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We obtain a classification of metaplectic modular categories: 
every metaplectic modular category is a gauging of the 
particle–hole symmetry of a cyclic modular category. Our 
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1. Introduction

Achieving a classification of modular categories analogous to the classification of finite 
abelian groups is an interesting mathematical problem [4,5]. In this note, we classify 
metaplectic modular categories. Our classification suggests a close connection between 
finite abelian groups and weakly-integral modular categories via gauging, thus leads to 
a potential approach to proving the Property F conjecture for weakly-integral modular 
categories [2,6,14].

A simple object X is weakly-integral if its squared quantum dimension d2
X is an in-

teger. A modular category is weakly-integral if every simple object is weakly-integral. 
Inspired by the applications to physics and topological quantum computation, we focus 
on weakly-integral modular categories [7,8]. An important class of weakly-integral modu-
lar categories is the class of metaplectic modular categories—unitary modular categories 
with the fusion rules of SO(N)2 for some odd integer N > 1 [11,12]. The metaplectic 
modular categories first appeared in the study of parafermion zero modes, which gen-
eralize the Majorana zero modes. The name metaplectic comes from the fact that the 
resulting braid group representations from the generating simple objects in SO(N)2 are 
the metaplectic representations, which are the symplectic analogues of the spinor repre-
sentations. Our main result is a classification of metaplectic modular categories: every 
metaplectic modular category is a gauging of the particle–hole symmetry of a cyclic 
modular category.

The property F conjecture says that all braid group representations afforded by a 
weakly-integral simple object have finite images. For SO(N)2, the property F conjecture 
follows from [15]. It is possible that all weakly-integral modular categories can be ob-
tained by gauging symmetries of pointed modular categories including fermion parities 
of pointed super-modular categories [3]—categories with all simple objects having their 
quantum dimension equal to 1. Our classification supports this possibility. If this is true, 
then a potential approach to the property F conjecture for all weakly-integral modular 
categories would be to prove that gauging preserves property F.

2. Cyclic modular categories

Definition 2.1. Let Zn be the cyclic group of n elements. A Zn-cyclic modular category 
is a modular category whose fusion rule is the same as the cyclic group Zn for some 
integer n.

A Zn-cyclic modular category is determined by a non-degenerate quadratic form 
q : Zn → U(1) (see [13] and [10, Appendix D]). We will denote the Zn-cyclic modular 
category determined by such a quadratic form q as C(Zn, k) for q(j) = e2πisj , sj = kj2

n , 
0 ≤ j ≤ n −1, (k, n) = 1. We will mostly be interested in the case n odd, for which there 
is always a symmetric bicharacter β such that q(j) = β(j, j), from which the braiding 
on C(Zn, k) is obtained.
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First for M, N relatively prime, C(ZMN , k) is a direct product of C(ZM , kN) and 
C(ZN , kM). The simple object types, j, of C(ZMN , k) can be labeled by pairs (a, b), 
where j = aM + bN and 0 ≤ a ≤ N − 1, 0 ≤ b ≤ M − 1. The fusion rules are

j1 × j2 = (a1, b1) × (a2, b2) = ([a1 + a2]N , [b1 + b2]M ), (2.1)

and the topological twists are θj = e2πisj :

sj = kj2

MN
= k(aM + bN)2

MN
= kMa2

N
+ kNb2

M
+ 2abk. (2.2)

Therefore, we have shown that C(ZMN , k) = C(ZM , kN) � C(ZN , kM).
Next we find all distinct Zpa -cyclic modular categories, where p is an odd prime.
For C(Zpa , k), write k = plm, where p � m. Note that if l ≥ 1, the resulting category is 

not modular (since the form q(x) = e2πikx2/pa is degenerate). Therefore, we must assume 
(k, p) = 1. The twist of the j-th simple object is e

2πik
pa j2 . If for n1 and n2, the categories 

are isomorphic, it means that one can solve the congruent equation

n1

pa
≡ n2j

2

pa
(mod 1), (2.3)

for some j such that p � j (so that j is a generator of Zpa). We need to solve j2 ≡
n−1

2 n1 (mod pa), which is solvable when 
(

n1
pa

)
=

(
n2
pa

)
. Therefore, there are two distinct 

theories.
Braided tensor auto-equivalences of the Zn-cyclic-modular categories are group iso-

morphisms of Zn which preserve the quadratic form q [10]. The particle–hole symmetry
of a Zn-cyclic modular category with n odd is the categorical symmetry Z2 of C(Zn, k), 
where the non-trivial element of Z2 acts on C(Zn, k) via the braided tensor auto-
equivalence that sends j to n − j.

3. Metaplectic modular categories

The unitary modular categories SO(N)2 for odd N > 1 has 2 simple objects X1, X2
of dimension

√
N , two simple objects 1, Z of dimension 1, and N−1

2 objects Yi, i =
1, . . . , N−1

2 of dimension 2. The fusion rules are:

(1) Z ⊗ Yi
∼= Yi, Z ⊗Xi

∼= Xi+1 (modulo 2), Z⊗2 ∼= 1,
(2) X⊗2

i
∼= 1 ⊕

⊕
i Yi,

(3) X1 ⊗X2 ∼= Z ⊕
⊕

i Yi,
(4) Yi ⊗ Yj

∼= Ymin{i+j,N−i−j} ⊕ Y|i−j|, for i 
= j and Y ⊗2
i = 1 ⊕ Z ⊕ Ymin{2i,N−2i}.

The fusion rules for the subcategory generated by Y1 (with simple objects 1, Z and all Yi) 
are precisely those of the dihedral group of order 2N .
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Definition 3.1. A metaplectic modular category is a unitary modular category C with the 
same fusion rules as SO(N)2 for some odd N > 1.

From a modular category C admitting an action of a finite group G by braided auto-
equivalences one may sometimes construct a new modular category called the gauging
of the symmetry (see [6]). This is a two step process: first one extends C to a G-crossed 
braided fusion category C×

G (a G-graded fusion category having C as its identity com-
ponent), then one takes the G-equivariantization to obtain a new modular category of 
dimension |G|2 dimC.

Theorem 3.2.

(1) Suppose C is a metaplectic modular category with fusion rules SO(N)2, then C is a 
gauging of the particle–hole symmetry of a ZN -cyclic modular category.

(2) For N = pα1
1 · · · pαs

s with distinct odd primes pi, there are exactly 2s+1 many in-
equivalent metaplectic modular categories.

To prove the theorem, we start with two lemmas.

Lemma 3.3. The object Z is a boson: θZ = 1.

Proof. Let Y be any of the N−1
2 simple objects of dimension 2. By orthogonality of the 

rows of the S-matrix, we find that SY Z = 2. Observing that Y ⊗ Z ∼= Y , we apply the 
balancing equation (see e.g. [1]):

Sijθiθj =
r−1∑
k=0

Nk
i∗jdkθk

to obtain: 2θY θZ = SY ZθY θZ = θY dY = 2θY . It follows that θZ = 1. �
Since Z is a boson (i.e. dim(Z) = 1 and θZ = 1), we may condense (“de-equivariantize” 

in the categorical language) to obtain a Z2-graded category [10]. Since Z interchanges 
1 ↔ Z and X1 ↔ X2 and fixes the Yi the resulting condensed category D := CZ2

has N objects of quantum dimension 1 in the identity sector D0 and one object of 
dimension

√
N in the non-trivial sector D1 (see [2]). Clearly, the fusion rules of D0 must 

be identical to those of some abelian group A of order N . In the following, we show 
that A ∼= ZN . As an aside, we point out that the category D is a Tambara–Yamagami 
category [16].

Lemma 3.4. The fusion rules of D0 are the same as ZN .

Proof. It is enough to find a tensor generator for D0, that is, a simple object U so 
that {U⊗i : i ≥ 0} contains all simple objects in D0. Now under condensation each 
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object Yi becomes the sum of two invertible simple objects in D0. The image of Yi under 
condensation is Y 1

i ⊕ Y 2
i , a sum of invertible simple objects in D0. We denote by 10 the 

image of 1 and Z under condensation (i.e. the unit object in D0). We will proceed to 
show that Y 1

1 is a tensor generator for D0.
From Y ⊗2

1
∼= 1 ⊕ Z ⊕ Y2 we obtain

(Y 1
1 )⊗2 ⊕ (Y 2

1 )⊗2 ⊕ 2Y 1
1 ⊗ Y 2

1 = 210 ⊕ Y 1
2 ⊕ Y 2

2 .

This implies Y 1
1
∗ = Y 2

1 , so that Y 2
1 appears as some tensor power of Y 1

1 . Thus Y 1
1 is a 

tensor generator provided each Y (j)
i appears in some tensor power of (Y 1

1 ⊕ Y 2
1 ). Since 

every Yi appears in some tensor power of Y1 the result follows. �
Proof of Theorem 3.2. (1) By Lemmas 3.3, 3.4, each metaplectic modular category is 
obtained from gauging a Z2-symmetry of a cyclic modular category. But the particle–
hole symmetry is the only non-trivial Z2-symmetry of a cyclic modular category. (2) As 
discussed above, there are exactly two cyclic modular categories for each prime power 
factor in N . When gauging the particle–hole symmetry, there is an additional choice pa-
rameterized by H3(Z2; U(1)) ∼= Z2 [9,2,6]. Therefore, the number of metaplectic modular 
categories is 2s+1.

4. Witt classes and open problems

Gauging preserves Witt classes [6]. Therefore, the Witt classes of metaplectic modular 
categories are the same as those of the corresponding cyclic modular categories.

Proposition 4.1. The modular category C(Zp2a , q) is a quantum double Z(Vecω
Zpa

).

Proof. It is easy to see that regardless of the quadratic form q, the simple objects [npa]
are all bosons, for n = 0, 1, . . . , pa − 1. They form a Zpa fusion category. In fact, one can 
define a Lagrangian subalgebra 

⊕pa−1
n=0 [npa] of C(Zp2a , q). This shows that C(Zp2a , q) is 

indeed a quantum double. Now let us condense this subalgebra, which identifies [j] with 
[j + npa]. Therefore, one can label the distinct simple objects after condensation by [j], 
j = 0, 1, . . . , pa−1. Hence C(Zp2a , q) must be a quantum double of Zpa , generally twisted 
by a class in H3 [10]. �

One open question is to prove property F for all metaplectic modular categories. 
Another one is to construct universal computing models from metaplectic modular cat-
egories by supplementing braidings with measurements [8].
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