fermionic modular categories and the 16-fold way, arXiv:1603.09294.
- [4] P. Bruillard, S.H. Ng, E. Rowell, Z. Wang, Rank-finiteness for modular categories, J. Amer. Math. Soc. 29 (3) (2016) 857–881.
- [5] P. Bruillard, S.H. Ng, E. Rowell, Z. Wang, On classification of modular categories by rank, arXiv: 1507.05139.
- [6] S.X. Cui, C. Galindo, J.Y. Plavnik, Z. Wang, On gauging symmetry of modular categories, arXiv: 1510.03475.
- [7] S.X. Cui, S.M. Hong, Z. Wang, Universal quantum computation with weakly integral anyons, Quantum Inf. Process. (2014) 1–41.
- [8] S.X. Cui, Z. Wang, Universal quantum computation with metaplectic anyons, J. Math. Phys. 56 (3) (2015) 032202.
- [9] P. Etingof, D. Nikshych, V. Ostrik, Fusion categories and homotopy theory, Quantum Topol. 1 (3) (2010) 209–273, with an appendix by Ehud Meir.
- [10] V. Drinfeld, S. Gelaki, D. Nikshych, V. Ostrik, On braided fusion categories I, Selecta Math. 16 (1) (2010) 1–119.
- [11] M.B. Hastings, C. Nayak, Z. Wang, On metaplectic modular categories and their applications, Comm. Math. Phys. 330 (1) (2014) 45–68.
- [12] M.B. Hastings, C. Nayak, Z. Wang, Metaplectic anyons, Majorana zero modes, and their computational power, Phys. Rev. B 87 (2013) 165421.
- [13] A. Joyal, R. Street, Braided tensor categories, Adv. Math. 102 (1993) 20-78.
- [14] D. Naidu, E.C. Rowell, A finiteness property for braided fusion categories, Algebr. Represent. Theory 14 (5) (2011) 837–855.
- [15] E.C. Rowell, H. Wenzl, $SO(N)_2$ Braid group representations are Gaussian, arXiv:1401.5329, 2014.
- [16] D. Tambara, S. Yamagami, Tensor categories with fusion rules of self-duality for finite abelian groups, J. Algebra 209 (2) (1998) 692–707.