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Abstract

We present explicit wavefunctions for quasi-hole excitations over a variety of non-abelian quan-
tum Hall states: the Read–Rezayi states with k P 3 clustering properties and a paired spin-singlet
quantum Hall state. Quasi-holes over these states constitute a topological quantum register, which
can be addressed by braiding quasi-holes. We obtain the braid properties by direct inspection of the
quasi-hole wavefunctions. We establish that the braid properties for the paired spin-singlet state are
those of ‘Fibonacci anyons’, and thus suitable for universal quantum computation. Our derivations
in this paper rely on explicit computations in the parafermionic conformal field theories that underly
these particular quantum Hall states.
� 2006 Elsevier Inc. All rights reserved.

1. Introduction

The realization that quantum Hall systems may harness what is called non-abelian
braid statistics has led to two exciting prospects. The first is that experiments can be set
up where, for the first time, the existence of non-abelian statistics in nature can be estab-
lished. The second prospect, following early ideas of Kitaev [1], is that systems exhibiting
non-abelian braid statistics can give rise to quantum registers and may offer unique
possibilities for what has come to be known as topological quantum computation or
fault-tolerant quantum computation.
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Proposals for experimental detection of non-abelian statistics [1–4] have mostly focused
on the so-called m = 5/2 quantum Hall state, which is believed to be described by the ‘pfaf-
fian’ or Moore–Read state [5,6]. To this date, this is the single quantum Hall plateau where
the indications for an underlying non-abelian state are rather firm. For the plateau at
m = 12/5 there is a more speculative case for a connection with a non-abelian k = 3
Read–Rezayi state [7]. Proposals to test if the state observed at m = 12/5 is indeed non-abe-
lian have been described in [8,9].

An interesting domain for the search for non-abelian quantum Hall states is that of
multi-component quantum Hall states, which can be realized as double layer or as spin-
singlet states. The double layer case in particular may offer the experimental flexibility
needed for tuning into a regime where a non-abelian state takes the upper hand. Examples
of candidates are the spin-singlet (or double layer) states of [10], exhibiting a separation of
spin and charge, and the spin-singlet analogues of the Moore–Read and Read–Rezayi
states that we introduced in [11] and studied further (with N. Read and E. Rezayi) in [12].

Ideas for topological quantum computation in quantum Hall systems boil down to the
following. Having available a non-abelian quantum Hall state as the underlying medium,
the injection of quasi-hole excitations is known to open up an internal space (the ‘quantum
register’), whose dimensionality grows with the number of quasi-holes. This quantum reg-
ister can be addressed by performing adiabatic quasi-hole braidings, which give rise to
matrices acting on the register.

It is well known that the non-abelian braiding in the Moore–Read state is not sufficient-
ly rich to enable universal quantum gates on the quantum register (note that there are pro-
posals to combine topological and non-topological operations to obtain universal gates in
this state [13–15]). It is also known that ‘higher’ non-abelian quantum Hall states, such as
those in the Read–Rezayi series with k = 3,5,6, . . ., do offer a prospect of universal quan-
tum computation [16,17], in the sense that universal quantum gates, such as the 2-qubit
CNOT gate, can be approximated with arbitrary precision by a well-chosen sequence of
braid matrices [18,19]. In this paper, we shall establish that the paired spin-singlet state
(AS state) of [11] is also universal for quantum computation. It is the unique paired quan-
tum Hall state with this property.

The simplest scenario for braid matrices with sufficient structure for universal topolog-
ical quantum computation is offered by the so-called ‘Fibonacci anyons’. In abstracto,
these are particles of two types, ‘0’ and ‘1’, with fusion rules

0� 0 ¼ 0; 0� 1 ¼ 1; 1� 1 ¼ 0þ 1: ð1:1Þ
Through a universal connection between, on the one hand, fusion rules and, on the other,
braid matrices, it has been established that the simplest braid matrices for Fibonacci any-
ons are, in the notation of [20],

R¼ ð�1Þ4=5 0

0 ð�1Þ�3=5

 !
; F ¼

s
ffiffiffi
s
pffiffiffi

s
p
�s

� �
; B¼ð�1Þ�4=5 s ð�1Þ�3=5 ffiffiffi

s
p

ð�1Þ�3=5 ffiffiffi
s
p

ð�1Þ�1=5s

 !
;

ð1:2Þ

where s ¼ 1
2
ð
ffiffiffi
5
p
� 1Þ.

Quasi-holes over non-abelian quantum Hall states cannot straightforwardly be identi-
fied with ‘non-abelian anyons’, but there are important parallels, in particular where the
fundamental relations between fusion and braiding properties are concerned. These rela-
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tions were first studied in the context of the algebraic approach rational conformal field
theories, as developed by Moore and Seiberg in [21]. In the context of quantum Hall sys-
tems, these same relations have been exemplified in the work of Slingerland and Bais [22],
who used an associated quantum group structure to obtain explicit results for braid matri-
ces for the Read–Rezayi quantum Hall states for general k.

Before the work of [22], Nayak and Wilczek [23] had derived explicit wavefunctions for
four quasi-hole excitations over the Moore–Read state. These wavefunctions provide
detailed information on the internal state associated with four quasi-holes, as a function
of the locations of these excitations. From these wavefunctions, braid properties are
derived by direct inspection. The work of [23] was based on a ‘coordinate’ rather than
an ‘algebraic’ approach to (rational) conformal field theory (CFT), and employed boson-
ization techniques for mastering the relevant CFT correlators.

It is the purpose of this paper to present explicit expressions for wavefunctions of quan-
tum registers associated to non-abelian quantum Hall states that are sufficiently rich to
enable universal topological quantum computation. We will in particular focus on two dis-
tinct quantum Hall states that both give rise to braid matrices of the type displayed in Eq.
(1.2) (up to additional abelian phase factors). The first is the k = 3 Read–Rezayi state and
the second is the paired (k = 2) AS spin-singlet quantum Hall state. We shall also write
some of the wavefunctions for quasi-holes over the general k Read–Rezayi states. Note
that throughout this paper, we will assume that the only effect of braiding comes from
the explicit monodromy.

The appearance of the ‘Fibonacci-type’ braid matrices in the quantum Hall systems can
be understood from a coarse graining of the fusion rules of the parafermionic CFTs under-
lying these states. For the example of the spin-singlet state, this takes the form

‘0’ ¼ f1;w1;w2;w3g; ‘1’ ¼ fr1; r2; r3; qg ð1:3Þ
with the wi denoting the parafermion sectors and ri, q labeling the various parafermion
spin fields in the CFT. The fusion rules of these fields (see Table B.1 in Section B.1) are
such that the coarse graining into ‘0’ and ‘1’ respects the relations given in Eq. (1.1).
We would like to stress that the ‘Fibonacci anyon’ aspect of the quantum Hall quasi-holes
captures a limited fraction of their relevant properties: for example, the fundamental qua-
si-holes come with different sets of quantum numbers and the detailed fusion rules (and
operator product expansions) of the fields in the parafermionic CFTs lead to detailed
structure expressed in the wavefunctions that we derive in this paper.

The ‘coordinate CFT’ approach that we follow to derive the quasi-hole wavefunctions
delves deep into the results for Wess–Zumino–Witten (WZW) and parafermion CFTs
derived in the mid-1980s. We shall in particular rely on results of Knizhnik and Zamolod-
chikov (KZ) [24]. Their expression for four-point functions of particular primary fields in
WZW models will form the cornerstone of the ‘contraction arguments’ that we employ to
determine closed form expressions for the various quantum register states that we
consider. The ‘master formulas’ that we develop enable an easy evaluation of correlators
that have until now not appeared in the literature, and that are not easily computed with
the methods of KZ. We present some explicit examples in Sections A.4 and B.4.

The presentation in this paper is organized as follows. In Section 2, we will explain the
method we use to obtain the quasi-hole correlators by using the Moore–Read state as an
example. In Section 3, we apply this method to the k = 3 Read–Rezayi states. We will pro-
vide a detailed derivation of the quasi-hole wavefunctions, and use these to calculate the
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braid behaviour of the quasi-holes. In Section 4, we apply our method to the paired spin-
singlet states proposed by the authors. In Section 5, we compare the braid results of Sec-
tions 3 and 4 with the results obtained by using the associated quantum groups. In the two
Appendices A and B, we give the details of the parafermion CFTs corresponding to su (2)k

and su (3)2, respectively. Namely, we provide the fusion rules, the details of the operator
product expansions, including the various coefficients, the spin-field correlators used to
derive the quasi-hole wavefunctions and the braid behaviour of the various hypergeomet-
ric functions which show up in the correlators. In addition, we give some new paraferm-
ionic correlators, which were used to obtain the various OPE coefficients. In Section A.6,
we give the quasi-hole wavefunctions for the Read–Rezayi states for arbitrary k.

2. General form of quasi-hole wavefunctions

In our analysis of non-abelian quantum Hall states, we rely on the so-called qH-CFT
connection where wavefunctions of a quantum Hall (qH) system are expressed as chiral
correlators (conformal blocks) of an associated conformal field theory (CFT) [5]. The con-
nection hinges on the identification in the CFT of an electron operator we (z), carrying
charge q = �1. The quantum Hall wavefunction is then expressed as

WqHðz1; . . . ; zN Þ ¼ lim
z1!1

ðz1Þ
N2

m hweðz1Þweðz2Þ � � �weðzN ÞQbgðz1Þi ð2:1Þ

with Qbg representing a neutralizing background (ionic) charge and the factor ðz1Þ
N2
m is

included to obtain a non-vanishing result. (The case of spin-full fermions has some addi-
tional structure.) Note that we drop the Gaussian factors throughout this paper.

The injection of a quasi-hole at position w is represented by the insertion in the CFT
correlator of the quasi-hole operator /qh (w). Mutual locality of the quasi-holes and the
electrons in the quantum Hall condensate implies that the operator product expansion
(OPE) between electron and quasi-hole operators is of the form

/qhðwÞweðzÞ ¼ ðw� zÞn/0qhðzÞ ð2:2Þ

with n a non-negative integer. Note that the mutual locality puts a constraint on the pos-
sible quasi-hole operators.

In all cases studied in this paper, the electron and quasi-hole operators are expressed in
terms of free bosonic fields (representing charge and spin) and of a parafermionic CFT.
The latter are closely related to Wess–Zumino–Witten (WZW) theories. For the order-k
Read–Rezayi (RR) states the ‘CFT-data’ are: SU (2)k WZW theory and the associated
Zk parafermions, while the paired spin-singlet states are connected to the SU (3)2 WZW
theory and to the associated higher-rank parafermions. We refer to [25] for a review
and further details.

For the Moore–Read (MR) state (which is the k = 2 member of the RR series), the
parafermion theory reduces to a single real (Majorana) fermion w (z). This allows a direct
evaluation of the electron wavefunction using the Wick theorem, leading to a ‘pfaffian’
wavefunction. Quasi-holes over this pfaffian state can be characterized by pair braking
in the pfaffian BCS factor [26]. The full dependence of a multi-quasi-hole wavefunction
on all coordinates is set by a CFT correlator

hrðw1Þ � � � rðwnÞwðz1Þ � � �wðzN Þið0;1Þ ð2:3Þ



E. Ardonne, K. Schoutens / Annals of Physics 322 (2007) 201–235 205
with r (w) the spin fields for the Majorana fermion. In a 1996 paper, Nayak and Wilczek
used bosonization techniques to derive an explicit expression for the full four quasi-hole
wavefunction [23]. It has the general form

Wð0;1ÞMR ðw1;w2;w3;w4; z1; z2; . . . ; zN Þ ¼ Að0;1ÞðfwgÞW12;34ðfwg; fzgÞ
þ Bð0;1ÞðfwgÞW13;24ðfwg; fzgÞ: ð2:4Þ

In this expression, the factors W12,34 and W13,24, which are polynomial in all coordinates
({w}, {z}), represent independent (in this case: two) ways in which four quasi-holes can
break up pairs in the electron condensate. The prefactors A(0,1) and B(0,1) are given by
(note that we are giving the result for the fermionic case M = 1)

AðpÞðfwigÞ ¼
ð�1Þ�

p
2

2
ðw12w34Þ

1
4x

1
4 ð�1Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffi
x
pq
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffi
x
pq� �

;

BðpÞðfwigÞ ¼ �
ð�1Þ�

p
2

2
ðw12w34Þ

1
4x�

1
4ð1� xÞ

1
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffi
x
pq
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffi
x
pq� �

;

ð2:5Þ

where p = 0,1 and we used the anharmonic ratio x ¼ w12w34

w14w32
, (where wij = (wi � wj)), which

is the same as the anharmonic ratio used in [24], but differs from the one used in [23]. The
labels (0,1) refer to the fusion channel of the four-quasi-hole state; it is this index which
acts as the qubit index in the context of topological quantum computation.

The formula (2.4) admits an elegant interpretation: it describes precisely how the
fusion channel basis of the four-quasi-hole states decomposes over a basis set by pat-
terns in quasi-hole induced pair-breaking in the condensate. This decomposition is giv-
en as a function of the quasi-hole coordinates wi, meaning that it can be followed as
quasi-particles move through the condensate. This in particular implies that quasi-hole
braiding properties can be read off from these wavefunctions, as was done in [23].
Clearly, the information stored in these wavefunctions goes well beyond braiding prop-
erties; we expect that some of this additional structure will be relevant for the optimal
design of experimental protocols aimed at demonstrating non-abelian statistics and at
quantum computation.

In this paper we show that quasi-hole wavefunction for non-abelian quantum Hall
states with potential for universal topological quantum computation can be cast in a form
similar to (2.4). To achieve this goal, we rely, in a first step, on known expressions for the
multi-parafermion correlators representing the quantum Hall condensate in the absence of
excitations [7,27,12,28]. Analyzing the factors associated with the injection of quasi-holes
(of various kinds) then leads to ‘master formulas’ not unlike (2.4). In a final step we con-
sider various ‘contractions’ of this master formula and use those to relate the coefficients
such as A(0,1) and B(0,1) to correlators having just four parafermion spin-fields. The latter
can extracted from [24], where they have been expressed in terms of hypergeometric
functions.

3. Quasi-hole wavefunctions for the k = 3 Read–Rezayi states

In this section, we use the approach outlined in the previous section to obtain the
wavefunctions of quasi-holes over the k = 3 Read–Rezayi (RR) states, [7], which can
be viewed as clustered analogues of the paired Moore–Read (MR) state [5]. The RR
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states have been studied in detail by various authors. Among the advances are explicit
wavefunctions in terms of the electron coordinates, both with and without the presence
of quasi-holes.

Even though the structure of the quasi-hole wavefunctions in terms of the electron
coordinates is known, see [27,29], the full quasi-hole wave functions, which also exhibit
the full dependence on the quasi-hole coordinates, have only been known for up to four
quasi-holes in the MR state (see [23]) and for an arbitrary number of quasi-holes in the
Laughlin states. In this paper, we fill in this gap, and calculate the full (four) quasi-hole
wavefunctions for the RR states and their spin-singlet analogues. In this section, we pro-
vide the details of the k = 3, M = 0 case of the RR states. We give the general k, M results
in Appendix A, where we also give the details of the fusion rules, OPEs, some general
parafermion correlators, and the braid relations.

Before we turn to the quasi-hole wavefunctions, we first give the wavefunction of the
k = 3 RR states without quasi-holes. In this case the number of electrons (even though
for M = 0, the particles are bosons, we will refer to them as electrons) has to be a multiple
of 3. It was shown in [27] that the following wavefunction is equivalent to the wavefunc-
tion presented in the original paper [7]. Divide the electrons into three groups Sa, a = 1,2,3
of equal size. For each group, we write a Laughlin factor

W2
Sa
ðfzgÞ ¼

Y
i<j

i;j2Sa

ðzi � zjÞ2: ð3:1Þ

To obtain the RR wavefunction, we sum over all inequivalent ways to divide the electrons
into three groups of equal size

Wk¼3
RR ðfzgÞ ¼

1

N

X
S1;S2;S3

W2
S1

W2
S2

W2
S3

h i
: ð3:2Þ

The normalization is N ¼ 3
N
2=3!, chosen consistently with the operator product expansion

of the parafermion fields. In effect, the sum amounts to symmetrization of all coordinates.
The k = 3 clustering property is manifest from Eq. (3.2): from the wavefunction (3.2) it

is clear that we can put three electrons at the same location, without obtaining zero,
because there will always be a term in the summation for which the three electrons belong
to different groups. Putting four or more electrons at the same location gives a vanishing
wavefunction.

3.1. The CFT formulation

The k = 3 RR wavefunctions for N electrons and n quasi-holes can be expressed in
terms of a parafermionic correlator in the following way

WRRðw1; . . . ;wn;z1; . . . ;zNÞ¼ hr1ðw1Þ � � �r1ðwnÞw1ðz1Þ � � �w1ðzN Þið0;1Þ

�
Y
i<j

ðzi� zjÞ
2
3þM
Y

i;j

ðwi� zjÞ
1
3

Y
i<j

ðwi�wjÞ
1
6�

M
2ð3Mþ2Þ: ð3:3Þ

From the fusion rules, it follows that the number of electrons N and n have to satisfy
the relation 2N + n = 0 mod3 in order for the correlator to be non-zero. In addition, a
state with only one quasi-hole is impossible.
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3.2. The quasi-hole wavefunctions

We focus on the case of four quasi-holes. In this case, there are two fusion channels
(labeled by (0) and (1)) for the parafermion correlator, namely r1r1 � w1 for the (0) chan-
nel and r1r1 � r2 for the (1) channel.

Following [27] and specifying to N = 3r + 1 electrons, with r an integer, we can write
the following ansatz for the wavefunction for four quasi-holes, (3.3),

Wð0;1ÞRR ðw1;w2;w3;w4; z1; . . . ; zN Þ ¼ Að0;1ÞðfwgÞW12;34ðfwg; fzgÞ
þ Bð0;1ÞðfwgÞW13;24ðfwg; fzgÞ: ð3:4Þ

Throughout the paper, we will choose the phase of wavefunctions in such a way that the
function A(0) ({w}) has no phase.

To specify the functions W12,34 and W13,24, we divide the electrons in three groups in
such a way that S1 contains (N � 1)/3 + 1 electrons and S2 and S3 contain (N � 1)/3
electrons.

Splitting the four quasi-holes into two groups, we have

W12;34 ¼
1

N

X
S1;S2;S3

Y
i2S2

ðzi � w1Þðzi � w2Þ
Y
j2S3

ðzj � w3Þðzj � w4ÞW2
S1

W2
S2

W2
S3

" #
;

W13;24 ¼
1

N

X
S1;S2;S3

Y
i2S2

ðzi � w1Þðzi � w3Þ
Y
j2S3

ðzj � w2Þðzj � w4ÞW2
S1

W2
S2

W2
S3

" # ð3:5Þ

with N ¼ 3
N
2 . In the following, we will use the case of N = 4 electrons to determine the

functions A(0,1) ({w}) and B(0,1) ({w}). Note that in the functions (3.5), the quasi-holes
do not have a zero with electrons of the first group before symmetrization. Nevertheless,
the maximum degree of each z is the same, because the number of electrons in the first
group is one bigger in comparison to the other two groups.

There is a third possible way of dividing the four quasi-holes into two groups. How-
ever, this does not give an independent function, because we have the following
relation

W14;23 ¼ xW12;34 þ ð1� xÞW13;24: ð3:6Þ

Relations of this kind were first studied by Nayak and Wilczek in [23], in order to reduce
the overcomplete basis to a linear independent one.

We should note that an (explicitly) independent basis for the Read–Rezayi states (for
arbitrary k) was recently formulated by Read [29] (building on results presented in [31]).
However, for our present purposes, namely deriving the full quasi-hole wavefunctions
and studying the braid behaviour of the quasi-holes, it is more convenient to use the basis
states (3.5), because the formulas and the transformation properties under the braiding of
quasi-holes are simpler.

The strategy to obtain the functions A(p) and B(p) in (3.4) is as follows. Making use of
OPEs, including the OPE coefficients, we reduce the correlator in the wavefunction (3.3) to
correlators involving just four r1,2 fields. The latter can be extracted from the results in
[24]. In particular we consider the following limits
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ðIÞ z2 ! z1; z4 ! z3; z3 ! w4; z1 ! w2;

ðIIÞ z2 ! z1; z4 ! z3; z3 ! w4; z1 ! w3:
ð3:7Þ

In both limits, we first fuse the two pairs of w1 fields to two w2 fields. Fusing these w2 fields
with r1 fields, we obtain r2 fields (see Section A.1 for more details about the fusion rules).
Thus, we obtain the following correlators

lim
ðIÞ
hr1r1r1r1w1w1w1w1i

ð0;1Þ / hr1r2r1r2ið0;1Þ;

lim
ðIIÞ
hr1r1r1r1w1w1w1w1i

ð0;1Þ / hr1r1r2r2ið0;1Þ:
ð3:8Þ

Keeping track of the various OPE coefficients and various phases is crucial in this proce-
dure. Many of these coefficients for the Zk parafermion CFT are given in [30]. The other
coefficients we need were obtained from consistency relations on the four-point correla-
tors. We give these coefficients in Appendix A.2.

With respect to the various phases which need to be taken into account we note the fol-
lowing. To be able to fuse the fields w2 with the appropriate spin field, one has to move the
field w2 (z1) in between the r1 fields. The resulting phase depends on the fusion channel,
and can be obtained from the OPE of w2 and the fusion channel under consideration.
As an example, in the limits above we need to find the phase associated with
r1 (w3)r1 (w4)w2 (z1) = (�1)aw2 (z1)r1 (w3)r1 (w4). In the (0) channel, we have r1r1 � w1,
and the phase a ¼ �4

3
follows from

w1ðzÞw2ðz0Þ � ðz� z0Þ�
4
3 � ð�1Þ�

4
3ðz0 � zÞ�

4
3 � ð�1Þ�

4
3w2ðz0Þw1ðzÞ;

while in the (1) channel we have r1r1 � r2 and the phase a ¼ �1
3

follows from

r2ðzÞw2ðz0Þ � eðz0Þðz� z0Þ�
1
3 � ð�1Þ�

1
3eðz0Þðz0 � zÞ�

1
3 � ð�1Þ�

1
3w2ðz0Þr2ðzÞ:

Taking the phases and OPE coefficients into account, we obtain the limits (I) and (II) of
the wavefunction WðpÞRR, with p = 0,1, Eq. (3.3)

lim
ðIÞ

WðpÞRR ¼ �ð�1Þp4
9
ðw12w34Þ

5
6ð1� xÞ

1
6hr1ðw1Þr2ðw2Þr1ðw3Þr2ðw4ÞiðpÞ w4

42w14w32

� �
;

lim
ðIIÞ

WðpÞRR ¼ ð�1Þp4
9
ðw12w34Þ

5
6x�

2
3ð1� xÞ

5
6hr1ðw1Þr1ðw2Þr2ðw3Þr2ðw4ÞiðpÞ w4

34w14w32

� �
;

ð3:9Þ
where we used the notation wij = (wi � wj) and the following convention for the anhar-
monic ratio x

x ¼ ðw12Þðw34Þ
ðw14Þðw32Þ

; 1� x ¼ ðw13Þðw42Þ
ðw14Þðw32Þ

;
x

1� x
¼ ðw12Þðw34Þ
ðw13Þðw42Þ

; ð3:10Þ

which is the same convention as used in [24], but differs from the one used in [30]. The
explicit form of correlators Ær1r2r1r2æ(0,1) and Ær1r1r2r2æ(0,1) can be extracted from the
results of [24]. In Appendix A.3 we present formulas expressing these correlators in terms
of hypergeometric functions.

Because we can easily take the limits (I) and (II) of the functions W12,34 and W13,24 in the
case of four electrons, namely



E. Ardonne, K. Schoutens / Annals of Physics 322 (2007) 201–235 209
lim
ðIÞ

W12;34 ¼ �
4

9
w14w32ðw42Þ4;

lim
ðIIÞ

W12;34 ¼ 0;

lim
ðIÞ

W13;24 ¼ 0;

lim
ðIIÞ

W13;24 ¼
4

9
w14w32ðw34Þ4;

ð3:11Þ

we finally obtain relations for the functions A(0,1) and B(0,1) which are easily solved to give

Að0Þ ¼ ðw12w34Þ
7

10x
3

10F
ð0Þ
1 ðxÞ;

Bð0Þ ¼ �ðw12w34Þ
7

10x�
7

10ð1� xÞF ð0Þ2 ðxÞ;

Að1Þ ¼ �ð�1Þ
2
5Cðw12w34Þ

7
10x

3
10F

ð1Þ
1 ðxÞ;

Bð1Þ ¼ ð�1Þ
2
5Cðw12w34Þ

7
10x�

7
10ð1� xÞF ð1Þ2 ðxÞ:

ð3:12Þ

Here, C ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1

5
ÞC3ð3

5
Þ

Cð4
5
ÞC3ð2

5
Þ

s
and the functions F

ðpÞ
i , with p = 0,1 and i = 1,2 are given in

(A.12).
With the explicit form of the functions A(p) and B(p), we have completely specified the

wavefunction for the k = 3, M = 0 Read–Rezayi state in the presence of four quasi-holes.
We will give the general k, M results in Appendix A. As an immediate application, we can
study the behaviour under exchange of quasi-holes, by making use of transformation
properties of the hypergeometric functions, which are also given in Appendix A.

3.3. Braid behaviour

To study the braid behaviour under the exchange of quasi-holes, we first note that the
anharmonic ratio transforms as x 7! �x

1�x for (1 M 2), x ´ 1 � x for (2 M 3) and x7! 1
x for

(1 M 3). In addition, we find that, by making use of (3.6),

W12;34 !
1$3

xW12;34 þ ð1� xÞW13;24;

W13;24 !
1$2

xW12;34 þ ð1� xÞW13;24;
ð3:13Þ

while the other transformations of the W’s are clear. The braid transformations of the
functions F ðpÞi are given in Appendix A.5. Combining all the results, we find the following
braid behaviour for general M

WðpÞRR !
1$2ðU 12ÞpqW

ðqÞ
RR; U 12 ¼ ð�1Þ�

1
2�

M
2ð3Mþ2Þ

ð�1Þ�
4
5 0

0 ð�1Þ
3
5

 !
;

WðpÞRR !
2$3ðU 23ÞpqW

ðqÞ
RR; U 23 ¼ ð�1Þ�

3
10�

3M
2ð3Mþ2Þ

s ð�1Þ�
2
5
ffiffiffi
s
p

ð�1Þ
2
5
ffiffiffi
s
p

�s

 !
;

WðpÞRR !
1$3ðU 13ÞpqW

ðqÞ
RR; U 13 ¼ ð�1Þ

3
10�

M
2ð3Mþ2Þ

s ð�1Þ
1
5
ffiffiffi
s
p

�
ffiffiffi
s
p

ð�1Þ
1
5s

 !
;

ð3:14Þ
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where we use s to denote the inverse of the golden ratio, i.e. s ¼
ffiffi
5
p
�1

2
. These matrices are

unitary, and satisfy U 13 ¼ U 23 � U 12 � U�1
23 . Note that if we evenly distribute the phases of

the off-diagonal elements, which amounts to a ‘gauge’ transformation, the matrices U12,
U23 and U13 become proportional to the (inverses of the) R, F and B matrices of the ‘Fi-
bonacci’ anyons, as displayed in Eq. (1.2).

4. Quasi-hole wavefunctions for a paired spin-singlet state

4.1. A paired spin-singlet quantum Hall state

In the search for a topological quantum liquid suited for universal quantum computa-
tion, the paired spin-singlet quantum Hall state of [11] imposes itself as a natural candi-
date. This state is the k = 2 member of a series of spin-singlet states introduced and
studied in [11,12]. In many ways, these states are direct extensions of the Read–Reazayi
states to spin-full (spin-1/2) fermions.

The simplest fermionic spin-singlet state (with M = 1) has filling fraction m = 4/7. At
this particular filling spin-singlet quantum Hall states have been observed [32], but their
precise nature has never been determined.

The braiding properties of the paired spin-singlet state are essentially more complicated
than those of the paired spin-polarized (Moore–Read) state. In fact, we will show that the
braiding in the paired (k = 2) spin-singlet state is similar to that in the k = 3 Read–Rezayi
state, the similarity being due to what is known as level-rank duality between the affine Lie
algebras su (2)3 and su (3)2. With this, the k = 2 state offers the perspective of universal
topological quantum computation in a paired quantum Hall state. This being enough
excitement for us now, we shall in this paper not address the k > 2 spin-singlet states. Their
wavefunctions can be obtained using the methods described in this paper.

4.2. The CFT formulation

The various wavefunctions for the k = 2 spin-singlet state in the presence of quasi-holes
are all expressed as correlators in a CFT. For M = 0 the CFT is precisely the (chiral)
SU (3)2 WZW model while for M„0 we have a deformation thereof, with a modified com-
pactification radius of the charge boson uc, see [12]. In all cases, the theory is conveniently
represented as a product of the su (3)2 parafermions, as introduced by Gepner in [33] and
the CFT of spin and charge bosons us and uc.

The fundamental quasi-holes over this quantum Hall state come in different types. One
type has spin-1/2 and charge 1/(4M + 3); a second option is to have spin-less quasi-holes
of charge 2/(4M + 3). For M > 0 the latter have the smaller scaling dimension and are
thereby the most ‘relevant’ in the sense of scaling arguments. We expect that experimental
protocols for the detection of non-abelian statistics and for quantum computation will be
most easily implemented using the spin-less quasi-holes.

Using the quantum Hall—CFT connection, we can write the wavefunction for a state with
the number of quasi-holes of the various types specified as n›, nfl, n3. These numbers satisfy

N " þ n" ¼ N # þ n#; ð4:1Þ
in order for the state to be a spin-singlet and

3ðN " þ N #Þ þ ðn" þ n#Þ þ 2n3 ¼ 0mod4 ð4:2Þ
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such that the fields can be fused to the identity sector. The case of only one quasi-hole is an
exception, because a state with only one quasi-hole is impossible.

In full generality the quasi-hole wavefunction reads [12]

WM
ASðw

"
1; . . . ;w

"
n"

;w#1; . . . ;w
#
n#

;w1; . . . ;wn3
;z"1; . . . ;z
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1; . . . ;z
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#
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2

Y
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1
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Y
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1
2

Y
i;j
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1
2

�
Y
i<j
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1
3�

M
3ð4Mþ3Þ

Y
i;j

ðw"i �w#j Þ
�1
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Y
i<j
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1
3�

M
3ð4Mþ3Þ

�
Y

i;j

ðw"i �wjÞ
1
6�

2M
3ð4Mþ3Þ

Y
i;j

ðw#i �wjÞ
1
6�

2M
3ð4Mþ3Þ

Y
i<j

ðwi�wjÞ
1
3�

4M
3ð4Mþ3Þ: ð4:3Þ

Below we present explicit formulas for these wavefunctions in the special cases of four quasi-
holes with (i) n3 = 4, (ii) n› = nfl = 2, (iii) n› = 4 and (iv) n› = 3, nfl = 1. To avoid clutter, we
write the expressions for M = 0; the braid relations will be specified for general M.

4.3. Evaluating quasi-hole wavefunctions

We first give the wavefunction without any quasi-holes in the form given in [28], see also
[27]. Assuming N› = Nfl both even we have (the sum is over all independent ways of divid-
ing the electrons in two groups, both containing N›/2 spin-up electrons and Nfl/2 spin-
down electrons; in effect this amounts to symmetrization over the spin-up and spin-down
electrons)

WM¼0
AS ¼

1

N

X
S1;S2

W221
S1
ðz"i ; z#j0 ÞW

221
S2
ðz"k ; z

#
l0 Þ; ð4:4Þ

with N ¼ 2
N"þN#

2 =2 and with W221
Sa

denoting the 221 state restricted to z"i ; z
#
j0 2 Sa

W221
Sa
ðz"i ; z#j0 Þ ¼

Y
i<j

i;j2Sa

ðz"i � z"j Þ
2
Y
i0<j0

i0 ;j02Sa

ðz#i0 � z#j0 Þ
2
Y
i;j0

i;j02Sa

ðz"i � z#j0 Þ: ð4:5Þ

Note that from now on, we will put a prime on the index of spin-down particles. In some
cases we will drop the arrows on the quasi-hole coordinates.

The validity of expression (4.4) is most easily understood from the characterization of
the paired spin-singlet as the maximal-degree zero-energy eigenfunction of a specific three-
body hamiltonian.

4.3.1. The case n3 = 4

The wavefunction takes the form

WAS½3333�ðw1;w2;w3;w4; z"1; . . . ; z"N" ; z#
10 ; . . . ; z#N 0#

Þ

¼ hr3ðw1Þr3ðw2Þr3ðw3Þr3ðw4Þw1ðz"1Þ � � �w1ðz"N" Þw2ðz#10 Þ � � �w2ðz#N 0# Þi

� eWð2;2;1ÞH ðz"i ; z#j0 Þ
h i1=2Y

i;j

ðz"i � wjÞ
1
2

Y
i0 ;j

ðz#i0 � wjÞ
1
2

Y
i<j

ðwi � wjÞ
1
3: ð4:6Þ
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Defining

Wab;cd ¼
1

2N

X
S1;S2

Y
i;j02S1

ðz"i � waÞðz#j0 � waÞðz"i � wbÞðz#j0 � wbÞ
" #

W221
S1
ðz"i ; z#j0 Þ

�
Y

k;l02S2

ðz"i � wcÞðz#j0 � wcÞðz"i � wdÞðz#j0 � wdÞ
" #

W221
S2
ðz"k ; z

#
l0 Þ: ð4:7Þ

we propose the following expression

Wð0;1ÞAS ½3333�ðw1;w2;w3;w4; z"1; . . . ; z"N" ; z#
10 ; . . . ; z#N 0#

Þ

¼ Að0;1Þ½3333�ðfwgÞW12;34ðfwg; fzgÞ þ Bð0;1Þ½3333�ðfwgÞW13;24ðfwg; fzgÞ: ð4:8Þ

Following steps that are similar to those presented in Section 3.2, we can determine the
coefficients in the master formula Eq. (4.8). The particular limits we employ are

ðIÞ z"1 ! z"2; z#
10 ! z#

20 ;

ðIIÞ z#
10 ! z#

20 ; z"1 ! w1; z"2 ! w2:
ð4:9Þ

They give

lim
ðIÞ
hr3r3r3r3w1w1w2w2i

ð0;1Þ / hr3r3r3r3ið0;1Þ;

lim
ðIIÞ
hr3r3r3r3w1w1w2w2i

ð0;1Þ / hr"r"r3r3ið0;1Þ;
ð4:10Þ

leading to the result
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5x�

2
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2
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2 ðxÞ;
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2
3F
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1 ðxÞ:

ð4:11Þ

Here, C ¼ 1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð4

5
ÞC3ð2

5
Þ

Cð1
5
ÞC3ð3

5
Þ

s
and the functions F

ðpÞ
i ðxÞ, with p = 0,1 and i = 1,2 are given in

(B.11). Note that, while we use the same notation as in Section 3.2, the actual functions
F
ðpÞ
i ðxÞ and the value of C differ between the two cases.

4.3.2. The case n› = nfl = 2

The wavefunction reads
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The master formula now reads (from now on, we will label the quasi-holes consecutively,
to avoid confusion when braiding quasi-holes; as a reminder, we will put primes on the
labels of the spin-down quasi-holes)

Wð0;1ÞAS ½""##�ðw
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1;w

"
2; w#
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#
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and similarly W140;230 . Note that in this case there is no natural third way to distribute the
quasi-holes over S1, S2.

To determine A(0,1)½››flfl� and B(0,1)½››flfl� we put N› = Nfl = 2 and consider the limits
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They give
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In the (0) channel this gives the equations
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The equations in channel (1) have a similar structure. The solutions are
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ð4:18Þ

Interchanging the positions of r› (w2) and r# ðw30 Þ gives a different basis for the four quasi-
hole wavefunctions in this sector. With
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the coefficients are found to be
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ð4:20Þ
4.3.3. The case n› = 4
The wavefunction takes the form
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From now on, we will drop the up-arrow on the quasi-hole coordinates {wi}. Defining
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ð4:22Þ
we propose the following expression
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To determine the coefficients in this master formula, we set N› = 2, Nfl = 6 and take the
two limits
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which give
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Using the spin-field correlators given in Eq. (B.10) we find
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ð4:26Þ

Because the spin-up quasi-holes have to satisfy exactly the same braid properties as the
spin-less quasi-holes for M = 0, it is not surprising at all that the functional form of the
functions (4.26) is exactly the same as in (4.11).

4.3.4. The case n› = 3, nfl = 1

The wavefunction is
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In this case, we will in general have N› = 2r + 1 spin-up electrons and Nfl = 2r + 3 spin-
down electrons, with r an integer. Thus, to define the functions Wab,cd, we will divide the
electrons in two groups, where the first group S1 contains (N› � 1)/2 spin-up electrons and
(Nfl � 1)/2 + 1 spin-down electrons. The second group S2 has the remaining (N›�1)/2 + 1
spin-up electrons, and the remaining (Nfl � 1)/2 spin-down electrons. We can now define

Wab;cd 0 ¼
1

N
0

X
S1;S2

Y
i2S1

ðz"i �w"aÞðz
"
i �w"bÞ

" #
W221

S1
ðz"i ;z#j0 Þ

Y
i;j02S2

ðz"i �w"cÞðz
#
j0 �w#dÞ

" #
W221

S2
ðz"k ;z

#
l0 Þ;

ð4:28Þ
with the normalization N

0 ¼ 2
N"þ1

2 2
N#þ1

2 , where the sum is over all ways of dividing the elec-
trons into the two groups. Note that we again have three different ways of splitting the
quasi-holes. However, the relation between them differs form the ‘usual’ relation, because
we now have

W23;140 ¼ x
w140

w340
W12;340 � ð1� xÞw140

w402
W13;240 : ð4:29Þ

The master formula now reads

Wð0;1ÞAS ½"""#� w"1;w
"
2;w

"
3; w#

40 ; z"1; . . . ; z"N" ; z#
10 ; . . . ; z#N 0#

	 

¼ Að0;1Þ½"""#�ðfwgÞW12;340 ðfwg; fzgÞ þ Bð0;1Þ½"""#�ðfwgÞW13;240 ðfwg; fzgÞ: ð4:30Þ

Specifying N› = 1 and Nfl = 3, and taking the limits

ðIÞ z#
10 ! z"1; z#

30 ! z#
20 ; z"1 ! w"2;

ðIIÞ z#
10 ! z"1; z#

30 ! z#
20 ; z"1 ! w"3;

ð4:31Þ
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we obtain the following result

Að0Þ½"""#� ¼ ðw12w340 Þ
4
5

w340
x�

2
15ð1� xÞ

2
3F
ð0Þ
2 ðxÞ;

Bð0Þ½"""#� ¼ � ðw12w340 Þ
4
5

w402
x�

2
15ð1� xÞ

2
3F
ð0Þ
1 ðxÞ;

Að1Þ½"""#� ¼ �ð�1Þ
3
5C
ðw12w340 Þ

4
5

w340
x�

2
15ð1� xÞ

2
3F
ð1Þ
2 ðxÞ;

Bð1Þ½"""#� ¼ ð�1Þ
3
5C
ðw12w340 Þ

4
5

w402
x�

2
15ð1� xÞ

2
3F
ð1Þ
1 ðxÞ:

ð4:32Þ

Note that in calculating the braid relations, the ‘extra’ factors of w340 and w402 are precisely
‘compensated’ by the additional factors in the relation between the Wab;cd 0 ’s in Eq. (4.29).

4.4. Braiding relations

The braid properties of the various four quasi-hole wavefunctions are easily evaluated
using the transformation properties of the functions F

ðpÞ
i ðxÞ as specified in Section B.5. We

display them here for general M.
For braiding the neutral quasi-holes of charge 2/(4M + 3), denoted by the label ‘3’, we

obtain the following results

WðpÞAS½3333� !1$2ðU 12ÞpqW
ðqÞ
AS½3333�; U 12 ¼ ð�1Þ�

2
3�

4M
3ð4Mþ3Þ

ð�1Þ
4
5 0

0 ð�1Þ�
3
5

 !
;

WðpÞAS½3333� !2$3ðU 23ÞpqW
ðqÞ
AS½3333�; U 23 ¼ ð�1Þ

4
5�

4M
4Mþ3

s ð�1Þ�
3
5
ffiffiffi
s
p

ð�1Þ
3
5
ffiffiffi
s
p

�s

 !
;

WðpÞAS½3333� !1$3ðU 13ÞpqW
ðqÞ
AS½3333�; U 13 ¼ ð�1Þ

8
15�

4M
3ð4Mþ3Þ

s �ð�1Þ�
1
5
ffiffiffi
s
pffiffiffi

s
p

ð�1Þ�
1
5s

 !
:

ð4:33Þ

For braiding spin-full quasi-holes, of charge 1/(4M + 3), the corresponding matrices are

U 12 ¼ ð�1Þ�
2
3�

M
3ð4Mþ3Þ

ð�1Þ
4
5 0

0 ð�1Þ�
3
5

 !
;

U 23 ¼ ð�1Þ
4
5�

M
4Mþ3

s ð�1Þ�
3
5
ffiffiffi
s
p

ð�1Þ
3
5
ffiffiffi
s
p

�s

 !
;

U 13 ¼ ð�1Þ
8

15�
M

3ð4Mþ3Þ
s �ð�1Þ�

1
5
ffiffiffi
s
pffiffiffi

s
p

ð�1Þ�
1
5s

 !
:

ð4:34Þ

These matrices are found by explicit inspection of the wavefunctions for the cases (n› = 3,
nfl = 1) and n› = 4. For (n› = 2, nfl = 2) equivalent matrices are found for situations where
the braiding does not mix the spin-labels, such as 1 M 2 for WðpÞAS½""##� and 1 M 3 for
WðpÞAS½"#"#�.
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The different M-dependence between Eqs. (4.33) and (4.34) reflects the fact that for
M „ 0 the conformal dimension of r3 differs from that of r› and rfl. For M = 0 the three
quasi-hole types are connected by an su (3) symmetry and the braiding properties are nec-
essarily the same.

By a simple change of basis (‘gauge transformation’) the matrices U12, U23 and U13

acquire a form which can be identified with that of the R, F and B matrices for the Fibo-
nacci anyons, Eq. (1.2), up to overall M-dependent phase factors. This establishes the suit-
ability of this particular quantum register for universal topological quantum computation.

5. Quantum group approach

In this section, we will use the CFT-quantum group connection to calculate the braid
properties of the quasi-holes, and confirm that the results from this approach is indeed
consistent with the results obtained here from the explicit wavefunctions for the quasi-hole
states.

The approach used here follows the lines of Slingerland and Bais, [22], to which we refer
for details and more references. More details on the CFT-quantum group connection can
be found in [34,35]. For the su (2)k case in particular, see [36]. More details about the quan-
tum groups themselves can be found in, for instance, [38].

At a basic level, the connection between conformal field theory and quantum groups
states that the braid properties of fields in the conformal field theory are the same as
the braid properties of particles carrying a quantum group representation. Because the lat-
ter are specified by the R-matrix of the quantum group, one can calculate the braid prop-
erties of the quasi-holes in an algebraic way. In addition to the R-matrix, one will also need
to know the 6j-symbols, because to describe general braidings, on needs to know how to
change between the different bases of the tensor product of three representations. This
information is encoded in the (q-deformed) 6j-symbols, or the F-matrices, see for instance,
[20] for a nice review.

To be more explicit, the F-matrices describe the basis transformation between the two
different ways in which one can take the tensor product, or fusion, of three representa-
tions, or particle types. The first way is to first fuse a particle of type a with a particle
of type b, which gives, say, a particle of type e. Finally, one fuses this particle e which
the third particle c, with particle d as outcome. The other way of fusing particles a, b

and c is to first fuse b and c into f, which is fused with a to give d. Pictorially, we can
describe the relation between these two bases as

¼
X
ðF a;b;c

d Þe;f : ð5:1Þ

The exchange of two particles a and b in a definite fusion channel c is described by the R-
matrix. Pictorially, we have

Ra;b
c ¼ : ð5:2Þ

In order that the F and R matrices describe consistent braiding, they have to satisfy con-
sistency conditions, which go under the name of the pentagon and hexagon equations [21].
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The F and R matrices obtained from the quantum groups automatically satisfy these equa-
tions.

We can now express the braiding of quasi-holes in terms of the R and F-matrices. The
braiding of the quasi-holes 1 and 2 (using the notation of Sections 3 and 4), is simply given
by the elements of the R matrix, and depends on the fusion channel.

The exchange of particles 2 and 3 can be done in more than one way. In our case, it
turns out that we first need to exchange particles 1 and 2, followed by acting with the
F-matrix, and finally, exchanging the third particle with the ‘intermediate’ particle. Picto-
rially, we have (for clarity, we dropped the labels a, b, etc.)

!R !
P

F
!R ¼ :

This corresponds to the following form of the braid matrix U23

ðU 23Þe;f ¼ Rb;f
d ðF

a;b;c
d Þef Ra;b

e : ð5:3Þ

Note that we do not sum over repeated indices. Similarly, we have the following expres-
sion for U13

ðU 13Þe;f ¼ Ra;f
d ðR

b;c
f Þ
�1ðF a;b;c

d Þef : ð5:4Þ

We will use the expressions (5.3) and (5.4) in the following subsections to compare the
braid results of the previous sections with the results obtained using the quantum groups.
Note that by changing the relative phase of the different blocks, we can change the relative
phase between the off diagonal elements of the matrices U13 and U23. Thus, only the sum
of the off-diagonal phases is a physical quantity. Nevertheless, we reproduce the matrices
exactly.

We will not explain in detail how to obtain the F and R matrices from the quantum
groups. For this, we refer to [22] and a forthcoming paper [37], in which details will be
given on the calculation of the F and R matrices in the case of Uq (su (3)). Here, we will
be brief in our description, and quote the results we need from the literature.

A quantum group associated to a Lie algebra is a q-deformation of its universal
enveloping algebra. At generic values of q, the representations of the quantum group
are similar to the representations of the Lie algebra. However, if q equals specific roots
of unity (which we will specify below in the cases of our interest), the representation the-
ory is rather different. Concentration on the case Uq (su (2)) (see, for instance, [22], where
the quantum group picture was used to calculate the braid behaviour of the quasi-holes
of the Read–Rezayi states), we find that for q ¼ e

2pi
kþ2, there are k + 1 unitary highest

weight representations. In addition, the tensor product of such representations gets trun-
cated in comparison to the tensor product of su (2). In fact, the truncated tensor prod-
ucts are equivalent to the fusion rules of su (2)k. The braid properties of the quasi-holes
are in fact described by the F and R matrices of the quantum group at these special val-
ues of q.

The calculation of the F matrices can be done in a similar fashion as in the case of
ordinary groups, by first calculating the Clebsch–Gordan coefficients, and from those
the 6j-coefficients. Of course, in the quantum group case, one has to use the q-deformed
raising and lowering operators.



E. Ardonne, K. Schoutens / Annals of Physics 322 (2007) 201–235 219
Generically, the F-matrices can be expressed in terms of the so-called q numbers bnc,
which are defined as

bnc ¼ q
n
2 � q�

n
2

q
1
2 � q�

1
2

; ð5:5Þ

or, equivalently, bnc ¼
Pn

i¼1q
nþ1

2 �i. Note that for q = 1, we have bnc = n.
For the Read–Rezayi states with k = 3 and the paired spin-singlet states proposed by

the authors, the corresponding value of q is q ¼ e
2pi
5 , for which we have b0c = 0,

b1c = b4c = 1, b2c ¼ b3c ¼ 1þ
ffiffi
5
p

2
and bn + 5c = �bnc for n 2 N.

5.1. The case su(2)k

To calculate the braid properties of the quasi-holes over the Read–Rezayi states, we
need to specify to which su (2)k representation they correspond, and the possible fusion
channels as well. Because all the braid properties are encoded by the braid properties of
four quasi-holes and because we know the four quasi-hole correlators, we will focus on
that case. The corresponding quantum group is Uq (su (2)), with q ¼ e

2pi
kþ2. The quasi-holes

correspond to the representation l = 1 (i.e. spin 1
2
), and the two fusion channels to the rep-

resentations l = 0 and l = 2.
Let us focus on the matrix U12 first. This matrix describes the braiding of the first two

quasi-holes, which depends on the fusion channel. For k = 3, we have R1;1
0 ¼ ð�1Þ

7
10 and

R1;1
2 ¼ ð�1Þ

1
10. This is in agreement with the matrix U12 of Eq. (3.14).

For general k, we have R1;1
0 ¼ �q�

3
4 ¼ ð�1Þ

2kþ1
2ðkþ2Þ and R1;1

2 ¼ q
1
4 ¼ ð�1Þ

1
2ðkþ2Þ, which con-

firms U12 of Eq. (A.42). Note that the M dependence easily follows from the general form
of the wavefunction, Eq. (A.33).

In addition, we have for k = 3

F 1;1;1
1 ¼

�s
ffiffiffi
s
pffiffiffi

s
p

s

� �
: ð5:6Þ

For general k, we obtain the following result

F 1;1;1
1 ¼ 1

b2c
�1

ffiffiffiffiffiffiffi
b3c

pffiffiffiffiffiffiffi
b3c

p
1

 !
¼ 1

dk

�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

k � 1
q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

k � 1
q

1

0B@
1CA; ð5:7Þ

where dk ¼ 2 cosð p
kþ2
Þ is the quantum dimension of the fundamental representation of

su (2)k.
Now, the matrix U23 corresponds to

ðU 23Þe;f ¼ Rb;f
d ðF

a;b;c
d Þef Ra;b

e ; ð5:8Þ

with a = b = c = d = 1 and both e and f can take the values 0,2. Note that we do not sum
over repeated indices. Similarly, U13 corresponds to

ðU 13Þe;f ¼ Ra;f
d ðR

b;c
f Þ
�1ðF a;b;c

d Þef ; ð5:9Þ

also with a = b = c = d = 1 and e, f = 0,2.
Using these results for the R and F matrices, we easily see that the k = 3 results of Eq.

(3.14) and the general results of Eq. (A.42) are reproduced exactly.
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We would like to note that the k = 3 braid matrices are, up to an overall factor, directly
related to the braid matrices of the Fibonacci theory. Note that they are in fact related to
the ‘mirror-image’ of the matrices (1.2). This is related to the fact that the F matrix of the
spin-1/2 particles in the su (2)3 theory is given by Eq. (5.6) instead of Eq. (1.2).

5.2. The case su(3)2

We will now compare the results of braiding in the spin-singlet case to the results which
can be obtained by using a quantum group picture. To do this, we will have to know the
6j-symbols (or F-symbols) of the quantum group of su (3). The results of a direct calcula-
tion of these 6j-symbols for general q will be presented elsewhere [37], together with the R-
matrix ‘eigenvalues’ and a detailed analysis of the 6j-symbols related to cosets. Here, we
will merely quote a small number of F-symbols and braid factors.

For the comparison of the braid matrices with the results obtained from the quantum
group picture, it is easiest to work with a set of parafermion fields which stay as close as
possible to the representations used in the KZ equation, see Appendix B.1. Hence, we will
work with the representatives a = 3, b = 3, c = 3, and d = 8. Note that we cannot take 3 as
the last representative as well. The reason is that after fusing the first two fields, we find
that the possible channels correspond to 6 or 3. Fusing these intermediate channels auto-
matically gives us the 8. It follows that we need the following data, which can be obtained
from the quantum group of su (3) [37]

F 3;3;3
8 ¼

s
ffiffiffi
s
pffiffiffi

s
p

�s

� �
; ð5:10Þ

where the intermediate fusion channels are 6 and 3 (in that order) and

R3;3
6 ¼ ð�1Þ

2
15 R3;3

�3
¼ ð�1Þ

11
15 R3;6

8 ¼ ð�1Þ
2
3 R3;�3

8 ¼ ð�1Þ
1

15: ð5:11Þ

The symbols R3;3
6 and R3;3

�3
correspond to the diagonal elements of U12 as they should. In

addition, upon using Eqs. (5.3) and (5.4), we obtain the matrices of Eq. (4.34).

5.3. su(3)2 parafermion correlators

To verify the braid behaviour of the various su (3)2 parafermion correlators, we will use
the following data

F 8;8;8
8 ¼

s
ffiffiffi
s
pffiffiffi

s
p

�s

� �
; ð5:12Þ

where the intermediate fusion channels are 1 and 8 and

R8;1
8 ¼ R1;8

8 ¼ 1 R8;8
1 ¼ ð�1Þ�

6
5 R8;8

8 ¼ ð�1Þ�
3
5: ð5:13Þ

With this data, we exactly obtain the braid behaviour which can be derived from the cor-
relator of four �q1 fields in Eq. (B.13). In addition, we obtain the braid behaviour of four r3

fields of Eq. (B.10) up to an overall sign. To explain the origin of this sign, we note that if
one expresses the SU (3)2 WZW primary in the adjoint representation in terms of the para-
fermion field r3, additional u (1) factors are needed, see Eq. (B.4). These u (1) factors give
rise to the additional sign. Note that in the q sector, these u (1) factors are absent.
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Appendix A. Detailed structure of the su (2)k parafermion theory

In this appendix, we will review the structure of the Zk parafermion conformal field the-
ory, as introduced in [30]. In fact, we will use the general setting of [33], so we can use the
results to explain the details of the parafermion theory associated to su (3)2 in the next
appendix as well.

In the case of the su (3)2 parafermions, which we will describe in the next appendix, it
will be important to make a distinction between the chiral sectors of the parafermion the-
ory, and the Virasoro primary fields. Each chiral sector contains an infinite number of
Virasoro primary fields. However, we will often use the same notation for the chiral sector
and the leading Virasoro primary field. For the chiral sectors we consider in this appendix,
there will always be only one leading virasoro primary field. However, in the case of the
su (3)2 parafermions, there will be one chiral sector containing two leading Virasoro pri-
mary fields.

The fusion rules (which will be specified for the su (2)k parafermions below) describe the
‘merging’ of two parafermion sectors. To calculate the quasi-hole wavefunctions, we need
to know the full details of what happens when two primary fields are brought to the same
location inside correlators. This information is contained in the operator product expansions
(OPEs), which will be given in (A.2) in the case of the parafermions associated to su (2)k.

A.1. Fusion rules of the su(2)3 parafermions

The sectors of the su (2)k/u (1) parafermion CFT (which we will sometimes denote by
Zk) are labeled by two labels, an su (2)k label l = 0,1, . . . ,k and the u (1) charge m, which
is defined modulo 2k, because the u (1) theory is compactified. Thus, we write the sector
(and the leading parafermion primary fields) as Ul

m.
The branching rules state that the only labels allowed are those which satisfy

l � m = 0mod2. In addition, we need to identify the sectors [39] Ul
m � Uk�l

mþk. It follows that
there are 1

2
kðk þ 1Þ parafermion primary fields, and for each field we can choose labels Ul

m

with l = 0,1, . . .,k and m 2 {�l + 2,�l + 4, . . ., l}. With labels chosen in this way, the
dimensions of the fields are given by

hl;m ¼
lðlþ 2Þ
4ðk þ 2Þ �

m2

4k
: ðA:1Þ

Note that if m is chosen outside of the range m 2 {�l + 2,�l + 4, . . ., l}, the scaling dimen-
sion will be given by hl;m þ nl

m, where nl
m is a positive integer.

Thus, for the parafermions wi ¼ U0
2i � Uk

2i�k, with i = 0,1, . . .,k � 1 we find hwi
¼ iðk�iÞ

k ,
while for the spin fields ri ¼ Ui

i we find hri ¼
iðk�iÞ

2kðkþ2Þ. The ‘neutral’ fields ei ¼ U2i
0 with

2i 2 {0,1, . . .,k} have scaling dimension hei ¼
iðiþ1Þ
kþ2

.



Table A.1
Fusion rules of the parafermion and spin fields associated to the parafermion theory su(2)3/u(1)

· r1 r2 e w1 w2

r1 w1 + r2

r2 1 + e w2 + r1

e w2 + r1 w1 + r2 1 + e
w1 e r1 r2 w2

w2 r2 e r1 1 w1
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The fusion rules of the Zk parafermion theory can be obtained from the fusion rules of
the SU (2)k WZW conformal field theory. Explicitly, we have

Ul
m � Ul0

m0 ¼ �l002l�l0U
l00

mþm0 ; ðA:2Þ

where the sum is over the range l00 = |l � l 0|, |l � l 0| + 2, . . .,min (l + l 0, 2k � l � l 0).
Specializing to the Z3 parafermions, we will use the following standard notation

1 ¼ U0
0 w1 ¼ U0

2 w2 ¼ U0
4 r1 ¼ U1

1 r2 ¼ U2
2 e ¼ U2

0: ðA:3Þ
The scaling dimensions are hwi

¼ 2
3
, hri ¼ 1

15
and he ¼ 2

5
.

With this notation, we find the fusion rules as given in Table A.1.
Note that the structure of the fusion rules becomes simpler if we adopt the following

notation w0 = 1, w1 = w1, w2 = w2, s0 = e, s1 = r2 and s2 = r1. The labels of the fields
are defined modulo 3. In this notation, the fusion rules are simply

wi � wj ¼ wiþj;

wi � sj ¼ siþj;

si � sj ¼ wiþj þ siþj:

ðA:4Þ
A.2. OPEs

In this section, we give the OPEs of the leading Virasoro primary fields1 (including the
numerical coefficients). We will use schematic notation, writing

AðzÞBðwÞ ¼ ðz� wÞhC�hA�hB cC
A;BCðwÞ þ � � � ðA:5Þ

as

AB ¼ cC
A;BC ðA:6Þ

and restricting ourselves to the leading field in each of the fusion channels.
We then have the following OPEs

w1w1 ¼
2ffiffiffi
3
p w2; w1w2 ¼ 1; w2w2 ¼

2ffiffiffi
3
p w1; ðA:7Þ
1 To be completely rigorous, we should view the fields as chiral vertex operators, or intertwiners. Then, the OPE
coefficients would carry two additional labels, indicating the sectors the fields acts between. In this paper, we will
not need this level of detail.
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in accordance with the results in [30] for all fields wi and general k. The OPEs between
parafermions and spin fields are

w1r1 ¼
ffiffiffi
2

3

r
e; w1r2 ¼

1ffiffiffi
3
p r1; w1e ¼

2ffiffiffi
3
p r2;

w2r1 ¼
1ffiffiffi
3
p r2; w2r2 ¼

ffiffiffi
2

3

r
e; w2e ¼

2ffiffiffi
3
p r1;

ðA:8Þ

while the other OPEs of the spin fields are given by, with C ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1

5
ÞC3ð3

5
Þ

Cð4
5
ÞC3ð2

5
Þ

s
r1r1 ¼

1ffiffiffi
3
p w1 þ

ffiffiffiffiffiffi
2C
p

r2; r1r2 ¼ 1þ
ffiffiffiffi
C
p

e; r2r2 ¼
1ffiffiffi
3
p w2 þ

ffiffiffiffiffiffi
2C
p

r1;

r1e ¼
ffiffiffi
2

3

r
w2 þ

ffiffiffiffi
C
p

r1; r2e ¼
ffiffiffi
2

3

r
w1 þ

ffiffiffiffi
C
p

r2: ðA:9Þ

The most interesting OPE turns out to be

ee ¼ 1þ 0eþ
ffiffiffiffiffiffiffiffiffi
12C

7

r
e0; ðA:10Þ

that is, the first field appearing in the ‘e’ channel is not the field e, but a different Virasoro
primary field e 0, which has scaling dimension he0 ¼ 7

5
. This result will be derived in Section

A.4.

A.3. Spin-field correlators

In this appendix, we will explain how the four-point correlators of four ‘spin fields’ r
can be obtained from the four-point correlators of the WZW CFT as given in [24]. We will
do this explicitly in the case of su (2)3, and merely state the outcome in the other cases.

The correlators which are calculated in [24] are four-point correlators of WZW primary
fields, transforming in the fundamental representation. These fields g can be written in
terms of the spin fields r1 and r2, combined with a vertex operator. Explicitly, we have
g1 ¼ r1e

iu
6 and g2 ¼ r2e�

iu
6 . Because correlators of the form Æg1g2g1g2æ(p) and Æg1g1g2g2æ(p)

are given in [24] and four-point correlators of the vertex operators e	
iu
6 are easily

calculated, we can derive the explicit form of the correlators Ær1r2r1r2æ(p) and Ær1r1r2r2
(p),

namely

hr1ðw1Þr2ðw2Þr1ðw3Þr2ðw4Þið0Þ ¼ ðw12w34Þ�
2

15x
3

10ð1� xÞ�
1
6F
ð0Þ
1 ðxÞ;

hr1ðw1Þr2ðw2Þr1ðw3Þr2ðw4Þið1Þ ¼ ð�1Þ
2
5ðw12w34Þ�

2
15x

3
10ð1� xÞ�

1
6CF

ð1Þ
1 ðxÞ;

hr1ðw1Þr1ðw2Þr2ðw3Þr2ðw4Þið0Þ ¼ ð�1Þ
2
3ðw12w34Þ�

2
15x�

1
30ð1� xÞ

1
6F
ð0Þ
2 ðxÞ;

hr1ðw1Þr1ðw2Þr2ðw3Þr2ðw4Þið1Þ ¼ �ð�1Þ
1

15ðw12w34Þ�
2

15x�
1

30ð1� xÞ
1
6CF

ð1Þ
2 ðxÞ:

ðA:11Þ

The constant C is related to h used in [24] via h = C2. The phases make sure that the cor-
relators have the correct behaviour when x fi 0. In this limit, the four-point correlators
reduce to normalized two-point functions. We remind the reader of the notation
wij = wi � wj. The functions F

ðpÞ
i ðxÞ can be expressed in terms of the hypergeometric

functions F(a,b,c;x) in the following way
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F
ð0Þ
1 ðxÞ ¼ x�

3
10ð1� xÞ

1
10F

1

5
;� 1

5
;
3

5
; x

� �
;

F
ð0Þ
2 ðxÞ ¼

1

3
x

7
10ð1� xÞ

1
10F

6

5
;
4

5
;
8

5
; x

� �
;

F
ð1Þ
1 ðxÞ ¼ x

1
10ð1� xÞ

1
10F

1

5
;
3

5
;
7

5
; x

� �
;

F
ð1Þ
2 ðxÞ ¼ �2x

1
10ð1� xÞ

1
10F

1

5
;
3

5
;
2

5
; x

� �
:

ðA:12Þ
A.4. Further correlators

The master formula (3.4) can be used to obtain other correlation functions of paraferm-
ion fields, which are hard to obtain from the KZ equation, because they correspond to
other SU(2) representations than the fundamental representations.

These correlators are obtained by taking various limits of the master formula (3.4). In
fact, for k = 3, we can obtain all the possible four-point correlation functions of the spin
fields r1, r2 and e, because we can fuse the spin field r1 with an arbitrary number of fields
wi, which gives us all the possible spin fields. For arbitrary k, these methods gives us a way
of calculating all the four-point correlators of the fields of the form U1

m � Uk�1
mþk, in

combination with an arbitrary number (which has to be allowed by fusion) of parafermion
fields wi.

We will now use the master formula (3.4) to find the correlator Ær1 (w1)r2

(w2)e (w3)e (w4)æ(0,1), by taking the limit (z1 fi w2,z2 fi w2,z3 fi w3,z4 fi w4). This
results in

hr1ðw1Þr2ðw2Þeðw3Þeðw4Þið0Þ ¼
1

2
w
� 2

15
12 w

�4
5

34 x
3

10ð1� xÞ
1
2

2� x
1� x

F
ð0Þ
1 ðxÞ þ F

ð0Þ
2 ðxÞ

� �
;

hr1ðw1Þr2ðw2Þeðw3Þeðw4Þið1Þ ¼ ð�1Þ
7
5
C
2

w
� 2

15
12 w

�4
5

34 x
3

10ð1� xÞ
1
2

2� x
1� x

F
ð1Þ
1 ðxÞ þ F

ð1Þ
2 ðxÞ

� �
:

ðA:13Þ

Here, we used that Ce
w1;r1
¼

ffiffi
2
3

q
. We would like to note that this result is equivalent to the

result obtained in [30], namely

hr1ðw1Þr2ðw2Þeðw3Þeðw4Þið0Þ ¼ w
� 2

15
12 w

�4
5

34 ð1� xÞ�
2
5F � 1

5
;� 4

5
;� 2

5
; x

� �
hr1ðw1Þr2ðw2Þeðw3Þeðw4Þið1Þ ¼ ð�1Þ

7
5w
� 2

15
12 w

�4
5

34 x
7
5ð1� xÞ�

2
5
ffiffiffi
q
p

F
6

5
;
3

5
;
12

5
; x

� �
:

ðA:14Þ

The equivalence of the two results follows from the fact that
ffiffiffi
q
p

=C ¼ 2
7
, with q given by

q ¼ 4
C3ð3

5
ÞC2ð6

5
ÞCð4

5
Þ

C2ð12
5
ÞC2ð� 1

5
ÞCð2

5
ÞCð1

5
Þ

ðA:15Þ

and the following relations between hypergeometric functions
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ð1� xÞ�
2
5F � 1

5
;� 4

5
;� 2

5
; x

� �
¼ 1

2
x

3
10ð1� xÞ

1
2

2� x
1� x

F
ð0Þ
1 ðxÞ þ F

ð0Þ
2 ðxÞ

� �
;

x
7
5ð1� xÞ�

2
5F

6

5
;
3

5
;
12

5
; x

� �
¼ 7

4
x

3
10ð1� xÞ

1
2

2� x
1� x

F
ð1Þ
1 ðxÞ þ F

ð1Þ
2 ðxÞ

� �
:

ðA:16Þ

To obtain the OPE coefficient Ce
e;e, we expand the correlators around x = 0, with the result

w
2

15
12w

4
5
34hr1ðw1Þr2ðw2Þeðw3Þeðw4Þið0Þ ¼ 1þ x2

15
þ x3

15
þ oðx4Þ;

w
2

15
12w

4
5
34

ð�1Þ�
7
57

2
ffiffiffi
h
p hr1ðw1Þr2ðw2Þeðw3Þeðw4Þið1Þ ¼ x

7
5 þ 7x

12
5

10
þ 236 x

17
5

425
þ oðx22

5 Þ:
ðA:17Þ

We find that the 1 (or r0) channel starts as x
7
5, as was observed in [30]. As a consequence,

we find that the OPE coefficient Ce
e;e ¼ 0.

Finally, we also reduced the master formula (3.4) to obtain the correlator
Æe (w1)e (w2)e (w3)e (w4)æ(0,1), by taking the limit (z1 fi w2,z2 fi w1,z3 fi w3,z4 fi w4). This

results in

heðw1Þeðw2Þeðw3Þeðw4Þið0Þ ¼ 1
2
ðw12w34Þ�

4
5x

3
10ð1� xÞ�

1
2½ð2� xÞF ð0Þ1 ðxÞ þ ð1þ xÞF ð0Þ2 ðxÞ�;

heðw1Þeðw2Þeðw3Þeðw4Þið1Þ ¼
�ð�1Þ

7
5C

2ðw12w34Þ
4
5

x
3

10ð1� xÞ�
1
2½ð2� xÞF ð1Þ1 ðxÞ þ ð1þ xÞF ð1Þ2 ðxÞ�:

ðA:18Þ
Again, we find that the small x behaviour for the (1) or e channel goes like x

7
5, explicitly

ðw12w34Þ
4
5heðw1Þeðw2Þeðw3Þeðw4Þið0Þ ¼ 1þ 2x2

5
þ 2x3

5
þ oðx4Þ;

ðw12w34Þ
4
5
ð�1Þ�

7
57

12C
heðw1Þeðw2Þeðw3Þeðw4Þið1Þ ¼ x

7
5 þ 7x

12
5

10
þ 261x

17
5

425
þ oðx22

5 Þ:
ðA:19Þ

Using the braid properties of the functions F ð0;1Þ1;2 , we find the following braid matrices for
the correlator Æe (w1)e (w2)e (w3)e (w4)æ(0,1)

U 12 ¼
ð�1Þ�

4
5 0

0 ð�1Þ
3
5

 !
; U 23 ¼ ð�1Þ�

4
5

s ð�1Þ�
7
5
ffiffiffi
s
p

ð�1Þ
7
5
ffiffiffi
s
p

�s

 !
;

U 13 ¼ ð�1Þ
4
5

s ð�1Þ�
4
5
ffiffiffi
s
pffiffiffi

s
p

ð�1Þ
1
5s

 !
:

ðA:20Þ

Again, we would like to see if we can obtain the same result using the quantum group pic-
ture. This time, we need the R and F-matrices corresponding to l = 2 or spin-1, because the
e particles are represented by e ¼ U2

0 in the coset construction. The data we need is
R2;2

0 ¼ ð�1Þ�
4
5, R2;2

0 ¼ ð�1Þ
3
5 and

F 2;2;2
2 ¼

s �
ffiffiffi
s
p

�
ffiffiffi
s
p

�s

� �
: ðA:21Þ

With this data, we can calculate the braid matrices using (5.3) and (5.4), with the following
result
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U 12 ¼
ð�1Þ�

4
5 0

0 ð�1Þ
3
5

 !
; U 23 ¼ ð�1Þ�

4
5

s ð�1Þ�
2
5
ffiffiffi
s
p

ð�1Þ
2
5
ffiffiffi
s
p

�s

 !
;

U 13 ¼ ð�1Þ
4
5

s ð�1Þ
1
5
ffiffiffi
s
p

�
ffiffiffi
s
p

ð�1Þ
1
5s

 ! ðA:22Þ

We see that we almost exactly reproduced the braid behaviour of Eq. (A.20). The only dif-
ference is the additional minus signs in the off-diagonal elements of the matrices. These
additional minus signs are a result of the fact that the conformal block in the (1) or (e)
channel starts at a degree higher than naively expected from the fusion rules. However,
these additional signs can be ‘gauged’ away, by redefining the block Æeeeeæ (1) with an addi-
tional sign. Thus, we conclude that the vanishing of the coefficient Ce

e;e does show up in the
braid matrices, but its effect can be gauged away. Note that is was to be expected that the
additional power in the correlator would not change the braid behaviour, because there is
no (or hardly any) freedom for change without violating the pentagon and hexagon equa-
tions.

A.5. Braiding relations

From [24] we know that

F
ðpÞ
1;2ð1� xÞ ¼

X
q

Cp
qF
ðqÞ
2;1ðxÞ; ðA:23Þ

where, in this case, we have

C0
0 ¼ �C1

1 ¼
Cð2

5
ÞCð3

5
Þ

Cð1
5
ÞCð4

5
Þ ¼

ffiffiffi
5
p
� 1

2
¼ s; C1

0 ¼ �2
C2ð2

5
Þ

Cð1
5
ÞCð3

5
Þ ;

C0
1 ¼

1þ C0
0C1

1

C1
0

¼ � 1

2

C2ð3
5
Þ

Cð2
5
ÞCð4

5
Þ ðA:24Þ

In addition, we have the following expression for C, which is related to h used in [24]

h ¼ C2 ¼ C0
1

C1
0

¼ 1

4

Cð1
5
ÞC3ð3

5
Þ

Cð4
5
ÞC3ð2

5
Þ
;

C0
1

C
¼ C1

0C ¼ �
ffiffiffi
s
p
: ðA:25Þ

For general k, these relations become

C0
0 ¼ �C1

1 ¼
Cð 2

kþ2
ÞCð k

kþ2
Þ

Cð 1
kþ2
ÞCðkþ1

kþ2
Þ ¼

1

2 cosð p
kþ2
Þ ; C1

0 ¼ �2
C2ð 2

kþ2
Þ

Cð 1
kþ2
ÞCð 3

kþ2
Þ ;

C0
1 ¼

1þ C0
0C1

1

C1
0

¼ � 1

2

C2ð k
kþ2
Þ

Cðk�1
kþ2
ÞCðkþ1

kþ2
Þ ðA:26Þ

In addition, we have the following expression for h, see [24]

h ¼ C2 ¼ C0
1

C1
0

¼ 1

4

Cð 1
kþ2
ÞCð 3

kþ2
ÞC2ð k

kþ2
Þ

Cðk�1
kþ2
ÞCðkþ1

kþ2
ÞC2ð 2

kþ2
Þ
;

C0
1

C
¼ C1

0C ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C0

0C1
1

q
: ðA:27Þ

The transformation behaviour of the F
ðpÞ
i ðxÞ under x 7! �x

1�x is as follows
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F
ð0Þ
1

�x
1� x

	 

¼ ð�1Þ�

3
2ðkþ2Þð1� xÞ

3
2ðkþ2Þ F

ð0Þ
1 ðxÞ þ F

ð0Þ
2 ðxÞ

h i
;

F
ð0Þ
2

�x
1� x

	 

¼ �ð�1Þ�

3
2ðkþ2Þð1� xÞ

3
2ðkþ2ÞF

ð0Þ
2 ðxÞ;

F
ð1Þ
1

�x
1� x

	 

¼ �ð�1Þ

1
2ðkþ2Þð1� xÞ

3
2ðkþ2Þ F

ð1Þ
1 ðxÞ þ F

ð1Þ
2 ðxÞ

h i
;

F
ð1Þ
2

�x
1� x

	 

¼ ð�1Þ

1
2ðkþ2Þð1� xÞ

3
2ðkþ2ÞF

ð1Þ
2 ðxÞ:

ðA:28Þ

For x 7! 1
x we have

F
ð0Þ
1

1

x

� �
¼ ð�1Þ

3
2ðkþ2Þx

3
2ðkþ2Þ C0

0F
ð0Þ
1 ðxÞ þ ð�1Þ

k
kþ2C0

1F
ð1Þ
1 ðxÞ

h i
;

F
ð0Þ
2

1

x

� �
¼ �ð�1Þ

3
2ðkþ2Þx

3
2ðkþ2Þ C0

0ðF
ð0Þ
1 ðxÞ þ F

ð0Þ
2 ðxÞÞ þ ð�1Þ

k
kþ2C0

1ðF
ð1Þ
1 ðxÞ þ F

ð1Þ
2 ðxÞÞ

h i
;

F
ð1Þ
1

1

x

� �
¼ �ð�1Þ�

1
2ðkþ2Þx

3
2ðkþ2Þ C1

0F
ð0Þ
1 ðxÞ þ ð�1Þ

k
kþ2C1

1F
ð1Þ
1 ðxÞ

h i
;

F
ð1Þ
2

1

x

� �
¼ ð�1Þ�

1
2ðkþ2Þx

3
2ðkþ2Þ C1

0ðF
ð0Þ
1 ðxÞ þ F

ð0Þ
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k
kþ2C1

1ðF
ð1Þ
1 ðxÞ þ F

ð1Þ
2 ðxÞÞ

h i
:

ðA:29Þ
A.6. More general k results

From [24], we can extract the following correlators for general k

hr1ðw1Þrk�1ðw2Þr1ðw3Þrk�1ðw4Þið0Þ ¼ ðw12w34Þ�
k�1

kðkþ2Þx
3

2ðkþ2Þð1� xÞ�
1
2kF

ð0Þ
1 ðxÞ;

hr1ðw1Þrk�1ðw2Þr1ðw3Þrk�1ðw4Þið1Þ ¼ ð�1Þ
2

kþ2ðw12w34Þ�
k�1

kðkþ2Þx
3

2ðkþ2Þð1� xÞ�
1
2kCF

ð1Þ
1 ðxÞ;

hr1ðw1Þr1ðw2Þrk�1ðw3Þrk�1ðw4Þið0Þ ¼ ð�1Þ
k�1

k ðw12w34Þ�
k�1

kðkþ2Þx
k�4

2kðkþ2Þð1� xÞ
1

2kF
ð0Þ
2 ðxÞ;

hr1ðw1Þr1ðw2Þrk�1ðw3Þrk�1ðw4Þið1Þ ¼ �ð�1Þ
k�2

kðkþ2Þðw12w34Þ�
k�1

kðkþ2Þx
k�4

2kðkþ2Þð1� xÞ
1

2kCF
ð1Þ
2 ðxÞ;
ðA:30Þ

where the F
ðpÞ
i are now k dependent

F
ð0Þ
1 ðxÞ ¼ x�

3
2ðkþ2Þð1� xÞ

1
2ðkþ2ÞF

1

k þ 2
;� 1

k þ 2
;

k
k þ 2

; x
� �

;

F
ð0Þ
2 ðxÞ ¼

1

k
x

2kþ1
2ðkþ2Þð1� xÞ

1
2ðkþ2ÞF
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k þ 2
;
k þ 1

k þ 2
;
2k þ 2

k þ 2
; x

� �
;

F
ð1Þ
1 ðxÞ ¼ x

1
2ðkþ2Þð1� xÞ

1
2ðkþ2ÞF

1

k þ 2
;

3

k þ 2
;
k þ 4

k þ 2
; x
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;

F
ð1Þ
2 ðxÞ ¼ �2x

1
2ðkþ2Þð1� xÞ

1
2ðkþ2ÞF

1

k þ 2
;

3

k þ 2
;

2

k þ 2
; x

� �
:

ðA:31Þ

From this, we find the following OPE coefficients

Cw1
r1;r1
¼ Crk�1

r1;wk�1
¼ 1ffiffiffi

k
p : ðA:32Þ
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The wavefunction of four quasi-holes and N = (r + 1)k � 2 electrons (with r a positive
integer) can be written in the following form

Wð0;1Þðw1;w2;w3;w4; z1; . . . ; zN Þ
¼ hr1ðw1Þr1ðw2Þr1ðw3Þr1ðw4Þw1ðz1Þ � � �w1ðzNÞið0;1Þ

� ðw12w34Þ
3

kðkMþ2Þx�
2

kðkMþ2Þð1� xÞ
1

kðkMþ2Þ
Y

i;j

ðwi � zjÞ
1
k
Y
i<j

ðzi � zjÞ
kMþ2

k : ðA:33Þ

Again, we have the following master formula

Wð0;1Þðw1;w2;w3;w4; z1; . . . ; zN Þ ¼ Að0;1ÞðfwgÞWð12Þð34Þðfwg; fzgÞ
þ Bð0;1ÞðfwgÞWð13Þð24Þðfwg; fzgÞ: ðA:34Þ

To specify the functions W(12)(34) and W(13)(24), we divide the electrons into k groups,
namely Si = {i,i + k, . . .,N � (k � 2) + i} for i = 1, . . .,k � 2 and
Sj = {j, j + k, . . .,N � (2k � 2) + j} for j = k � 1,k. Setting M = 0 for simplicity, we have

Wð12Þð34Þ ¼
1

N

X
fSig

� Y
j2Sk�1

ðzj � w1Þðzj � w2Þ
Y
j02Sk

ðzj0 � w3Þðzj0 � w4Þ
Yk

i¼1

W2
Si

�
;

Wð13Þð24Þ ¼
1

N

X
fSig

� Y
j2Sk�1

ðzj � w1Þðzj � w3Þ
Y
j02Sk

ðzj0 � w2Þðzj0 � w4Þ
Yk

i¼1

W2
Si

�
;

ðA:35Þ

where the sum is over all in-equivalent ways of dividing the electrons in k groups and
N ¼ k

N
2=ðk � 2Þ!.

We will consider the following two limits in the case of N = 2k � 2 electrons

ðIÞ

zi ! z1; i ¼ 2; . . . ; k � 1;

z1 ! w2;

zj ! zk; j ¼ k þ 1; . . . ; 2k � 2;

zk ! w4;

8>>><>>>:
ðIIÞ

zi ! z1; i ¼ 2; . . . ; k � 1;

z1 ! w3;

zj ! zk; j ¼ k þ 1; . . . ; 2k � 2:

zk ! w4;

8>>><>>>:
ðA:36Þ

On the one hand, the master formula reduces to a form containing the following two cor-
relators Ær1rk�1r1rk�1æ and Ær1r1rk�1rk�1æ in the limits (I) and (II), respectively. On the
other hand, we find

lim
ðIÞ

Wð12Þð34Þ ¼ �
ððk � 1Þ!Þ2

kk�1
w14w32w2k�2

42 ; lim
ðIIÞ

Wð12Þð34Þ ¼ 0;

lim
ðIÞ

Wð13Þð24Þ ¼ 0; lim
ðIIÞ

Wð13Þð24Þ ¼
ððk � 1Þ!Þ2

kk�1
w14w32w2k�2

34 :

ðA:37Þ

The functions A(p) and B(p) again follow
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Að0Þ ¼ ðw12w34Þaxbð1� xÞcF ð0Þ1 ðxÞ;
Bð0Þ ¼ �ðw12w34Þaxb�1ð1� xÞ1þc

F
ð0Þ
2 ðxÞ;

Að1Þ ¼ �ð�1Þ
2

kþ2Cðw12w34Þaxbð1� xÞcF ð1Þ1 ðxÞ;

Bð1Þ ¼ ð�1Þ
2

kþ2Cðw12w34Þaxb�1ð1� xÞ1þc
F
ð1Þ
2 ðxÞ;

ðA:38Þ

where we introduced the following notation

a ¼ 2k þ 1

2ðk þ 2Þ �
3M

2ðkM þ 2Þ ; b ¼ 3

2ðk þ 2Þ þ
2M

2ðkM þ 2Þ ;

c ¼ � M
2ðkM þ 2Þ : ðA:39Þ

In this derivation, we used that the OPE coefficients for the parafermion fields wl are given
by [30]

C2
wl;wl0

¼ Cðlþ l0 þ 1ÞCðk � lþ 1ÞCðk � l0 þ 1Þ
Cðlþ 1ÞCðl0 þ 1ÞCðk � l� l0 þ 1ÞCðk þ 1Þ ; ðA:40Þ

from which it follows thatYk�2

l¼1

C2
w1;wl
¼ ððk � 1Þ!Þ2

kk�2
: ðA:41Þ

In addition, we find the following braid matrices

U 12 ¼ ð�1Þ�
M

2ðkMþ2Þ
ð�1Þ

2kþ1
2ðkþ2Þ 0

0 ð�1Þ
1

2ðkþ2Þ

 !
;

U 23 ¼
ð�1Þ�

3
2ðkþ2Þ�

3M
2ðkMþ2Þ

dk

1 ð�1Þ�
2

kþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

k � 1
q

ð�1Þ
2

kþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

k � 1
q

�1

0B@
1CA;

U 13 ¼
ð�1Þ

3
2ðkþ2Þ�

M
2ðkMþ2Þ

dk

1 ð�1Þ
k�2
kþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

k � 1
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

k � 1
q

ð�1Þ
k�2
kþ2

0B@
1CA;

ðA:42Þ

where dk ¼ ðC0
0Þ
�1.

Appendix B. Detailed structure of the su (3)2 parafermion theory

We now turn the su (3)2 parafermions, as introduced by Gepner in [33]. This theory
arises upon factoring two free fields from an SU (3)2 WZW theory, namely, it is the
su (3)2/[u (1)]2 coset CFT. In this appendix we present fusion rules, OPEs, four-point
correlation functions and braiding properties.

B.1. Fusion rules

The su (3)2 parafermion theory has 8 chiral sectors, which we label as

f1;w1;w2;w12; r"; r#; r3; qg:
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It is important to realize that each of these sectors contains an infinite number of Virasoro
primary fields. We sometimes use the same notation for the parafermion sector (say w1)
and for the leading Virasoro primary field (w1 (z)). We shall see that in the sector denoted
as q there are two independent leading Virasoro primaries, which we shall write as qs (z)
and qc (z).

At the level of parafermion sectors, the merging of two sectors is expressed via fusion

rules, which we present in this section. Our computations in Section 4 require more
detailed information at the level of (primary) fields. The latter is contained in the OPEs
that we present in the next section of this appendix.

The fusion rules of the eight parafermion sectors can be derived from the coset descrip-
tion of this theory. For our purposes, we will use the defining coset su (3)2/[u (1)]2, as given
in [33]. The parafermion sectors are labeled by an su (3) label K = (K1,K2) (when labeling
the representations in terms of the dimensions, we would have 1 = (0,0), 3 = (1, 0),
�3 ¼ ð0; 1Þ, 6 = (2,0), �6 ¼ ð0; 2Þ and 8 = (1, 1)) and two u (1) labels k = (k1,k2).

There are various restrictions on the labels. First of all, we have the branching condi-
tion K1 + 2K2 = (k1 + 2k2) mod 3. The label k is only defined up to 2 times (in general, k

times) the root lattice of su (3), which means the following sectors are identified

UK
k1;k2
� UK

k1þ4;k2�2; UK
k1;k2
� UK

k1�2;k2þ4: ðB:1Þ

In addition, there are other identifications, which follow from the structure of the affine
Lie algebra su (3)2, see [39]

UðK1;K2Þ
ðk1;k2Þ � Uð2�K1�K2;K1Þ

ðk1þ2;k2Þ � UðK2;2�K1�K2Þ
ðk1;k2þ2Þ : ðB:2Þ

From these rules, it follows that there are indeed eight different sectors, or ‘parafermion
fields’, as mentioned above. The fusion rules follow from the general rule

UK
k � UK0

k0 ¼
X

K002K�K0
UK00

kþk0 : ðB:3Þ

The fusion rules can now easily be derived from the following set of ‘representations’ of
the eight parafermion sectors, which close under fusion

1 ¼ Uð0;0Þð0;0Þ; w1 ¼ Uð0;0Þð2;�1Þ; w2 ¼ Uð0;0Þð1;�2Þ; w12 ¼ Uð0;0Þð1;1Þ;

r" ¼ Uð1;1Þð�1;2Þ; r# ¼ Uð1;1Þð2;�1Þ; r3 ¼ Uð1;1Þð1;1Þ; q ¼ Uð1;1Þð0;0Þ:
ðB:4Þ

Using the only non-trivial fusion rule of the su (3)2 fields (0, 0) and (1,1) (corresponding to the
one and eight dimensional representation, respectively), namely,
(1,1) · (1,1) = (0,0) + (1,1) and the identifications (B.1), we find the fusion rules as given
in Table B.1.

Of course, these fusion rules can also be derived from the S-matrix and the Verlinde
formula.

B.2. OPEs

To our knowledge, the OPEs of the leading Virasoro primary fields in the various sec-
tors of the su (3)2 parafermion theory have not been presented in the literature.

We have determined the leading terms in the OPEs of these Virasoro primaries. We
observed a Z3 symmetry relating (rfl,r›, r3) and ðw1;w2;

ffiffiffi
2
p

w12Þ. To streamline notations,



Table B.1
Fusion rules of the parafermion and spin sectors associated to the parafermion theory su (3)2/[u (1)]2 introduced
by Gepner [33]

· r› rfl r3 q w1 w2 w12

r› 1 + q
rfl w12 + r3 1 + q
r3 w1 + rfl w2 + r› 1 + q
q w2 + r› w1 + rfl w12 + r3 1 + q
w1 r3 q r› rfl 1

w2 q r3 rfl r› w12 1

w12 rfl r› q r3 w2 w1 1
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we therefore write r1 = rfl, r2 = r›, and w3 ¼
ffiffiffi
2
p

w12. We also employ Virasoro primaries
qi and �qi, i = 1, 2, 3. These fields are all linear combinations (specified below) of the fields
qs and qc. The scaling dimensions of the leading fields are

hw ¼
1

2
; hr ¼

1

10
; hq ¼

3

5
: ðB:5Þ

For fixing the details of the OPEs, especially those involving the fields qs, qc, we have relied
on various contractions of the master formulas such as eq. (4.8), (4.13), etc., presented in
Section 4.3. These formulas provide expressions for correlators of four spin fields ri plus
an arbitrary number of parafermions wj. By fusing some of the ri with the wj, one produces
various combinations of the fields qs,c; in the end this gives enough information to uniquely
fix the OPEs. [We remark that the logical structure of our reasoning has been quite deli-
cate: we have relied on the general ‘master formula’ structure of correlators and on the
‘seed’ provided by the explicit correlators provided by the KZ paper and by some of
the simplest OPEs, set by the parafermion fusion rules. Combined these turn out to be
strong enough to fix both the coefficients in the master formulas and the OPEs of all fields
involved.] In Section B.4 below we explicitly mention some of the contractions we used
and we provide some additional correlation functions of the parafermion theory.

Employing the same schematic notation as in Section A.2, Eqs. (A.5), (A.6), we have
the following OPEs

wiwj ¼ 1 for i ¼ j

¼ 1ffiffi
2
p wk for i 6¼ j; i 6¼ k; j 6¼ k;

wirj ¼ �qi for i ¼ j
¼ 1ffiffi

2
p rk for i 6¼ j; i 6¼ k; j 6¼ k;

rirj ¼ 1þ
ffiffiffiffiffiffi
2C
p

qi for i ¼ j

¼ 1ffiffi
2
p wk þ

ffiffiffiffiffiffiffiffiffiffi
�3C
p

rk for i 6¼ j; i 6¼ k; j 6¼ k;

�qiwj ¼ rj for i ¼ j

¼ �1
2
rj for i 6¼ j;

ð�qirjÞð0Þ ¼ wj þ � � � for i ¼ j

¼ �1
2
wj þ � � � for i 6¼ j;

ðqirjÞð1Þ ¼
ffiffiffiffiffiffi
2C
p

rj þ � � � for i ¼ j

¼ �1
2

ffiffiffiffiffiffi
2C
p

rj þ � � � for i 6¼ j:

ðB:6Þ
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Note that we have written separate equations for fusing fields from the q and r sectors into
the (0) channel or the (1) channel.

The �qi and qi can all be expressed in two independent Virasoro primaries qs and qc

according to

q1 ¼ 1
2
ðqc �

ffiffiffi
3
p

qsÞ; q2 ¼ 1
2
ðqc þ

ffiffiffi
3
p

qsÞ; q3 ¼ �qc;

�q1 ¼ 1
2
ð
ffiffiffi
3
p

qc þ qsÞ; �q2 ¼ 1
2
ð�

ffiffiffi
3
p

qc þ qsÞ; �q3 ¼ �qs;
ðB:7Þ

The list of basic OPEs is then completed by

qsqs ¼ 1�
ffiffiffiffiffiffi
2C
p

qc; qsqc ¼ �
ffiffiffiffiffiffi
2C
p

qs qcqc ¼ 1þ
ffiffiffiffiffiffi
2C
p

qc ðB:8Þ
giving

qiqj ¼ 1�
ffiffiffiffiffiffi
2C
p

qi for i ¼ j

¼ �1
2
1�

ffiffiffiffiffiffi
2C
p

qk for i 6¼ j; i 6¼ k; j 6¼ k;

�qi�qj ¼ 1þ
ffiffiffiffiffiffi
2C
p

qi for i ¼ j

¼ �1
2
1þ

ffiffiffiffiffiffi
2C
p

qk for i 6¼ j; i 6¼ k; j 6¼ k:

ðB:9Þ

In all these expressions, the constant C has the value given below Eq. (4.11).

B.3. Spin-field correlators

We now present the four-point correlation functions for the spin fields in the paraferm-
ion theory. They are obtained by factoring the four-point functions of fundamental fields
in the SU (3)2 WZW model, as given by [24], by factors associated to the spin and charge
bosons

hr"ðw1Þr"ðw2Þr#ðw3Þr#ðw4Þið0Þ ¼ ðw12w34Þ�
1
5x

8
15ð1� xÞ�

1
6F
ð0Þ
1 ðxÞ;

hr"ðw1Þr"ðw2Þr#ðw3Þr#ðw4Þið1Þ ¼ �ð�1Þ
3
5Cðw12w34Þ�

1
5x

8
15ð1� xÞ�

1
6F
ð1Þ
1 ðxÞ;

hr"ðw1Þr#ðw2Þr"ðw3Þr#ðw4Þið0Þ ¼ ð�1Þ
1
2ðw12w34Þ�

1
5x

1
30ð1� xÞ

1
3F
ð0Þ
2 ðxÞ;

hr"ðw1Þr#ðw2Þr"ðw3Þr#ðw4Þið1Þ ¼ ð�1Þ
1

10Cðw12w34Þ�
1
5x

1
30ð1� xÞ

1
3F
ð1Þ
2 ðxÞ;

hr3ðw1Þr3ðw2Þr3ðw3Þr3ðw4Þið0Þ ¼ ðw12w34Þ�
1
5x

8
15ð1� xÞ

1
3 F

ð0Þ
1 ðxÞ þ F

ð0Þ
2 ðxÞ

h i
;

hr3ðw1Þr3ðw2Þr3ðw3Þr3ðw4Þið1Þ ¼ �ð�1Þ
3
5Cðw12w34Þ�

1
5x

8
15ð1� xÞ

1
3 F

ð1Þ
1 ðxÞ þ F

ð1Þ
2 ðxÞ

h i
;

ðB:10Þ
where x is as usual x ¼ ðw1�w2Þðw3�w4Þ

ðw1�w4Þðw3�w2Þ
. The functions F

ðpÞ
i ðxÞ are now given by

F
ð0Þ
1 ðxÞ ¼ x�

8
15ð1� xÞ

1
15F

1

5
;� 1

5
;
2

5
; x

� �
;

F
ð0Þ
2 ðxÞ ¼

1

2
x

7
15ð1� xÞ

1
15F

6

5
;
4

5
;
7

5
; x

� �
;

F
ð1Þ
1 ðxÞ ¼ x

1
15ð1� xÞ

1
15F

2

5
;
4

5
;
8

5
; x

� �
;

F
ð1Þ
2 ðxÞ ¼ �3x

1
15ð1� xÞ

1
15F

2

5
;
4

5
;
3

5
; x

� �
:

ðB:11Þ
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B.4. Further correlators

The master formulas developed in Section 4.3 can be used to gain insight into the OPEs
and correlation functions involving the fields in the q sector of the su (3)2 parafermion the-
ory. In Section B.2 we already displayed some of the OPEs satisfied by qs and qc. In deriv-
ing these we proceeded as follows. Having defined the combinations qi and �qi through the
OPEs ðririÞð1Þ ¼

ffiffiffiffiffiffi
2C
p

qi and ðwiriÞð1Þ ¼ �qi, we observed that a specific contraction of the
master formula Eq. (4.13) shows that hriri�qii vanishes. This implies that qi and �qi are
orthogonal (have a vanishing two-point function). Exploiting the symmetry among the
i = 1,2,3 labels leads to the parametrization Eq. (B.7). All this leaves some freedom in
the self-couplings of the qc and qs. To fix these, we observed that yet another contraction
of the master formula implies that the three-point function h�q1�q2�q3i vanishes. This con-
traction arises from the formula

hr1ðw1Þr2ðw2Þr3ðw3Þw1ðz1Þw2ðz2Þw3ðz3Þi

¼ ð�1Þ�
9

10
1

2

ffiffiffiffiffiffi
3C
2

r
ðz12z23z31Þ�

1
2ðw12w23w31Þ�

1
10

� ðz1 � w2Þðz2 � w3Þðz3 � w1Þ þ ðz1 � w3Þðz2 � w1Þðz3 � w2Þ
½ðz1 � w2Þðz2 � w3Þðz3 � w1Þðz1 � w3Þðz2 � w1Þðz3 � w2Þ�

1
2

" #
ðB:12Þ

in the limit where zifiwi for i = 1,2,3.
The vanishing of h�q1�q2�q3i implies that the combination of qc and qs featuring in the (1)

channel of the fusion product of �q1 and �q2 is orthogonal to �q3 and thereby proportional to
q3. A final contraction yielding hr2r2�q1�q1i is then used to fix the normalization, giving Eq.
(B.8).

Correlation functions involving one or more fields in the q sector are easily generated as
suitable contractions of the various master formulas. Examples are the following four-
point functions

h�q1ðw1Þ�q1ðw2Þ�q1ðw3Þ�q1ðw4Þið0Þ ¼ ðw12w34Þ�
6
5x

8
15ð1�xÞ�

2
3ð1�xþx2Þ½F ð0Þ1 ðxÞþF

ð0Þ
2 ðxÞ�;

h�q1ðw1Þ�q1ðw2Þ�q1ðw3Þ�q1ðw4Þið1Þ ¼�ð�1Þ
3
5Cðw12w34Þ�

6
5x

8
15ð1� xÞ�

2
3ð1� xþ x2Þ½F ð1Þ1 ðxÞþF

ð1Þ
2 ðxÞ�;

h�q1ðw1Þ�q1ðw2Þ�q2ðw3Þ�q2ðw4Þið0Þ ¼
1

4
ðw12w34Þ�

6
5x

8
15ð1� xÞ

4
3 1þ 3

ð1�xÞ2

 !
F
ð0Þ
1 ðxÞþ

x2

ð1�xÞ2
F
ð0Þ
2 ðxÞ

" #
;

h�q1ðw1Þ�q1ðw2Þ�q2ðw3Þ�q2ðw4Þi
ð1Þ ¼�ð�1Þ

3
5
C
4
ðw12w34Þ�

6
5x

8
15ð1�xÞ

4
3 1þ 3

ð1� xÞ2

 !
F
ð1Þ
1 ðxÞþ

x2

ð1� xÞ2
F
ð1Þ
2 ðxÞ

" #
:

ðB:13Þ
B.5. Braiding relations

We list the transformation properties of the functions F ð0;1Þ1;2 ðxÞ, as specified in Eq. (B.11)
under transformations (i) xfi1 � x, (ii) x! �x

1�x, (iii) x! 1
x.

For xfi1 � x we have [24]

F
ðpÞ
1;2ð1� xÞ ¼

X
q

Cp
qF
ðqÞ
2;1ðxÞ ðB:14Þ
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with

C0
0 ¼ �C1

1 ¼ 3
Cð3

5
ÞCð� 3

5
Þ

Cð1
5
ÞCð� 1

5
Þ ¼

1

2
ð
ffiffiffi
5
p
� 1Þ ¼ s; C1

0 ¼ �3
C2ð3

5
Þ

Cð2
5
ÞCð4

5
Þ ;

C0
1 ¼

1þ C0
0C1

1

C1
0

¼ � 1

3

C2ð2
5
Þ

Cð1
5
ÞCð3

5
Þ : ðB:15Þ

We observe that

C2 ¼ C0
1=C1

0 ¼
1

9

Cð4
5
ÞC3ð2

5
Þ

Cð1
5
ÞC3ð3

5
Þ
; C0

1=C ¼ C1
0C ¼ �

ffiffiffi
s
p
: ðB:16Þ

For x! �x
1�x we have

F
ð0Þ
1

�x
1� x

	 

¼ ð�1Þ�

8
15ð1� xÞ

1
5F
ð0Þ
1 ðxÞ;

F
ð0Þ
2

�x
1� x

	 

¼ ð�1Þ�

8
15ð1� xÞ

1
5 �xF ð0Þ1 ðxÞ þ ð1� xÞF ð0Þ2 ðxÞ
h i

;

F
ð1Þ
1

�x
1� x

	 

¼ ð�1Þ

1
15ð1� xÞ

1
5F
ð1Þ
1 ðxÞ;

F
ð1Þ
2

�x
1� x

	 

¼ ð�1Þ

1
15ð1� xÞ

1
5 �xF ð1Þ1 ðxÞ þ ð1� xÞF ð1Þ2 ðxÞ
h i

:

ðB:17Þ

Finally for x! 1
x

F
ð0Þ
2

1

x

� �
¼ð�1Þ�

2
15x

1
5 C0

0F
ð0Þ
2 ðxÞ�ð�1Þ

2
5C0

1F
ð1Þ
2 ðxÞ

h i
;

F
ð1Þ
2

1

x

� �
¼ð�1Þ�

2
15x

1
5 �ð�1Þ

2
5C1

0F
ð0Þ
2 ðxÞ�ð�1Þ�1=5C1

1F
ð1Þ
2 ðxÞ

h i
;

F
ð0Þ
1

1

x

� �
¼ð�1Þ�

2
15x

1
5 C0

0ðxF
ð0Þ
1 ðxÞ�ð1� xÞF ð0Þ2 ðxÞÞ�ð�1Þ

2
5C0

1ðxF
ð1Þ
1 ðxÞ�ð1�xÞF ð1Þ2 ðxÞÞ

h i
;

F
ð1Þ
1

1

x

� �
¼ð�1Þ�

2
15x

1
5 �ð�1Þ

2
5C1

0ðxF
ð0Þ
1 ðxÞ�ð1� xÞF ð0Þ2 ðxÞÞ�ð�1Þ�

1
5C1

1ðxF
ð1Þ
1 ðxÞ�ð1� xÞF ð1Þ2 ðxÞÞ

h i
:

ðB:18Þ
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