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Abstract. It has long been known that, under the laws of quantum me-
chanics, particles in two spatial dimensions may exhibit non-abelian braid sta-

tistics. In this note we briefly discuss particular states of matter, so-called
paired and clustered quantum Hall states, which offer a concrete realization of
this scenario: quasi-holes over these quantum Hall states satisfy non-abelian
braid statistics. The associated degeneracies have their origin in combinato-
rial properties of (para-)fermions in conformal field theory. We also discuss
the exclusion statistics of edge excitations in these quantum Hall systems.

1. Introduction: non-abelian statistics in the quantum Hall arena

The fractional quantum Hall effect has unveiled states of matter that can be
characterized as incompressible quantum fluids with topological order. Such states
are formed in a two-dimensional electron gas, at very low temperature and in the
presence of a strong perpendicular magnetic field. It has been recognized early
on [13, 5] that the excitations over fractional quantum Hall states obey fractional
braid statistics: a configuration of N quasi-holes over a fractional quantum Hall
ground state forms a one-dimensional representation of the braid group BN , where
the braiding of two quasi-holes is typically represented by eiαπ, with α a rational
but non-integer number. The requirement that particle states have to represent the
braid group rather than the permutation group is special for two dimensions: the
braid group is the fundamental group of the configuration space of identical particles
only in two dimensions. On general grounds it is known that, for two-dimensional
quantum systems, higher dimensional representations of the braid group BN are
allowed (see [9] for an early reference). In such a situation, the braiding of particles
is represented by matrices, and since matrices in general do not commute, this leads
to the notion of non-abelian statistics.

It is now believed that the ‘non-abelian statistics scenario’ is realized in novel
types of quantum Hall states, which are characterized by a pairing or clustering
of electrons under quantum Hall conditions. There exists concrete experimental
[28] and numerical [17] evidence that the simplest of these states, the pfaffian
state proposed by Moore and Read [18], exists in nature. It is expected that,
more generally, these states can be realized in multi-layer quantum Hall systems
with sufficiently strong interlayer tunneling. In the literature, other approaches to
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construct non-abelian quantum Hall states have been proposed [27]. The relation
to the paired and clustered states that are studied in this paper remains unclear at
the moment.

In this contribution to the proceedings of the International Congress of Math-
ematical Physics 2000, we briefly review these fascinating developments. We first
recall some properties of the fractional quantum Hall states, stressing the role of
conformal field theory in the theoretical description. After that we present the
paired and clustered states and briefly discuss the statistics properties of their
quasi-hole excitations.

2. The fractional quantum Hall effect

The discovery of the fractional quantum Hall (fqH) effect [24] was truly re-
markable and unanticipated. At fractional filling fraction ν a quantum Hall (qH)
plateau was observed. The filling fraction is defined as the ratio of the number of
electrons and the number of available states in the lowest Landau level: ν = N/Nφ,
where Nφ is the number of flux quanta piercing the sample, and N the number of
electrons. This observation implies that a gap is formed within a Landau level, and
that the fundamental charge carriers have fractional charge. Soon after the discov-
ery, Laughlin made a fundamental break-through by proposing his by now famous
wave functions, which describe the qH effect at filling fraction ν = 1

m , where m is
an odd integer [16]

(2.1) Ψ̃m
L (z1, . . . , zN) =

∏

i<j

(zi − zj)
m .

Here and below we display reduced qH wave functions Ψ̃(z), which are related to

the actual wave functions Ψ(z) via Ψ(z) = Ψ̃(z) exp (−∑
i
|zi|2
4l2 ) with l =

√
~c
eB the

magnetic length.
Although the qH effect occurs at relatively high magnetic fields, it was soon

realized that the electron spin can indeed play an important role. The spin-polarized
Laughlin states were generalized by Halperin, who proposed a set of spin-singlet
wave functions [14]

Ψ̃m+1,m+1,m
SS (z↑1 , . . . , z

↑
N ; z↓1 , . . . , z

↓
N) =(2.2)

∏

i<j

(z↑i − z↑j )m+1
∏

i<j

(z↓i − z↓j )m+1
∏

i,j

(z↑i − z↓j )m ,

where z↑i and z↓j are the coordinates of the spin-up and spin-down electrons, re-

spectively. The state Eq. (2.2) has filling fraction ν = 2/(2m+ 1).

2.1. The qH effect-CFT connection.

2.1.1. Bulk connection. Following Moore and Read [18] one observes that it
is natural to view (lowest Landau level) qH wave functions as conformal blocks of
electron-type operators in a suitable chiral conformal field theory (CFT) in 2+0
dimensions. This point of view is related to the fundamental role of Chern-Simons
field theories for qH systems (compare with [29], where an explicit link between
Chern-Simons theory and CFT is established).
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As an example, the Laughlin ground state wave function (2.1) is obtained as

(2.3) Ψ̃m
L = lim

z∞→∞
(z∞)mN2〈Ve(z1) . . . Ve(zN ) : e−i

√
mNϕ(z∞) :〉 ,

with Ve(z) =: exp(i
√
mϕ) : a chiral vertex operator in the c = 1 chiral CFT

describing a single scalar field ϕ compactified on a radius R2 = m.
2.1.2. Edge connection. While bulk excitations over a qH fluid are gapped, one

expects gapless excitations at the edge of a sample. Following Wen [25], one ob-
serves that the edge excitations are described by a chiral Luttinger Liquid or chiral
CFT in 1+1 dimensions. In the example of the ν = 1

m Laughlin states, one again

has the scalar field theory at R2 = m. The neutral operator ρ = i
√
m∂ϕ is identi-

fied with edge density waves, while vertex operators of type V q(z) =: exp(iq
√
mϕ) :

represent charged edge excitations, the charge being equal to qe with −e the charge
of the electron and e

m of the fundamental quasi-holes.

2.2. Fractional statistics in the fqH effect. In the case of an abelian
quantum Hall state, changing the magnetic field by one flux quantum Φ0 = h

e
results in the creation of a quasi-hole (or particle, depending on the sign of the
change). These quasi-holes can have remarkable properties, such as a fractional
charge. Also, the quasi-holes over the Laughlin fqH states are anyons, i.e. they
realize fractional braid statistics [13, 5]. The fundamental phase for the braiding
of two such excitations is given by ei π

m .
Closely related to this are the fractional exclusion statistics of these same ex-

citations [12, 15]. Focusing on edge excitations, one can show that the gapless,
charged edge excitations of an abelian qH state satisfy a form of exclusion statis-
tics closely related to that of Haldane [12]. A particularly natural choice of basis
for the edge excitations employs edge electrons and quasi-holes as the fundamental
quanta [7]. In this basis, the exclusion statistics parameter matrix is diagonal with
self-exclusion parameters equal to m (for the edge electrons) and 1

m (for the edge
quasi-holes).

For general abelian qH states, one may argue [1] that the statistics matrix G
of edge excitations (in a specific basis) is of the form

(2.4) G = Ke ⊕ K−1
e ,

where Ke is the so-called K-matrix that characterizes the topological order of the
quantum Hall state (see for instance [26]).

3. Paired and clustered quantum Hall states

Prompted by the observation of a qH effect at filling fraction ν = 5
2 [28] a

number of novel qH states have been proposed. Among these is the Moore-Read
state or pfaffian state, which is characterized by a p-wave pairing of the fundamental
electrons [18, 10]. A generalization, where the pairing is replaced by a clustering
of order k was proposed by Read and Rezayi [21]. In [3] the present authors
made a further generalization to a class of spin singlet qH states characterized by
a clustering into (2k)-plets of electrons.
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The wave function of the (spin polarized) pfaffian state is given by

(3.1) Ψ̃Pf(zi) = Pf(
1

zi − zj
)
∏

i<j

(zi − zj)
M+1 ,

where Pf(Mi,j) = 1
2N/2(N/2)!

∑
σ sgn(σ)

∏N/2
r=1 Mσ(2r−1),σ(2r) is the pfaffian of an an-

tisymmetric matrix. For the wave function to be antisymmetric (we are describing
electrons) M needs to be an odd integer, which implies an even-denominator filling
fraction ν = 1

M+1 .

The pfaffian wave function can be viewed as a correlator in a c = 3/2 CFT,
consisting of a free scalar field and a Majorana fermion. The electron operator
becomes ψ(z) : exp(i

√
M + 1ϕc) : (z). The correlator of N of electron operators

(and a suitable background charge) splits into a product of vertex operators, giving
the Laughlin part of the wave function, and a product of fermion fields, which gives
the pfaffian factor.

Upon generalizing the Majorana fermion to the Zk parafermions [30] associated

to the coset bsu(2)k

bu(1) , one obtains the clustered states of [21]. Their wave functions are

constructed in the same way as the pfaffian wave function, with explicit parafermion
factors brought in by the electron operator. The result is a state in which the
electrons form clusters of order k rather than pairs. The filling fraction takes the
form ν = k

kM+2 , with M an odd integer. Note that for k = 1 the Laughlin states

(with m = M + 2) are recovered, while k = 2 gives the pfaffian states.
As stated before, the Halperin states are spin-singlet analogues of the Laughlin

states. In the same way, the states of [3] are spin-singlet analogues of the Read-
Rezayi states. To construct their wave functions, two boson fields are needed (for

charge and spin) in addition to the ‘higher rank’ parafermions associated to bsu(3)k

[bu(1)]2

[8]. The non-abelian spin-singlet states have filling fraction ν = 2k
2kM+3 with M an

odd integer. For k = 1 the Halperin states (2.2), with m = M + 1, are recovered.

4. Quasi-holes over paired and clustered qH states

In a BCS superconductor, where electrons are paired up, the fundamental flux
quantum is reduced to 1

2Φ0 = h
2e . The same phenomenon occurs in the paired and

clustered qH states, and this means that inserting a single flux quantum Φ0 creates
more than a single quasi-hole. For the spin-polarized states of [20] the number of
quasi-holes is given by n = k∆Nφ, where ∆Nφ is the number of excess flux quanta1.
For the spin-singlet states of [3], this relation becomes n↑ +n↓ = 2k∆Nφ, were n↑,↓

denotes the number of spin-up and down quasi-holes, respectively.
The quasi-holes over the paired and clustered qH states carry fractional charge

and satisfy non-abelian braid statistics. They can be studied with the help of
the associated CFT. The wave functions of states in the presence of quasi-holes are
obtained by inserting into the CFT correlators the appropriate quasi-hole operators,
which consist of a vertex operator part and a spin field of the parafermion theory. In
the case of the pfaffian, this is the spin field σ of the Ising model and the quasi-hole
operator becomes σ(w) : exp( i

2
√

M+1
ϕc) : (w).

1Note that we adopt a slightly different notation than the one used in [20, 11]. Here, n

denotes the number of quasi-holes, rather than the number of excess flux quanta.
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The non-abelian statistics have their origin in the non-trivial fusion rules of the
parafermion spin fields. In general, there is more than one way to fuse the fields in
the correlator to the identity; for n spin fields the number of ways will be denoted
by dn. The braiding of quasi-holes is then represented by a matrix of size dn × dn.

4.1. Braid statistics. The simplest example that exhibits the non-abelian
braiding is the situation where 4 quasi-holes are added to the pfaffian state. For
the pfaffian d4 = 2, so there are two distinct states which, following [19], we write

as Ψ(4qh,0) and Ψ(4qh, 1

2
). Starting from the state Ψ(4qh,0), and braiding two of the

particles, we find the following transformation

(4.1) Ψ(4qh,0) → e
iπ
4

√
2

(
Ψ(4qh,0) + Ψ(4qh, 1

2
)
)
.

Wave functions for the pfaffian state with n quasi-holes can be written as [20]

Ψ̃Pf,qh(z1, . . . , zN ;w1, . . . , wn) =
1

2(N−F )/2(N − F )/2!

∏

i<j

(zi − zj)
M+1(4.2)

×
∑

σ∈SN

sgn(σ)

F∏

k=1

zmk

σ(k)

(N−F )/2∏

l=1

Φ(zσ(F+2l−1), zσ(F+2l);w1, . . . , wn)

(zσ(F+2l−1) − zσ(F+2l))
,

where

(4.3) Φ(z1, z2;w1, . . . , wn) =
1

((n/2)!)2

∑

τ∈Sn

n/2∏

r=1

(z1 − wτ(2r−1))(z2 − wτ(2r)) .

The integers m1, . . . ,mF must be chosen such that they satisfy 0 ≤ m1 < m2 <

· · · < mF ≤ n
2 − 1, giving rise to a degeneracy d

(F )
n =

(
n
2
F

)
. The number F is

interpreted as the number of unpaired electrons in the excited state.
The braid matrices for n quasi-hole excitations were obtained by Nayak and

Wilczek [19], who showed a direct connection with the rotation matrices of the
group SO(2n). We refer to [23] for more general results on braiding matrices.

4.2. Quasi-hole counting formulas. The CFT approach to the excited state
wave functions and their braid properties is highly efficient. One would like however,
to ‘keep both feet on the ground’ and understand the fundamental degeneracies that
characterize the non-abelian statistics in a more direct way. This can be done by
selecting a (ultra-local) hamiltonian that has the qH state as its ground state, and
then (numerically) studying the spectrum of excited states.

These numerical computations are most easily performed by studying a small
number of particles in a spherical geometry. By tuning the number of flux quanta
to the value Nφ = 1

νN − S, where S is the so-called shift [26], one realizes the
qH state as the unique ground state. Cranking up the number Nφ and performing
a numerical diagonalization, one obtains characteristic degeneracies for quasi-hole
excitations.

Following [20], we first explain the counting of degeneracies for the case of
the pfaffain state. To understand the degeneracies of quasi-hole excitations on the
sphere, two effects should be taken into account. The first is a choice of fusion path
or, equivalently, a choice of numbers F and m1, . . . ,mF in the formula (4.2). The
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second effect is the so-called orbital degeneracy: the quasi-holes are not localized on
the sphere, but can occupy one of a finite number of available orbitals, each of which
is characterized by a definite angular momentum Lz. These orbital degeneracies
are well-known from the analysis of integer and abelian qH states.

For the pfaffain, the orbital degeneracy factor depends on the number F of

unpaired electrons. Fixing this number F , we have d
(F )
n different choices for the

quasi-hole wave function. To each of those we can associate [20] an orbital degen-

eracy factor equal to

(
N−F

2 + n
n

)
. Putting it all together, we have the following

total degeneracy

(4.4) #(N,n) =
∑

F

(
n
2
F

) (
N−F

2 + n
n

)
,

in agreement with numerical results [20]. The degeneracies dn relevant for a sit-
uation where n quasi-holes are at fixed positions are recovered by suppressing the

orbital factors, dn =
∑′

F d
(F )
n = 2n/2−1, where the sum is over even (odd) F for

N even (odd). This number is in agreement with a direct count of the number of
fusion paths of the n Ising spin fields [19].

For the more general clustered qH states, the degeneracies have basically the
same form: an orbital part and an intrinsic part, stemming from the non-trivial
fusion rules. The difference is however, that we can not rely on explicit wave func-
tions to break up the intrinsic degeneracy. One can work around this by extracting
from the parafermion CFT the relevant combinatorial factors, using the methods
put forward in [22, 6].

For the Read-Rezayi states, the counting has been worked out in [11], with the
result

(4.5) #(N,n; k) =
∑

F

{
n
F

}

k

(
N−F

k + n
n

)
,

with n the number of quasi-holes, n = k∆Nφ. The symbols {n
F }k represent the

degeneracies due to the fusion rules. In [6, 11], these were described in terms
of recursion relations; explicit formulas (based on binomials) for general k can be
found in [4]. The sum dn =

∑
F {n

F }k, which equals the total number of fusion
paths for the spin fields contained in n quasi-hole operators, sets the dimension of
the braid matrices for braiding 2 out of the n quasi-particles.

For the non-abelian spin-singlet states of [3], the counting goes along the same
lines, with the additional complication that we have to deal with two spin com-
ponents, with are combined in a non-trivial way. This is reflected in the counting
formulas by a doubling of the number of binomial factors. By inserting an amount
∆Nφ of extra flux, one creates quasi-holes, which can have either spin. The total
number of quasi-holes is fixed, n↑ +n↓ = 2k∆Nφ. The symbols {}k now depend on

four parameters {n↑ n↓

F1 F2
}k and we have dn↑,n↓ =

∑
F1,F2

{n↑ n↓

F1 F2
}k. The case k = 2 is

worked out in detail in [2], where the results are checked against numerical data.
Explicit results for the symbols {}k can be found in [4].

The numbers dn (for both spin-polarized and spin-singlet states) are easily
extracted from the known fusion rules of the ŝu(2)k and ŝu(3)k CFTs. For both
ŝu(2)3 and ŝu(3)2 the numbers dn are Fibonacci numbers. The asymptotic behavior
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for n→ ∞ is found to be

(4.6) dn ∼ [2 cos
π

k + 2
]n

for the spin-polarized clustered states, and

(4.7) dp ∼ [1 + 2 cos
2π

k + 3
]p

for the spin-singlet non-abelian states, where p = n↑ + n↓.

4.3. Exclusion statistics and K matrix structure. In [1] a proposal was
made for a K-matrix structure of the paired and clustered qH states discussed
in this paper. It was established that the exclusion statistics of edge excitations
over these states (in a suitable basis) can be captured by a statistics matrix of the
form (2.4), supplemented by a prescription that some of the particles described by
this matrix be viewed as pseudo-particles. We refer to the first paper of [1] for a
physical picture underlying these K-matrices, and to the second paper of [1] for
mathematical details.
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