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Abstract

We discuss a certain class of two-dimensional quantum systems which exhibit conventional

order and topological order, as well as quantum critical points separating these phases. All of

the ground-state equal-time correlators of these theories are equal to correlation functions of a

local two-dimensional classical model. The critical points therefore exhibit a time-independent

form of conformal invariance. These theories characterize the universality classes of two-di-

mensional quantum dimer models and of quantum generalizations of the eight-vertex model,

as well as Z2 and non-abelian gauge theories. The conformal quantum critical points are rela-

tives of the Lifshitz points of three-dimensional anisotropic classical systems such as smectic

liquid crystals. In particular, the ground-state wave functional of these quantum Lifshitz points

is just the statistical (Gibbs) weight of the ordinary two-dimensional free boson, the two-dimen-

sional Gaussian model. The full phase diagram for the quantum eight-vertex model exhibits

quantum critical lines with continuously varying critical exponents separating phases with

long-range order from a Z2 deconfined topologically ordered liquid phase. We show how sim-

ilar ideas also apply to a well-known field theory with non-Abelian symmetry, the strong-cou-

pling limit of 2þ 1-dimensional Yang–Mills gauge theory with a Chern–Simons term. The

ground state of this theory is relevant for recent theories of topological quantum computation.
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1. Introduction

During the past decade and a half there has been an intense search for new kinds

of theories describing quantum condensed-matter systems. Many experimental re-

sults have implied that strongly correlated fermionic systems exhibit qualitatively
new types of physical behavior. The now-classic example of this is the fractional

quantum Hall effect, where one of the striking consequences of strong correlations

is that the Laughlin quasiparticles have fractional charge and fractional statistics,

even though though the microscopic degrees of freedom are electrons with integer

charge and fermionic statistics [1].

Traditionally one classifies different phases in terms of order parameters which

give a global characterization of the physical state. In turn, the local fluctuations

of this order parameter field drive the phase transitions between ordered and disor-
dered states of these systems. This viewpoint, pioneered by Landau and his school,

has been extremely successful in condensed matter physics and in other areas of

physics, such as particle physics, through the powerful underlying concept of spon-

taneous symmetry breaking. Much of the structure of modern theory of critical phe-

nomena is based on this point of view [2,3].

However, there are many different experimentally realizable phases (and even

more realizable theoretically!) in the fractional quantum Hall effect, but no local or-

der parameter distinguishes between them. These phases are incompressible liquid
states which have a fully gapped spectrum and do not break any symmetries of

the Hamiltonian. The lack of a local order parameter led to many interesting discus-

sions of the off-diagonal long-range order in the Hall effect [4]. One particularly el-

egant way of characterizing the order in the fractional quantum Hall effect is as

topological order [5]. The topological order parameters are non-local; they are expec-

tation values of operators which are lines or loops. Because of this, they can (and do)

depend on topology: their value depends on the genus of the two-dimensional sur-

face on which the electrons live. One interesting characteristic of a topological phase

is that the correlation functions in the ground state do not depend on the locations of

the operators, but only on how the loops braid through each other. In addition, the

degeneracies of these non-symmetry breaking ground states on topologically non-

trivial manifolds are determined by the topology of these manifolds [6].

Although so far the only unambiguous experimental realizations of topological

phases are in the fractional quantum Hall effect, there has been considerable effort

to find, both theoretically and experimentally, condensed matter systems whose

phase diagrams may exhibit topological ground states. Much of the current work in-
volves studying fractionalized phases in time-reversal invariant systems (see e.g.,

[7,8]). One reason is that the ‘‘normal state’’ of high-temperature superconductors

lacks an electron-like quasiparticle state in its spectrum. There are reasons to believe

that frustrated magnets may also exhibit fractionalized behavior as well.

A particularly well-known and simple model with a topological phase is the quan-

tum dimer model, which was invented as a way of modeling the short-range resonat-

ing-valence-bond theory of superconductivity [9]. The degrees of freedom of

this two-dimensional model are classical dimers living on a two-dimensional lattice.
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With a special choice of Hamiltonian (called the RK point), the exact ground-state

wave function can be found [10]. When the dimers are on the square lattice, the result

is a critical point. If one deforms this special Hamiltonian, one generically obtains

ordered phases. However, a topological phase occurs in the quantum dimer model

on the triangular lattice [8]. When the quantum dimer model is in a topological
phase, an effect analogous to fractionalization occurs [9]. This is called spin–charge

separation. One can view the dimers as being created by nearest-neighbor pairs of

lattice electrons in a spin-singlet state. Even though the fundamental degrees of free-

dom (the electrons) have both spin and charge, one finds that the basic excitations

have either charge (holons) or spin (spinons), but not both. To prove this occurs,

one must show that if one breaks apart an electron pair (dimer) into two holons

or two spinons, they are deconfined. For the triangular-lattice quantum dimer mod-

el, this was shown in [8]; the analogous statement in terms of holon–holon correla-
tors was proven in [11]. At a quantum critical phase transition between an ordered/

confining phase and a disordered/deconfining phase (or between different confining

states), confinement is lost: the RK point is deconfining [12–14].

The notion of spin–charge separation is one of the basic assumptions behind the

RVB theories of high-temperature superconductivity [9,15–22], which effectively can

be regarded as strongly coupled lattice gauge theories. In 2þ 1-dimensional systems

spin–charge separation can only take place if these gauge theories are in a deconfined

phase [13,23,24]. In 2þ 1-dimensions this is only possible for discrete gauge symme-
tries. For a continuous gauge group, say Uð1Þ or SUð2Þ, 2þ 1-dimensional gauge the-

ories are always in a confining phase, unless thematter fields carry a charge higher than

the fundamental charge so that the gauge symmetry is broken to a discrete subgroup

[25]. Thus, the only consistent scenarios for spin–charge separation necessarily involve

an effective discrete gauge symmetry, which in practice reduces to the simplest case Z2.

Of particular interest is the fact that the low-energy sector of the deconfined phases of

discrete gauge theories are the simplest topological field theories [26–28].

Many of these ideas have their origin in the conceptual description of confined
phases of gauge theories as monopole condensates, and of their deconfined states

as ‘‘string condensates’’ [29]. In gauge theories it has long been known that their

phases cannot characterized by a local order parameter, since local symmetries can-

not be spontaneously broken. The phases of gauge theories are understood instead in

terms of the behavior of generally non-local operators such as Wilson loops and dis-

order operators [30,31], a concept borrowed from the theory of the two-dimensional

Ising magnet [32].

Interesting as they are, the applicability of these ideas to the problem of high-tem-
perature superconductivity and other strongly correlated systems is still very much

an open problem. Topological fractionalized ground states are not the only possible

explanation of the unusual physics of the cuprates. In fact, when constructing local

microscopic models of strongly correlated systems which are suspected to have frac-

tionalized phases, many theorists have found that instead these models have a strong

tendency to exhibit spatially ordered states, a.k.a. ‘‘valence bond crystals,’’ which ap-

pear to compete with possible deconfined states. It is now clear that the regimes of

strongly correlated systems which may favor fractionalized phases also favor, and
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perhaps more strongly, non-magnetic spatially ordered states of different types, in-

cluding staggered flux states [17], or d-density wave states [33], and electronic analogs

of liquid crystalline phases [34,35]. By now there are a number of examples of models

with short-range interactions whose phase diagrams contain both fractionalized and

spatially ordered phases [8,36–38]. It has recently been proposed that deconfined crit-
ical points may describe the quantum phase transitions between ordered N�eel states
and valence bond crystals [39].

For several reasons, most of the studies of topological order and quantum critical

points have focused on examples with two spatial dimensions. The experimental rea-

son is that the Hall effect is two-dimensional, and typical strongly correlated systems,

such as the cuprate high-temperature superconductors, are often effectively two-di-

mensional. Theoretically, it is because in two dimensions particles can have exotic

statistics interpolating between bosonic and fermionic [40]. A common characteristic
of topological phases in two dimensions is the presence of exotic statistics, which oc-

cur in the fractional quantum Hall effect [4]. The statistics can even be non-abelian:

in some cases, the change in the wave function depends on the order in which par-

ticles are exchanged [41]. Systems with non-abelian statistics are particularly interest-

ing because they are useful for error correction in quantum computers [42–46].

In this paper, we will discuss models with topological phases and ordered phases,

as well as quantum phase transitions separating them. There has also been a great

deal of interest in quantum critical points in and of themselves [47]. At a quantum
critical point, the physics is of course scale invariant, but it need not be Lorentz in-

variant. The quantum critical points discussed in this paper have dynamical critical

exponent z ¼ 2, instead of the usual z ¼ 1 of a Lorentz-invariant theory. This allows

for some striking new physics. The action of these z ¼ 2 quantum critical points is

invariant under time-independent conformal transformations of the two-dimen-

sional space. A remarkable consequence is that the ground-state wave functionals

of the field theories discussed here are conformally invariant in space. This means

that the ground state wave functional is invariant under any angle-preserving coor-
dinate transformations of space. For two-dimensional space, there is an infinite set of

such transformations, as is familiar from studies of two-dimensional conformal field

theory [48]. This sort of behavior is not common at all: the action of a field theory at

a critical point is often scale invariant (and also conformally invariant), but the

ground-state wave functional itself in general is not. We dub critical points with this

behavior conformal quantum critical points.

One of the consequences of the conformal invariance of the ground state wave

function is that all the equal-time correlators of the quantum theory are equal to
suitable correlation functions of observables of a two-dimensional Euclidean confor-

mal field theory. We will exploit this connection in this paper quite extensively. How-

ever, just as important, conformal invariance of the wave function implies that the

ground state of this 2þ 1-dimensional theory at a conformal quantum critical point

must have zero resistance to shear stress in the two-dimensional plane. This can be

seen as follows. Consider an infinitesimal local distortion of the geometry of the two-

dimensional plane represented by an infinitesimal change dgijðxÞ of the two-dimen-

sional metric, as is conventional in the theory of elasticity [2]. Recall that in the
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theory of elasticity, the change in the metric, given by the strain tensor, is quadratic

in the local deformation of the system. Let jWi be the ground state wave function for

the undistorted plane and jWðgÞi be the ground state wave function in the distorted

plane with two-dimensional metric gijðxÞ ¼ dij þ dgijðxÞ. Under this distortion the

Hamiltonian of the system changes by an amount
dHðgÞ ¼
Z

d2x
dH

dgijðxÞ
dgijðxÞ þ � � � ð1:1Þ
To first order in perturbation theory in dH , the change of the ground state wave

energy is
dE0 >
hWjdHðgÞjWi

hWjWi � hdHðgÞi ¼
Z

d2x
dH

dgijðxÞ

� �
dgijðxÞ þ � � � ð1:2Þ
where E0 is the exact ground state energy of the distorted system. On the other hand,

the change of the norm of the ground state wave function kWk is, to all orders in

perturbation theory, given by [49]
kWk2 ¼ oE0

oe0
; ð1:3Þ
where e0 is the ground state energy of the undistorted system. Thus, the change of the

norm kWk is determined by the (2� 2) stress tensor Tij of the 2þ 1-dimensional

theory
TijðxÞ ¼
dH

dgijðxÞ

� �
: ð1:4Þ
On the other hand, we can regard kWk2 as the partition function Z of a two-

dimensional Euclidean conformal field theory. This theory has an Euclidean

stress-energy tensor, T cft
ij , defined by [48]
T cft
ij ¼ � dScft

dgijðxÞ

� �
¼ d ln Z

dgijðxÞ
; ð1:5Þ
which essentially coincides with the stress tensor of the 2þ 1-dimensional quantum

field theory defined above. Scale invariance, rotational invariance and conservation

require that Tij be a conserved (divergence free) symmetric traceless tensor. Conse-

quently, the effective Hamiltonian (as well as the action) at this quantum critical

point can depend on the spatial gradients of the field only through the ‘‘spatial

curvature’’, e.g. ðr2uÞ2 in a scalar field theory. In other words, at a conformal
quantum critical point for a scalar theory, the stiffness vanishes: the usual ðruÞ2
term is not possible. This means that the dynamical critical exponent of this quantum

critical theory must be z ¼ 2. We call such theories quantum Lifshitz theories; we will

discuss such critical points in detail.

In this paper we discuss both lattice models which exhibit both ordered/confined

phases and disordered/deconfined phases. We will also discuss the field-theory de-

scription of these phases and of the phase transitions. To simplify matters, and to

be able to obtain exact results, we will introduce models whose ground-state wave
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function will be known exactly and whose properties we will be able to determine

quite explicitly. In this sense, these models are a generalization of the quantum dimer

model at the RK point. The basis of the Hilbert space of these models is the config-

uration space of a two-dimensional classical statistical–mechanical system or Euclid-

ean field theory. Each of these basis states is defined to be orthogonal with respect to
the others. An arbitrary state in this Hilbert space can therefore be described as some

linear combination of these basis elements. Describing the Hilbert space in such a

fashion is not particularly novel. The unusual feature of the models we will discuss

is that the ground-state wave function can be expressed as in terms of the action or

Boltzmann weights of a local two-dimensional classical theory. The normalization of

the wave function will then be the partition function or functional integral of the

classical two-dimensional model. This special property is why the wave functionals

at the critical points are have a time-independent conformal invariance at their crit-
ical points. The field theory of these conformal quantum critical points can be

extended to describe nearby ordered and disordered phases, including their confine-

ment properties. We will study this quite explicitly in a quantum generalization of

the eight-vertex model. However, much of the physics we discuss should apply to

topological phases and (z ¼ 2) quantum critical points in general.

We will also study theories with a continuous non-abelian symmetry. We show

that, interestingly enough, there seems to be no way to construct a non-trivial con-

formal quantum critical point. We do find a Hamiltonian whose ground state is the
doubled Chern–Simons theory of [49,50]. This is a time-reversal invariant theory of

interest in topological quantum computation and in (ordinary) supercondutivity; it is

in a gapped topological phase.

In Section 2 we discuss the simplest model with a scale-invariant critical wave

function, the quantum dimer model at the RK point. Here we also introduce the

quantum Lifshitz model, the effective field theory of these new quantum critical

points. In Section 3, we generalize the relation between the quantum dimer model

and the scalar field theory discussed in Section 2 to include perturbations which drive
the system in to a quantum disordered/deconfined phase or to a ordered/confined

phase. In Section 4, we define the quantum eight-vertex model by finding a Hamil-

tonian whose ground-state wave function is related to the classical eight-vertex mod-

el. This will allow us to find quantum critical lines with variable critical exponents

separating a Z2-ordered phase from a topologically ordered phase. It will also allow

us to place a number of previously known models, in particular that of [42], in a

more general setting. We show in detail how to use the known results from the Bax-

ter solution of the classical model to map out the critical behavior of the quantum
theory. In particular we analyze in detail the confinement and deconfinement prop-

erties of the different phases and at criticality. In Section 5, we study the non-abelian

case, and see that the strongly coupled limit of Yang–Mills theory with a Chern–Si-

mons term has a wave functional local in two-dimensional classical fields [51]. This

theory is in a phase with topological order. In three appendices we give details of the

correlators of the quantum Lifshitz field theory (Appendix A), and of the gauge-the-

ory construction of the quantum six-vertex (Appendix B) and eight-vertex (Appen-

dix C) models.
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2. Scale-invariant wave functions and quantum criticality

The simplest lattice model we discuss is the quantum dimer model; the simplest

field theory we dub the quantum Lifshitz theory. They both provide very nice illus-

trations of the properties discussed in the introduction. In the quantum dimer model,
the space of states consists of close-packed hard-core dimers on a two-dimensional

lattice. A quantum Hamiltonian therefore is an operator acting on this space of di-

mers, taking any dimer configuration to some linear combination of configurations.

In every configuration exactly one dimer must touch every site, so any off-diagonal

term in the Hamiltonian must necessarily move more than one dimer. The simplest

such operator is called a ‘‘plaquette flip’’: if one has two dimers on opposite sites of

one plaquette, one can rotate the dimers around the plaquette without effecting any

other dimers. For example, for the ith plaquette on the square lattice one has
F̂i : and ð2:1Þ
The operator F̂i is defined as zero on any other dimer configuration around a pla-

quette (i.e., if the ith plaquette is not flippable). We define the operator V̂i as the

identity if the plaquette is flippable, and zero otherwise.

The Rokhsar–Kivelson Hamiltonian for the quantum dimer model [10]
HRK ¼
X
i

ðV̂i � F̂iÞ; ð2:2Þ
has the remarkable property that one can find its ground states exactly. They have

energy zero, and every state (in a given sub-sector labeled by global conserved

quantities) appears with equal amplitude in its ground-state wave function. These

properties follow from the facts that HRK is self-adjoint, and ðV̂i � F̂iÞ2 ¼ 2ðV̂i � F̂iÞ.
Hamiltonians of the form H ¼

P
i Q

y
i Qi necessarily have eigenvalues E obeying

EP 0. Moreover, if one can find a state annihilated by all the Qi, then it is necessarily

a ground state. The equal-amplitude sum over all states is indeed such a state. In the

Schr€odinger picture, the wave function for this state is easy to write down. Define Z
as the number of all dimer configurations in some finite volume. This is precisely the

classical partition function of two-dimensional dimers with all configurations

weighted equally. Then the properly normalized ground-state wave function for any

basis state jCi in the Hilbert space (i.e., any classical dimer configuration C) is
jW0i ¼
1ffiffiffi
Z

p
X
C

jCi ) W0ðCÞ ¼
1ffiffiffi
Z

p : ð2:3Þ
The wave function of the quantum system is indeed related to the classical system.

One can extend this sort of analysis to compute equal-time correlators in the

ground state. One finds simply that these correlators are given by the correlation

functions of the two-dimensional classical theory. Thus for HRK for dimers on the

square lattice, one finds algebraic decay of the correlation functions [10]. This model

is then interpreted as a critical point between two ordered phases of the dimers

[13,23]. However, for the analogous Hamiltonian on the triangular lattice, the
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classical two-dimensional correlators are exponentially decaying [8]. One can also

show that spinon-type excitations (sites without a dimer) are deconfined on the

triangular lattice [11]. This means the quantum dimer model with HRK on the trian-

gular lattice is interpreted as being in a ‘‘liquid’’ phase, which has a mass gap and

exponential decay of interactions, but which has no non-zero local order parameter.
Such a relation between two-dimensional quantum theories is not limited to lat-

tice models, nor are the ground-state wave functions required to be equal-amplitude

sums over all configurations. We will construct now a simple (non-Lorentz invariant)

two-dimensional quantum critical field theory i.e., a theory whose ground state wave

function represents a two-dimensional conformal theory.

Consider a free boson uðx; tÞ in two spatial dimensions and one time dimension.

Instead of the usual Hamiltonian quadratic in derivatives, we use one which has been

conjectured by Henley [52] to belong to the same universality class as the square-
lattice quantum-dimer model. It is
H ¼
Z

d2x
P2

2

�
þ j2

2
ðr2uÞ2

�
; ð2:4Þ
where P ¼ _u as usual. The associated Euclidean action for the field u is
S ¼
Z

d3x
1

2
osuð Þ2

�
þ j2

2
r2u
� �2�

: ð2:5Þ
This system, Eq. (2.5), also arises in three-dimensional classical statistical mechanics

in the field-theory description of Lifshitz points [2], for example in (smectic) liquid

crystals. For this reason we will call the system with Hamiltonian (2.4) the quantum

Lifshitz model. Of particular relevance to our discussion is the long-ago observation
by Grinstein [53] that this system is analogous to the two-dimensional Euclidean free

boson in that it represents a line of fixed points parametrized by j.
Let us rederive this result by quantizing the Hamiltonian (2.4). We impose the

canonical commutation relations
½uð~xÞ;Pð~x0Þ� ¼ idð~x�~x0Þ; ð2:6Þ

so in the Schr€odinger picture the canonical momentum is the functional derivative

Pð~xÞ ¼ �id=duð~xÞ. The Schr€odinger equation for the wave functional W½u� is then
Z
d2x

"
� 1

2

d
du

� 	2

þ j2

2
ðr2uÞ2

#
W½u� ¼ EW½u�: ð2:7Þ
We can find the ground-state wave function in the same fashion as we did for HRK.

Indeed, if we define
QðxÞ � 1ffiffiffi
2

p d
du

�
þ jr2u

	
; QyðxÞ � 1ffiffiffi

2
p
�
� d
du

þ jr2u

	
; ð2:8Þ
the (normal-ordered) quantum Hamiltonian is then
H ¼ 1

2

Z
d2x Qyð~xÞ;Qð~xÞ
n o

� evacV �
Z

d2xQyð~xÞQð~xÞ; ð2:9Þ
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which is Hermitian and positive. Here V is the spatial volume (area) of the system,

and we have normal-ordered the Hamiltonian by subtracting off the (UV divergent)

zero-point energy density
evac ¼ � j
2
lim
~y!~x

r2
xdð~x�~yÞ > 0:
Any state annihilated by QðxÞ for all x must be a zero-energy ground state. The

corresponding ground-state wave functional h½u�jvaci ¼ W0½u� satisfies QW0½u� ¼ 0,

where Q is defined in Eq. (2.8). This is simply a first-order functional differential
equation, and is easily solved, giving
W0½u� ¼
1ffiffiffiffiffi
Z

p e
�j

2

R
d2xðruðxÞÞ2

; ð2:10Þ
where Z is the normalization
Z ¼
Z

½Du�e�j
R

d2xðruÞ2
: ð2:11Þ
The probability of finding the ground state in the configuration j½u�i is therefore
jW0½u�j2 ¼
1

Z
e
�j
R

d2xðruÞ2
: ð2:12Þ
Consequently, the ground state expectation value of products of Hermitian local

operators O½uð~xÞ� reduces to expressions of the form
hvacjO½uð~x1Þ� . . .O½uð~xnÞ�jvaci ¼
1

Z

Z
½Du�O½uð~x1Þ� . . .O½uð~xnÞ�e�j

R
d2xðruÞ2

:

ð2:13Þ

This two-dimensional quantum theory has a deep relation with a two-dimensional

classical theory: the ground-state expectation value of all local observables are

mapped one-to-one to correlators of a two-dimensional massless Euclidean free bo-

son. The latter is a well-known conformal field theory, and its correlation functions

are easily determined (for convenience we give them explicitly in Appendix A). This
two-dimensional critical field theory is conformally invariant, so the equal-time cor-

relators of the quantum theory must reflect this. This scalar field theory is therefore

not only quantum critical but it also has a time-independent conformal invariance.

The role of conformal invariance in 2D classical dynamics with z ¼ 2 and anisotropic

3D classical Lifshitz points was considered recently in Ref. [126].

The equal-time expectation values of the ‘‘charge operators’’ O½u�, as well as the
correlation functions of the dual vortex (or ‘‘magnetic’’) operators discussed in Ap-

pendix A, exhibit a power-law behavior as a function of distance, as expected at a
quantum critical point. As shown also in Appendix A, their autocorrelation func-

tions also exhibit scale invariance albeit with a dynamic critical exponent z ¼ 2. This

behavior of the equal-time correlator was shown earlier to occur in the quantum di-

mer model on the square lattice at the RK point: there is a massless ‘‘resonon’’ ex-

citation, and the equal-time correlation functions for two static holons has a power

law behavior equal to that of the monomer correlation function in the classical 2D

dimer model on the square lattice.
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However, not all theories whose ground state can be found in this fashion need be

critical with power-law behavior. As noted above, the quantum dimer model on the

triangular lattice is not. As we will discuss in Section 3, adding say a mass-like

term to QðxÞ in the scalar field theory gives a theory with exponentially decaying

correlations in the ground state. Thus one can understand phase transitions in such
theories as well, and we will explore several of these in this paper. Nevertheless, we

expect that the quantum critical points, provided the quantum phase transition is

continuous, of generic theories of this type to have the basic structure of the quan-

tum Lifshitz model. As discussed in the introduction, only quantum Lifshitz points

can be conformal quantum critical points.

In the next sections we will show that generalizations of this z ¼ 2 quantum Lif-

shitz Hamiltonian also describe the quantum phase transitions between generaliza-

tions of the valence bond crystal states and quantum disordered states which
describe deconfined topological fluid phases (provided these quantum phase transi-

tions are continuous). Notice that phase transitions from deconfined to confined,

uniform and translationally invariant states are described by the standard Lorentz

invariant z ¼ 1 critical point of gauge theories [25,31,54].

These examples show that one can obtain precise information about some two-di-

mensional quantum systems in terms of known properties of two-dimensional clas-

sical systems. The trick of doing so is in finding a set of Qi (or QðxÞ in the continuum)

which annihilates the equal-amplitude state (or some other desired state), and then
defining H ¼

P
i Q

y
i Qi [55]. This seems like it should be possible to do for any clas-

sical two-dimensional theory, and indeed, there are many known examples of this

sort. However, it is not clear for a given two-dimensional classical theory one can

always find a Hamiltonian which is both local and ergodic (in this context, ergodic

means that the Hamiltonian will eventually take the system through all of phase

space with a given set of conserved quantum numbers). It is also not clear that even

if such a Hamiltonian exists, whether it will have any physical relevance.

Moreover, this simple relation of the ground-state wave function of a two-di-
mensional quantum system to a two-dimensional classical system is not at all ge-

neric: the quantum dimer model with HRK and this quantum Lifshitz field

theory are quite special. To illustrate this, let us discuss briefly the ground-state

wave functions of standard quantum field theories at a (quantum) critical point.

Consider first the most common case, the Lorentz invariant u4 field theory at crit-

icality. Below D ¼ 4 space-time dimensions this critical theory is controlled by its

non-trivial Wilson–Fisher fixed point. The resulting theory is massless and in gen-

eral it has an anomalous dimension g 6¼ 0. Scale and Lorentz invariance fully dic-
tate the behavior of all the correlation functions at this fixed point. General fixed

point theories are scale invariant and, in addition, they exhibit an enhanced, gen-

erally finite-dimensional, conformal symmetry. It is a very special feature of

D ¼ 1þ 1-dimensional Lorentz-invariant fixed point theories that they exhibit a

much larger, infinite-dimensional, conformal invariance. This enhanced symmetry

leads to a plethora of critical behaviors in 1þ 1 dimensions. In contrast, there

are relatively few known distinct critical points in higher dimensions for

Lorentz-invariant field theories.
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It is well-known that the knowledge of all the equal-time correlation functions de-

termines completely the form of the ground state wave function, i.e., in the Schr€odin-
ger representation of the field theory [56–58]. For a general theory, the ground-state

wave function is a non-local and non-analytic functional of the field configuration.

Thus, at the Wilson–Fisher fixed point, which describes theories with only a global
conformal (scale) invariance, the structure of the ground state wave function is quite

complicated. For instance, the probability of a constant field configuration uð~xÞ ¼ u
at a critical point has the universal form [58]
jWvacðuÞj2 ¼ Ae�Bjuj1þd

: ð2:14Þ

For a Lorentz-invariant u4 theory the universal critical exponent is given by

d ¼ ðd þ 2� gÞ=ðd � 2þ gÞ, and A and B are two non-universal constants. There-

fore, at criticality the wave function in general is a non-analytic non-local functional

of the field configuration. In contrast, the ground-state wave function of a 1þ 1-

dimensional relativistic interacting fermions (a Luttinger liquid), which is a con-

formal field theory, has a universal non-local non-analytic Jastrow-like power law
factorized form [59] consistent with the form found by the Bethe–Ansatz solution of

the Calogero–Sutherland model [60–62]. This structure is a consequence of the (lo-

cal) conformal invariance of the 1þ 1-dimensional theory. Notice that even in 1þ 1

dimensions the wave function is non-local.
3. Dimers, fermions, and the quantum Lifshitz field theory

In Section 2, we showed how to find the exact ground-state wave functions of the

quantum dimer model with Rokhsar–Kivelson Hamiltonian HRK, and the quantum

Lifshitz scalar field theory. In this section, we will describe their properties in more
detail, and some simple generalizations.

3.1. From the square to the triangular lattice

The ground states of HRK are the sum over all classical dimer configurations in a

sector with equal amplitudes [10]. There are a number of useful generalizations to

models where the ground state is still a sum over all states in a sector, but not nec-
essarily with equal amplitudes. One interesting case is a quantum dimer model which

interpolates between the square and triangular lattices.

A triangular lattice can be made from a square lattice by adding bonds across all

the diagonals in one direction. The classical dimer model on the square lattice can be

deformed continuously into the triangular-lattice model by assigning a variable

weight w for allowing dimers along these diagonals: for w ¼ 0 we have the original

square-lattice model, while w ¼ 1 gives the triangular-lattice one [11]. There is a two-

dimensional quantum Hamiltonian which has the w-dependent classical dimer model
as its ground state. For dimers on opposite sides of a plaquette of the original square

lattice, the Hamiltonian remains HRK. In addition, however, parallel dimers on ad-

jacent diagonals can also be flipped [8], see Fig. 1. Like the flip on the square lattice,

this flip can be done without violating the close-packing and hard-core constraints.



Fig. 1. Dimer flips on the triangular lattice.
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When the off-diagonal terms in the Hamiltonian Hw consist solely of these flips,

Hw breaks up into two-by-two blocks like HRK does. In the ground state dimers along

diagonals should get a weight w, so the Hamiltonian Hw must explicitly depend on w.
To construct a Hamiltonian with the desired ground state, we find a set of operators

Qi, each of which annihilates this state. For example, denote a configuration with di-

mers on adjacent diagonals as j1i, and j2i as the configuration to which it is flipped,
as shown in Fig. 1. The Qi acting on these two configurations is then
Qi ¼
1

w2 þ w�2

w�2 �1

�1 w2

� 	
; ð3:1Þ
where the first row and column correspond to state j1i, while the second corresponds

to state j2i. There are three types of Qi: Q
ðsquareÞ
i acts on dimers on opposite sides of a

plaquette of the original square lattice, while QðhorizÞ
i and QðvertÞ

i are associated to flips

involving dimers on the �diagonal� links; see Fig. 1. The operator QðsquareÞ
i is given by

(3.1) with w ¼ 1. We then take
Hw ¼
X
i

QðsquareÞ
i

h
þ wQðvertÞ

i þ wQðhorizÞ
i

i
; ð3:2Þ
where the sum is over all plaquettes i. Each Qi is a projection operator, so

Qi ¼ Qy
i ¼ ðQiÞ2.

We have defined the operator Qi so that it annihilates the state w2j1i þ j2i. The
ground state of Hw is then the sum over classical dimer model states with each state

weighted by wD, whereD is the number of dimers along diagonals in that state. More

precisely, one must find the conserved quantities for a given value of w and boundary

conditions; the sum over all states with weight wD in that sector is an eigenstate of

HRK with zero energy. The ground-state wave function for a configuration with D
diagonal dimers is then
W0½D� ¼ wDffiffiffiffiffiffiffiffiffiffiffiffi
Zðw2Þ

p ; ð3:3Þ
where ZðwÞ is the partition function for the classical dimer model with diagonal dimers
receiving weight w. Note the w2 in the argument of Z in the denominator: this is

because in quantum mechanics probabilities are given by jW0j2. For the square or

triangular lattice, this is unimportant, because w ¼ 0 or w ¼ 1, both of which have
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w2 ¼ w. For w ¼ 1, we have the equal-amplitude sum over all dimer states of the

triangular lattice, the model discussed in [8]. For w ¼ 0, we recover a slight general-

ization of the original square-lattice quantum-dimer model of Rokhsar and Kivelson

[10]. In this limit, this Hamiltonian reduces to HRK plus a potential term forbidding

dimers on adjacent diagonal links. Isolated diagonal dimers are still allowed for
w ! 0, but since none of them can be flipped, the Hamiltonian does not affect them at

all. Thus they can be viewed as fixed zero-energy defects in the square-lattice quantum-

dimer model. The ground-state wave function for a given set of defects is the equal-

amplitude over all configurations of dimers on the sites without defects.

Since we know the exact ground-state wave function for any w, one would like to

compute the correlation functions in this model. In most two-dimensional lattice

models, even those solvable by the Bethe ansatz, this is extraordinarily difficult or

impossible. However, the classical dimer model is special in that one can do such
computations, because like the two-dimensional Ising model, it is essentially free-

fermionic. Precisely, its partition function and correlators in the classical dimer model

can be written in terms of the Pfaffian (the square root of the determinant) of known

matrices [63]. One can rewrite the Pfaffians in terms of a functional integral over

Grassmann variables at every site on the lattice [64]. The action in the case of equal

Boltzmann weights is quadratic in the Grassmann variables, so one can compute eas-

ily any ground-state correlation function using the dimers, because the dimers can be

written in terms of the fermions. This was discussed for the triangular lattice in [8].
The correlators of spinon-like or holon-like excitations are much more complicated,

but the computation was done for w ¼ 0 in [63], and for arbitrary w in [11]. On the

lattice, the holon is a defect or monomer, a site without a dimer. The holon-creation

operators are not local in terms of the fermionic variables, in a manner reminiscent of

how the spin and fermion operators are non-local with respect to each other in the

two-dimensional Ising model. The holon two-point function is valuable in that it gives

an order parameter for the phase with topological order: if it is non-vanishing as two

holons are taken far apart, the holons are deconfined and we are indeed in a topolog-
ical phase. The existence of topological order was previously established for the trian-

gular lattice w ¼ 1 [8,14]; in [11] the explicit correlator was computed, and indicates

the topologically ordered phase exists for any non-zero w.
The ground state of the quantum dimer model with Hw is therefore well under-

stood for any w. There are no exact results for the excited states, however. In fact,

since Hw does not have any action upon empty sites, one can give the holon any

gap desired without changing the ground states. It is therefore, useful to find a con-

tinuum limit and study the field theory describing this model. In other words, we
would like to understand a field theory with partition function equal to the contin-

uum limit of partition function ZðwÞ in Eq. (3.3). Since ground-state correlators for

the square lattice are algebraically decaying, the w ¼ 0 model is critical and should

have a sensible continuum limit. Indeed, when w ¼ 0, the Grassmann variables turn

into a single free massless Dirac fermion field; its action is the usual rotationally in-

variant kinetic term. The dimer correlation length n was computed exactly as a func-

tion of w; for the triangular lattice it is about one lattice spacing, while n diverges as

1=w for w small [11]. Thus there is a field-theory description of the continuum limit
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of the classical dimer model valid as long as w is scaled to zero with the lattice spac-

ing a such that w=a remains finite. Since the action is still quadratic in the Grass-

mann variables, the resulting fermionic field theory remains free. However, the

Dirac fermion receives a mass proportional to w=a [11].

There are several useful aspects of taking the continuum limit, apart from finding
the excited-state spectrum. Correlators are easier to compute: for w ¼ 0 one can use

conformal field theory [48], while in the scaling limit w ! 0 one can use form-factor

techniques [65]. Another useful fact is that (ignoring boundary conditions), a Dirac

fermion can be described in terms of two decoupled Ising field theories. In the con-

tinuum, the holon can be written in terms of the product of the spin field in one Ising

model with the disorder field in the other Ising model. Taking w away from zero

amounts to giving one Ising order field an expectation value, and the other disorder

field an expectation value [11]. Thus one can see directly in continuum that the holon
order parameter is non-vanishing for w 6¼ 0. We will see in the next section that one

can also understand the physics of the quantum Lifshitz critical line for all j in terms

of two (coupled) Ising models.

3.2. The critical field theory

We would therefore like to find a natural-looking quantum field-theory Hamilto-

nian which has as its ground-state wave functional
1 W
W0½w� ¼
e�SDirac ½w�ffiffiffiffiffiffiffiffiffiffiffi

ZDirac

p ; ð3:4Þ
where SDirac is the usual action for a rotationally invariant action for a free Dirac

fermion in two Euclidean dimensions. Since this wave functional involves Grassman

numbers, the easiest way to think of jW0j2 as a weight in the path integral defining all

correlators. While it is possible to find a Hamiltonian acting on this fermionic basis,
it is more convenient and more intuitive to instead use bosonic variables. It is more

convenient because correlators in a massless Dirac fermion theory (including those

involving the product of spin fields) can be bosonized, meaning that they can be

written in terms of correlators of free scalar fields [48,66]. It is more intuitive because

the classical dimer model on the square lattice has a simple description in terms of a

‘‘height’’ variable [52]. A height is an integer-valued variable, which typically in the

continuum limit turns into a scalar field. This description will allow us also to make

contact with the quantum Lifshitz model.
Recently, Moessner et al. [14] generalized Henley�s argument of [52], and used the

connection between quantum dimer models and their dual quantum roughening

(height) models [12,13,23,67–71] to argue that the Hamiltonian of Eq. (2.4) actually

defines the universality class of quantum critical points between valence bond crystal

phases. The nature of the phase transition between valence bond crystal states is the

focus of much current research. Quite recent results by Vishwanath et al. [72],1 and
e became aware of [72] as this paper was being completed.



Fig. 2. Four height configurations.
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by Fradkin et al. [73], show that the transition between valence bond crystals is ge-

nerically first order, as expected from a simple Landau argument. Nevertheless, when

the transition is continuous, it is described by the Hamiltonian of Eq. (2.4) which
must be regarded as a (rather rich) multicritical point.

To see how the height description arises, let us go back to the square-lattice quan-

tum dimer model, where Hw reduces to HRK. To map the square-lattice classical di-

mer model onto a height model, one first assigns a height variable to each plaquette.

In going around a vertex on the even sub-lattice clockwise, the height changes by +3

if a dimer is present on the link between the plaquettes, and by )1 if no dimer is pres-

ent on that link. On the odd sub-lattice, the heights change by )3 and +1, respec-

tively. The flip operator F̂i on a plaquette i changes the height on that plaquette
by either �4. To take the continuum limit, is convenient to turn this into a model

with heights on the sites. We define h on each site to be the average value of the four

plaquette heights around that site2; see Fig. 2. To avoid overcounting configurations,

we identify the height h with hþ 4. The flip operator F̂ corresponds to changing

h ! h� 1 on all four sites around a plaquette (the � depending on the sub-lattice).

Columnar order for dimers corresponds to an expectation value for h, while stag-

gered order for dimers corresponds to an expectation value for oh. One can obtain

a Hamiltonian with ordered ground states by allowing the coefficients of the two
terms in Eq. (2.2) to be different. If the coefficient of F̂i is larger, this favors columnar

order; if the coefficient of V̂i is larger, staggered order is favored. It is widely assumed

that HRK, where the coefficients are equal, describes a phase transition between the

two kinds of order [12,23,67,75]. However, this has never been proven, and there

exists the possibility of an intermediate ‘‘plaquette’’ phase [76].

We would now like to take the continuum limit of the quantum dimer model in its

height description. In this limit, we identify the height h with a scalar field 4uðxÞ.
Like the height, the scalar field must be periodic, so we identify u with uþ 1. We
have already noted that the continuum correlators of the square-lattice quantum di-

mer model are those of a massless Dirac fermion. The correlators in the ground state

of the quantum Hamiltonian in terms of u must be identical. The quantum Lifshitz

Hamiltonian Eqs. (2.4) and (2.9) has ground-state correlators of the form given in

Eq. (2.13). When j�1 ¼ 2p, these correlators are precisely those of a Dirac fermion;

this is a result of the widely known procedure known as bosonization [48]. In fact,

correlators of many two-dimensional critical classical statistical mechanical systems,
2 This construction has been employed extensively in statistical mechanics models of classical dimers

and loops; see for instance [74].
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not just free fermions, can be written in terms of exponentials of a free boson [66]; we

collect some of these results in Appendix A. In the next section we will display quan-

tum lattice models whose continuum limit corresponds to all values of j.
The Hamiltonian HRK on the square lattice in the continuum limit is therefore

identified with the quantum Lifshitz Hamiltonian with j�1 ¼ 2p. This also allows
a qualitative understanding of the physics away from the RK point [52]. A phase

with staggered order should have an expectation value of oxu or oyu in the contin-

uum theory. Adding a term ðruÞ2 to the Hamiltonian with negative coefficient will

drive the system into such an ordered phase. Adding this term with positive coeffi-

cient will favor a constant value of u, driving the system into columnar order. Add-

ing terms like cosð2puÞ will also drive the system into a phase with columnar order.

Thus one expects that at a critical point like that described by HRK on the square

lattice, the coefficients of ðruÞ2 and cosð2npuÞ will vanish. This leaves Eq. (2.4)
as the simplest non-trivial Hamiltonian with the desired properties. The requirement

that the ground state be equivalent to a free fermion then fixes the coefficient j; note
that if desired j can scaled out of the Hamiltonian by redefining the compactification

relation to be u � uþ
ffiffiffi
j

p
.

It is not at all clear whether critical 2þ 1-dimensional field theory and the contin-

uum limit of HRK are identical for excited states, although the above heuristic argu-

ment is very suggestive. The Hamiltonian for the scalar field theory Eq. (2.9) is

purely quadratic in the field u, so one can obtain essentially any desired information
exactly. HRK is not so simple on the lattice, but one may hope the two models are in

the same universality class. In any event, we can easily extract all the excited-state

energies for the quantum Lifshitz field theory. The operators QðxÞ and QyðxÞ are es-
sentially harmonic-oscillator creation and annihilation operators: the equal-time

commutation relation Eq. (2.6) implies that
½Qð~xÞ;Qyð~yÞ� ¼ jr2dð2Þð~x�~yÞ: ð3:5Þ

The ground state is indeed annihilated by all QðxÞ, so we can create excited states by

acting with QyðxÞ. The commutation relations Eq. (3.5) mean that the dispersion
relation is E ¼ jp2. This theory is gapless but not Lorentz-invariant: the dynamical

critical exponent is z ¼ 2.

The exponent z ¼ 2 can also be seen by looking at the classical action associated

with this Hamiltonian. This will also allow us to make contact with the earlier three-

dimensional statistical–mechanical results. The action consistent with the Hamilto-

nian of Eq. (2.4) and the canonical commutation relations of Eq. (2.6) is
S ¼
Z

d3x
1

2
otuð Þ2

�
� j2

2
ðr2uÞ2

�
: ð3:6Þ
Clearly, this action is not Lorentz invariant and has z ¼ 2. It is rotationally invariant

only in the XY plane. Defining the imaginary time s ¼ it gives the Euclidean action

(2.5). The imaginary time axis s can be regarded as the z-coordinate of a three-di-

mensional classical system in which uð~x; sÞ is an angle-like variable and the action

represents the spin-wave approximation of an anisotropic classical XY model. In
general one would have expected a term proportional to the operator ðruÞ2 with a
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finite positive stiffness in the plane. This is so in the XY ferromagnetic phase. On the

other hand, if the stiffness becomes negative, there is an instability to a modulated

helical phase. The action of Eq. (2.5) represents the Lifshitz point, the critical point

of this phase transition [53,77] where the stiffness vanishes. This effective action also

plays a central role in the smectic A–C transition [78] and in other classical liquid
crystal phase transitions associated with the spontaneous partial breaking of

translation and/or rotational invariance [2,79]. The compactified version of the

problem (i.e., the identification u � uþ 1) has also been considered in this context,

for example in [53]. The choice of period in general depends on the physical context

of the problem.

The square-lattice quantum dimer model and the scalar field theory with Hamil-

tonian Eq. (2.9) are both at critical points, in that the correlators in the ground state

are algebraically decaying. The quantum dynamics implied by this Hamiltonian must
be compatible with the two-dimensional time-independent conformal invariance. In

particular, the spectrum of the quantum theory must be gapless and, as we learned

from this example, the dynamic critical exponent must be z ¼ 2. Notice, however,

that z ¼ 2 alone does not guarantee a gapless (or even critical) theory. Indeed,

instructive counter-examples to this statement are well known in the theory of (the

absence of) quantum roughening [80,81] where quantum fluctuations destroy the

critical behavior and lead to an ordered state through an order-from-disorder

mechanism.

3.3. The off-critical field theory

We have thus shown that the continuum limit of the square-lattice quantum dimer

model is described by the quantum Lifshitz model at a special point j�1 ¼ 2p. We

also argued that at least some deformations of the two models result in ordered

phases. However, we saw at the beginning of this section that not all deformations

of the square-lattice quantum dimer model result in an ordered phase. Allowing di-
mers across the diagonals with Hamiltonian Hw results in a topologically ordered

phase, where the order parameter is not local.

In this section, we find a bosonic field theory describing the topological phase in

the continuum limit. We showed above that in the scaling limit w ! 0 with w=a fi-

nite, the ground-state wave function Eq. (3.4) can be written in terms of a free mas-

sive Dirac fermion of mass proportional to w=a. In two dimensions, the bosonic

version of a massive Dirac fermion is the sine-Gordon model at a particular cou-

pling. Precisely, the two-dimensional fermion action is equivalent to
S2d ¼
Z

d2x½jðruÞ2 � k cosð2puÞ�: ð3:7Þ
For the free-fermion case, we have j ¼ 1=2p; we will discuss the more general case in

Section 4. In the fermion language, different values of j correspond to adding a four-

fermion coupling to S2d. To find a Hamiltonian with this two-dimensional action

describing the ground state, we again find an operator QðxÞ and define the Hamil-

tonian via Eq. (2.9). The operator
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QðxÞ � 1ffiffiffi
2

p d
du

�
þ jr2uþ k

2p
sinð2puÞ

	
; ð3:8Þ
annihilates the wave functional W / e�S2d . Because of the extra term in Q, the

commutator ½Qð~xÞ;Qyð~yÞ� is not a simple c-number, but in fact depends on the field

configuration u,
½Qð~xÞ;Qyð~yÞ� ¼ jr2ðdð2Þð~x�~yÞÞ þ k sinð2puð~xÞÞdð2Þð~x�~yÞ: ð3:9Þ

Thus, normal-ordering the Hamiltonian is not just an innocent ground state energy

shift: the two parts of (2.9) are not the same here. To obtain the desired ground-state

wave functional, we must define H of the form
R
QyQ. The three-dimensional version

of this model was discussed in [53].

This Hamiltonian is not quadratic in the field u except at the critical point m ¼ 0,

so that even with this fine tuning this model cannot be solved simply. Since Q and Qy

do not have simple commutation relations, we cannot simply find the spectrum of
this theory. Of course, one can compute properties in the fermionic picture, but as

noted before, computations involving spin fields are non-trivial in this basis as well.

However, since there are dimensionful parameters in the Hamiltonian and no spon-

taneous breaking of a continuous symmetry, it seems likely that the Hamiltonian is

gapped. Moreover, in the limit with k=j finite, the action Eq. (3.7) reduces to that of

a free massive boson. Then one can solve the model explicitly, and the quantum

Hamiltonian indeed has a gap. When k is reduced to a finite value, the gap should

remain.3

There are many terms in the Hamiltonian of this field theory, and their coefficients

must be fine-tuned to enable us to compute the ground-state wave function explicitly.

There are terms like cosð4puÞ and ðruÞ2 which, as noted above, tend to order the

system. However, the exact lattice results for Hw from [11] show that the ground-state

correlators for w small are those of the bosonic Hamiltonian with these special cou-

plings. Thus this model is not ordered but rather topologically ordered. Moreover,

since the model is gapped, we expect that its physical properties are robust and per-

sist even when the coefficients are tuned away from this special point. Thus there
must exist a topological phase, not just an isolated point. An interesting open prob-

lem is to understand how large (in coupling constant space) the topological phase is,

as compared to the ordered phases.
he equal-time correlators of the vertex operators defined and computed in Appendix A can also be

ted away from the critical point by either by a naive semi-classical argument, which predicts the

exponential decay we just discussed, or in a more sophisticated way by means of form factors [65].

from a subtle bound state structure in the spectral functions, the more sophisticated approach

s the essence of the naive semi-classical result. On the other hand, the z ¼ 2 character of the critical

suggests that time-dependent correlation functions must be consistent with this fact, and that the

tors must be functions of x2 or t, and that the time dependent Euclidean auto-correlation functions

btained from the equal-time correlator by replacing x2 $ jtj. These arguments are consistent with

ormalization-group results of [53].
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4. A quantum eight-vertex model

In the last section, we discussed a 2þ 1-dimensional theory whose ground-state

wave function is simply described in terms of a classical two-dimensional bosonic

field. With vanishing potential and a particular value of the coupling j, it is believed
to describe the continuum limit of the quantum dimer model on the square lattice. In

this section, we will study lattice models which in the continuum limit allow arbitrary

values of j. These models also have a quantum critical line separating an ordered

phase from a topologically ordered phase.

The degrees of freedom in our model are those of the classical two-dimensional

eight-vertex model. These are arrows placed on the links of a square lattice, with

the restriction that the number of arrows pointing in at each vertex is even. This

means that there are eight possible configurations at each vertex, which we display
in Fig. 3. The classical Boltzmann weights for a given vertex in the zero-field

eight-vertex model are usually denoted by a, b, c, and d, as shown in the figure. Since

we are interested in rotationally invariant theories, we set a ¼ b in the following;

moreover, since we can rescale all the weights by a constant, we set a ¼ b ¼ 1. A typ-

ical configuration is displayed in Fig. 4; the Boltzmann weight of such a configura-

tion is given by the product of Boltzmann weights of the vertices.
Fig. 3. The eight vertices and their Boltzmann weights.

Fig. 4. A typical configuration in the eight-vertex model.
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The classical eight-vertex model is integrable, and many of its properties can be

derived exactly [82]. For a ¼ b ¼ 1, it has ordered phases for c > d þ 2 and

d > cþ 2. In these phases the Z2 symmetry of flipping all the arrows is spontane-

ously broken. Critical lines with continuously varying exponents at c ¼ d þ 2 and

d ¼ cþ 2 separate the ordered phases from the disordered one jc� dj < 2. The cor-
relation length diverges as [82]
n � jjc� dj � 2j�p=ð2lÞ
; l � 2 tan�1ð

ffiffiffiffiffi
cd

p
Þ; ð4:1Þ
near these critical lines. (For p=l an even integer this is multiplied by

log jjc� dj � 2j.) When c ¼ 0, d 6 2 or d ¼ 0, c6 2, the model is also critical; in fact

the partition function on this line can be mapped onto that for the order-disorder

critical line. For d ¼ 0, the exponent in Eq. (4.1) diverges: there is a Kosterlitz–

Thouless transition as one brings c through 2. Another useful result for the classical

correlation length is that it is zero on the line c ¼ d; this is the state of maximal

disorder.

An order parameter which will be useful later comes by rewriting themodel in terms
of an Ising spin at the center of eachplaquette. This description is best thought of as two

Ising models, with spins sðAÞ on one sublattice, and sðBÞ on the other. Then the Boltz-

mann weights can be written in terms of two Ising couplings between nearest sites on

the A lattice and on the B lattice, and a four-spin coupling between the two A and

two B spins around a site of the original lattice. The polarization operator of the

eight-vertex model becomes sðAÞsðBÞ. One finds that its expectation value is non-van-

ishing in the ordered phase, and vanishes in the disordered phase jc� dj < 2 [82]. One

also can defineNe�el-like staggered order parameters, in terms of sðAÞ and sðBÞ individ-
ually, which do not vanish in the ordered phase. Along the line cd ¼ 1, the four-spin

coupling vanishes, so the eight-vertex model turns into two decoupled Ising models;

the model here in this case be solved by using Pfaffian techniques [83]. Along the line

c ¼ d, the two Ising couplings vanish, leaving only the four-spin coupling. Thus this

line in the classical model has an extra Z2 gauge symmetry.

The classical eight-vertex model has a number of useful dualities [82]. They can be

described by defining the combinations W1 ¼ ðaþ bÞ=2;W2 ¼ ða� bÞ=2;W3 ¼
ðcþ dÞ=2 and W4 ¼ ðc� dÞ=2. The partition function is invariant under the exchange
of any two of the Wj and under the Wj ! �Wj for any j. These dualities, for example,

map the critical line c ¼ d þ 2 to the critical line d ¼ 0; c6 2 by exchanging W1 with

W4. In Ising language this amounts to performing Kramers–Wannier duality on one

of the two types of Ising spins. The line c ¼ d þ 2 is invariant under the exchange

W1 $ W3. In Ising language, this duality amounts to taking the Kramers–Wannier

dual of both types of Ising spins. Denoting the dual spins as lðAÞ and lðBÞ, duality
means therefore that in the disordered phases, the expectation value hsðAÞsðBÞi is

non-vanishing.

4.1. Construction of the quantum eight-vertex Hamiltonian

We now define a quantum Hamiltonian acting on a Hilbert space whose basis

elements are the states of this classical eight-vertex model. To define such a
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Hamiltonian, we first need the analog of the flip operator in the quantum dimer

model. A flip operator needs to be ergodic: by flips on various plaquettes one

should be able to reach all the states with the same global conserved quantities.

The simplest such operator for the eight-vertex model is the operator which

reverses all the arrows around a given plaquette. We write this flip operator F̂i

explicitly in gauge-theory language in Appendix C. Note that as opposed to the

quantum dimer model on the square or triangular lattice, all configurations in

the quantum eight-vertex model are flippable:4 F̂i preserves the restriction that

an even number of arrows be pointing in or out at each vertex.

The simplest Hamiltonian has no potential energy, just a flip term. It is convenient

to write this in terms of a projection operator: for I the identity matrix, we have

ðI � F̂iÞ2 ¼ 2ðI � F̂iÞ. Then the Hamiltonian
4 H

where
Hc¼d¼1 ¼
X
i

ðI � F̂iÞ; ð4:2Þ
has a ground state corresponding to the equal-amplitude sum over all eight-vertex

model states. In terms of the Boltzmann weights introduced above, this is the state

with a ¼ b ¼ c ¼ d ¼ 1. A Hamiltonian with the same ground state was introduced

by Kitaev [42]. There the eight-vertex-model restriction of having an even number of
arrows in and out at each vertex was not required a priori, but instead a term was

introduced giving a positive energy to vertices not obeying the restriction. The zero-

energy ground state can therefore include no such vertices, so the ground state for

the model of [42] is indeed the sum over the eight-vertex-model configurations with

equal weights. Because every plaquette is flippable and all configurations have equal

weights, different F̂i commute. Therefore all the terms in Eq. (4.2) commute with

each other, so they can be simultaneously diagonalized and their eigenstates can

easily be found, as for the quantum Lifshitz field theory. The model is gapped, and is
in a topologically ordered phase [42]. This follows as well from the results for the

classical eight-vertex model discussed above: for c ¼ d ¼ 1 all Ising couplings vanish

resulting in two decoupled Ising models at infinite temperature. At this point the

order parameter vanishes, but the non-local order parameter does not. We can thus

interpret the product of dual Ising variables lðAÞlðBÞ as a topological order

parameter.

This ground state can also be mapped onto the ground state of a Z2 gauge theory

deep in its deconfined phase. In Appendix C, we give a detailed derivation of the Z2

gauge theory of the full quantum eight-vertex model we define below, as well as the

its dual theory which we will use to characterize some of the phases. In Appendix B

we discuss the Uð1Þ gauge theory description of the quantum six-vertex model, which

describes the limit d ¼ 0, and by duality, the lines c ¼ 0, c2 ¼ d2 þ 2 and d2 ¼ c2 þ 2.

We now find a two-parameter quantum Hamiltonian whose ground state is a sum

over the states of the eight-vertex model with amplitudes given by the classical
owever, the quantum dimer models on the Kagome [84] and Fisher [85] lattices have Hamiltonians

all plaquettes are flippable.
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Boltzmann weights with arbitrary c and d. We are still keeping a ¼ b ¼ 1 to preserve

two-dimensional rotational invariance, but this restriction can be relaxed if desired.

Our model is neither the simplest nor the most natural extension of the classical

eight-vertex model: a simpler Hamiltonian was proposed by Chakravarty [86] in

the context of d-density waves. Although we believe that our Hamiltonian and
Chakravarty�s describe the same physics, we are not aware of any simple mapping

between these models. Another lattice model related to the quantum eight-vertex

model discussed here was introducted in [87]. The main virtue of the construction

that we use here is the structure of the ground-state wave function.

Finding a quantum Hamiltonian with a known ground state is straightforward to

do by using the trick discussed above (and in [55]). Namely, we find a Hamiltonian of

the form
Hq8v ¼
X
i

wiQi; ð4:3Þ
where Qi ¼ Qy
i / Q2

i . To yield the desired ground state, each operator Qi must an-

nihilate the sum over states with each state weighted by cNcdNd , where Nc and Nd are

the number of c and d type vertices in that state. In particular, we look for a Qi of the

form
Qi ¼
X
i

½V̂i � F̂i�; ð4:4Þ
where V̂i is diagonal and depends on the Boltzmann weights for the four vertices at

the corners of the plaquette i. Since ðF̂iÞ2 ¼ I , this Hamiltonian breaks into 2 by 2
blocks like HRK for the quantum dimer model. If we choose the potential Vi so that

the blocks are of the form
v �1

�1 v�1

� 	
; ð4:5Þ
Qi will have the desired properties.

To find V̂i, let nc be the number of c-vertices at the corners of the plaquette i, and
let enc be the number of c-vertices around the plaquette after it is flipped by F̂i. Like-

wise, let nd be the number of d-vertices around the plaquette, while end is the number

of d vertices in the flipped configuration. Note that F̂i always flips a c or d vertex to

an a or b vertex, and vice versa. Consequently, we take the operators V̂i to be of the
form
V̂i ¼ cenc�ncdend�nd : ð4:6Þ

Explicitly, we can write the projectors as follows:
Qi ¼ cenc�ncdend�nd �1
�1 cenc�ncdend�nd

� 	
: ð4:7Þ
This Qi is indeed proportional to a projection operator: the Hamiltonian (4.3) has the

classical eight-vertex model as an eigenstate. This holds for any choice of the wi,

but in the Z2 gauge-theory language of Appendix C, it is natural to set all wi ¼ 1.
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The amplitude of the ground-state wave function of this Hq8v on a state with Nc c-
vertices and Nd d-vertices is
5 T

vertex

time ag

and pr

quantu

vertex

vertex
W0½Nc;Nd � ¼
cNcdNdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zðc2; d2Þ

p ; ð4:8Þ
where Zðc; dÞ is the partition function of the classical two-dimensional eight-vertex

model with weights a ¼ 1, b ¼ 1, c and d. The arguments in the denominator are c2

and d2 because averages in the quantum model are calculated with respect to jW0j2.
In Section 3, we discussed how by taking the limit w ! 0 in Hw, one can recover a

slightly generalized square-lattice quantum dimer model which allows defects with

no dynamics. Similarly, here one can find a quantum six-vertex model with some de-

fects allowed by taking the limit d ! 0.5 Configurations with nd > end on any pla-
quette will receive infinite potential energy and so are disallowed. Some useful

facts are that nc þ nd þ enc þ end ¼ 4, and nc � enc ¼ 0 mod 2 and nd � end ¼ 0 mod

2. When d ! 0, configurations with nd ¼ end ¼ 0 are the flippable plaquettes of the

six-vertex model, and are obviously included in the ground-state wave function.

Configurations with nd ¼ end ¼ 1 or nd ¼ end ¼ 2 are not suppressed, but the flip

therefore preserves the number of d vertices around each plaquette. Thus in the

d ! 0 limit we can view these d vertices as defects in the quantum six-vertex model.

The ground-state wave function is a sum over all allowed states with a given set of
plaquettes with defects. The amplitude of each configuration in this sum is propor-

tional to cNc . We discuss the relation between the quantum six- and eight-vertex

models in more detail in the Appendices B and C.

4.2. The phase diagram

Now that we have the exact ground-state wave function for the quantum eight-

vertex Hamiltonian of (4.3), we can use it to determine the phase diagram. Given
the fact that the probability of a configuration of arrows in the ground state wave

function is equal to the Boltzmann weight of a classical eight-vertex model, we

can deduce much of the physics of the quantum theory (at least its equal-time prop-

erties) directly from the Baxter solution of the classical two-dimensional eight-vertex

model [82], as well as from Kadanoff�s classic work on its critical behavior [66,91,92].

The only change is that the weights must be squared here, since in quantum mechan-

ics we weigh configurations with jWj2. The phase diagram is displayed in Fig. 5; note

that the axes are labeled by c2 and d2.
his Hamiltonian in the special case c ¼ 1, d ¼ 0 was discussed in [88]. Moreover, the quantum six-

model should be in the same universality class as the ‘‘supersymmetric’’ XY model introduced some

o [89]; this model defines a similar Hamiltonian acting on the two-dimensional classical XY model,

esumably can also be understood in terms of a mapping to the quantum Lifshitz model. Another

m six-vertex model has been proposed as a model of a planar pyrochlore lattice in [90]. This six-

model is not of the Rokhsar–Kivelson type; it is the six-vertex limit of the simpler quantum eight-

model we discuss in Section 4.4.



Fig. 5. Phase diagram of the quantum eight-vertex model: phases I and II are separated by a dual six-ver-

tex transition (same with I and III); six-vertex denotes the six-vertex model critical lines and KT are two-

dimensional Kosterlitz–Thouless transitions; the dotted line shows that the Kitaev point is smoothly

connected to the critical regime of the eight-vertex model.
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We will now use this knowledge, as well a simple perturbative arguments in the
quantum theory, to determine the phase diagram, the behavior of physical observ-

ables in the different phases, and (much of) their critical behavior. A useful fact is

that for cd ¼ 1, the classical model with partition function Zðc2; 1=c2Þ is equivalent
to two decoupled Ising models. This decoupling is a property only of the wave func-

tion, not of the Hamiltonian of the full 2þ 1-dimensional quantum theory. Since this

line cd ¼ 1 goes through both ordered and disordered phases, much of the physics of

the quantum eight-vertex model can be described at least qualitatively in terms of

decoupled Ising models. In particular, for any values of c and d except those on
the critical line, correlators decay exponentially fast with distance with a correlation

length n which diverges as the phase boundary is approached, in a manner given in

Eq. (4.1). This exponential decay occurs in general, not just on the decoupling curve.

As with the dimer models discussed in Section 3, the partition function for cd ¼ 1

can be expressed in terms of Grassmann variables with only quadratic terms, i.e. free

fermions. Duality means that Zðc2; d2Þ is free-fermionic for c4 þ d4 ¼ 2 as well. The

correlators in the continuum limit of the (critical) square-lattice quantum dimer

model are therefore identical to those obtained for c ¼
ffiffiffi
2

p
, d ¼ 0. The special point

c ¼ d ¼ 1 discussed above and in [42] (labeled in Fig. 5 as ‘‘Kitaev’’) is also free

fermionic. At this point one does not need the Pfaffian techniques to compute
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correlators exactly, and one finds that the model is in a disordered phase in the Ising-

spin language. However, the expectation value hlðAÞlðBÞi is non-vanishing, so there

is topological order at this point.

Let us now discuss the different phases of this system.

1. The ordered (confined) phase.
From the known phase diagram of the classical eight-vertex model [82], we con-

clude that the ground state of the quantum model with the Hamiltonian of

Eq. (4.3) has an ordered phase for c2 > d2 þ 2 (and also for d2 > c2 þ 2). That this

is an ordered phase can be seen easily by considering the limit c ! 1 (with d
fixed). In this limit the ground state is dominated by just two configurations, re-

lated to each other by a lattice translation of one lattice spacing, which have a c
vertex on every site, as shown in Fig. 6. In this phase the staggered polarization

operator hsðAÞsðBÞi has a non-vanishing expectation value. This result can also
be obtained directly from the Hamiltonian of the Z2 gauge theory, Eq. (4.11), since

for c large the potential energy term HV dominates and in it the piece associated

with the c projection operators.

The ordered phase is also confining. Below we will discuss the behavior of the Wil-

son loop operator and show that in this regime it obeys an area law, the hallmark of

confinement [31,54]. We will also show that the energy of a state with two static

sources grows linearly with their separation. We should also note here that the

equal-time fermion correlation function has an exponential decay in this phase, sug-
gesting that this phase may support massive fermionic excitations.

2. The disordered (deconfined) phase.

From the exact solution of the classical model, we know that there is, a disordered

phase for c2 < d2 þ 2 (d2 < c2 þ 2) (see Fig. 5). This is also a deconfined phase. This

is most easily seen by taking a point deep in this phase, such as the Kitaev point

a ¼ b ¼ c ¼ d ¼ 1 [42]. In fact, all along the line a ¼ b ¼ 1 and c ¼ d, the correlation
length of the eight-vertex model is zero [82]. All points in the disordered phase have

this line as their RG stable fixed point (all points on the line are equivalent). This is
the infinite temperature limit of the classical two-dimensional eight-vertex model. In

this regime the expectation value of the polarization operator hsðAÞsðBÞi is zero (and

its correlation vanishes at a length scale of the lattice spacing.). Thus this state does
Fig. 6. The ordered phase ‘‘antiferroelectric’’ or ‘‘staggered flux’’ phase of the eight-vertex model for

c � 1. In this limit there are only c vertices in the ground state.
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not exhibit long-range order, but since the dual variable hlðAÞlðBÞi is non-vanishing,
it exhibits topological order. Quantum mechanically, the wave function is the equal-

amplitude superposition of all configurations of arrows consistent with the eight-ver-

tex restrictions. This state is deconfined since in this limit the Hamiltonian reduces to

the flip term (plaquette). It is well known [31] that in this regime the Wilson loop op-
erator has a perimeter law behavior and that the energy of two static sources is finite

and independent of their separation. The low energy (i.e., long-distance) sector of

this phase describes a topological Z2 deconfined theory, equivalent to the Kitaev

point.

3. Critical behavior.

The two-dimensional quantum theory has lines of critical points c2 ¼ d2 þ 2 (and

d2 ¼ c2 þ 2). There are also lines of critical points for d ¼ 0 and 06 c2 6 2 (and c ¼ 0

and 06 d2
6 2). All of these critical lines are (up to duality transformations) equiv-

alent to the six-vertex model. Notice that, since the energy of this quantum state is

exactly zero (by construction), the ground-state energy does not have singularities at

the phase transitions. This is of course a peculiarity (or rather a pathology) of this

model and it certainly non-generic: any perturbation leading to a non-vanishing

energy will lead to singularities in the energy of the ground state.

In Section 3.2, we discussed how the ground-state correlators of the (multi) crit-

ical square-lattice quantum dimer model were the same as those of the quantum Lif-

shitz theory, Eq. (2.4), at j�1 ¼ 2p [14,52]. The same equivalence holds for the
quantum eight-vertex model for all values of j. Moving along the critical line results

in changing j as given in (4.9) and (4.10). Kadanoff [66,91,92] showed that the crit-

ical behavior of the classical eight-vertex model can be mapped exactly to the critical

behavior of the two-dimensional Gaussian model, the free boson described by Eqs.

(2.11) and (2.12). The equal-time correlators in the quantum Lifshitz model summa-

rized in Appendix A are therefore identical to those of the quantum eight-vertex

model on its critical lines. Moreover, when d ¼ 0 and c2 6 2, the eight-vertex model

becomes the six-vertex model, which has a height description. Thus the same heuris-
tic arguments applied in the last section can be applied here, again implying that the

quantum six-vertex model and the quantum Lifshitz theory are in the same univer-

sality class. In particular, the dynamics of the quantum eight-vertex model along its

critical lines will obey scaling with a dynamic exponent z ¼ 2.

To compete the identification, we need to express the coupling constant j of the

quantum Lifshitz model in terms of the eight-vertex parameters c and d. This is eas-
iest to do by computing the dimension x of the ‘‘energy’’ operator, which when added

to the action of (classical) critical theory, moves it away from criticality. Combining
universality with Baxter�s exact result (4.1) for the correlation-length exponent gives

x ¼ 2ð1� l=pÞ. We have normalized the boson u in Appendix A so that the energy

operator is given by cosð2uÞ, which has dimension x ¼ 1=ð2pjÞ. Note that at the

free-fermion point j�1 ¼ 2p, the energy operator has dimension 1, the dimension

of a two-dimensional fermion mass term. Combining the two and using a simple trig-

onometric identity yields
�1 �1 2 2
j ¼ 8 cot ðcdÞ for jc � d j ¼ 2; ð4:9Þ
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and by duality
j�1 ¼ 8 cot�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4

c4
� 1

r !
for c2 6 2; d ¼ 0: ð4:10Þ
At the Kosterlitz–Thouless transition point c2 ¼ 2; d ¼ 0 where the two critical lines

meet, the dimension x ¼ 0 as expected, and both formulas give j�1 ¼ 4p here.

This equivalence to a scalar field theory can be extended to the scaling region near

the critical lines, by repeating the arguments of Section 3.3. The perturbing operator

is cosð2uÞ; symmetry forbids cosðuÞ from being added to the action of the classical
theory. Thus near to the critical lines the effective field theory will be of the form

Eqs. (2.9) and (3.8); these field theories will have the correct critical exponents.

4.3. Operators

Equal-time correlation functions of operators which are diagonal in the arrow

representation of the eight-vertex model are identical to correlation functions of

the classical eight-vertex model. Unfortunately, these correlation functions can be
computed exactly only along the free-fermion lines, by using Pfaffian techniques.

Likewise correlation functions of off-diagonal operators (e.g., flip operators) can

only be determined at some special points deep in the ordered and disordered phases

by using directly the quantum eight-vertex Hamiltonian. However, at or near the

critical lines, the asymptotic behavior of the correlators can be found by using uni-

versality. The operators of interest in the eight-vertex model can all be expressed in

terms of the charge and vortex operators of the Gaussian model [92].

The operators of interest in the quantum eight-vertex model can be readily iden-
tified in the quantum Lifshitz model. Thus we have a full identification of a 2þ 1-di-

mensional quantum critical theory. As a direct consequence of being able to identify

these operators we can also study how these operators perturb the critical theory, at

least within a renormalization group argument along the lines of [53]; the analog in

the quantum dimer model is our analysis of Hw for w small at the end of Section 2.

To identify the eight-vertex operators in the bosonic language as in [92], we first

study the six-vertex line, where there is a height description. There the height is local

in terms of spin variables, so we expect the boson u to be local as well. Standard bos-
onization techniques [93] show that only products of spin operators from both Ising

models can be written in terms of the boson. One finds that cosðuÞ � sðAÞsðBÞ. Note

that this is consistent with the identification of cosð2uÞ ¼ 2 cos2ðuÞ � 1 with the per-

turbing operator; the usual Ising operator product gives the fusion rule

sðAÞsðAÞ � 1þ EðAÞ, where EðAÞ is the energy operator.

To study the operators in more depth, we utilize a 2þ 1-dimensional Z2 gauge

theory of the quantum eight-vertex model derived in Appendix C.1. The degrees

of freedom of this gauge theory reside on the links of the square lattice and have
a one-to-one correspondence to arrow configurations of the eight-vertex model.

The Hamiltonian of the Z2 gauge theory is
Hq8v ¼ HV þ Hflip; ð4:11Þ
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where Hflip has the form of a sum over plaquettes of Z2 flip operators:6
6 T

theorie

the sp

somew
Hflip ¼ �
X
~x

r3
1ð~xÞr3

2ð~xþ~e1Þr3
2ð~xÞr3

1ð~xþ~e2Þ: ð4:12Þ
The potential energy terms are combinations of operators which project onto the

allowed select a; b; c, and d vertices, and assign the weights a; b; c, and d to different

contributions to the wave function. The explicit form of the potential energy terms
HV is given in Eq. (C.6). As in all Z2 gauge theories [31,54], the physical states of this

theory satisfy the constraint of gauge invariance (‘‘Gauss Law’’)
Gð~xÞ ¼ r1
1ð~xÞr1

2ð~xÞr1
1ð~x�~e1Þr1

2ð~x�~e2Þ ¼ 1 8~x; ð4:13Þ

which in this context simply expresses the restrictions on the configurations allowed

in the eight-vertex model. The operator Gð~xÞ is the generator of local time-inde-

pendent gauge transformations [31,54].

In Appendix C.2 we derive the dual theory of the quantum eight-vertex Hamilto-

nian of Eq. (4.3). The degrees of freedom of the dual theory are defined on the sites

of the dual square lattice. The Hamiltonian is
Hq8v;dual ¼ HV;dual �
X
~r

s1ð~rÞ; ð4:14Þ
where HV;dual is given in Eqs. (C.6) and (C.15). We will use the both the gauge theory

and its dual to investigate these phases.

Let us discuss briefly the observables of this model, how they behave in the or-

dered (confined) and disordered (deconfined) phases and what critical behavior they

exhibit at the phase transition lines. As we note in Appendix C.2, the quantum eight-
vertex model retains the two-sublattice structure of the classical model. The Z2 � Z2

symmetry of the classical model also survives in the quantum theory.

1. Order and disorder operators. We denote by sðAÞ and sðBÞ the s3 (order) oper-
ator for sublattice A and B, respectively. In the gauge theory this operator is a dis-

order or kink operator [31]; in this two-dimensional gauge theory this is just the

flux (monopole) operator of [54,94], or the vison operator of [7,95]. The order oper-

ators are just the order parameters of the sublattice Ising models. As such they ac-

quire an expectation value in the ordered phase (where the staggered polarization
has an expectation value as well). In the disordered phase their equal-time correla-

tion functions decay exponentially with distance (as do their connected equal-time

correlators in the ordered phase). The precise behavior of this correlation function

is only known on the decoupling curves where they reduce to the correlation func-

tions of the two-dimensional classical Ising model, and on the critical lines! The scal-

ing dimension of this spin field (which is known as the ‘‘twist’’ field in conformal field

theory [48,93]), is 1/8 not only at the decoupling point (as is well known from the
hroughout this section and in Appendix C we use the standard notation used in lattice gauge

s [54]. The rs are Pauli matrices; the superscript is a Pauli matrix label and the subscript indicates

atial direction, 1¼horizontal and 2¼ vertical. Notice that the notation used by Kitaev [42] is

hat different. Please see Appendix C, and Figs. 8 and 9, for details of the notation that we use here.
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two-dimensional Ising model) but along the entire phase boundary. We note how-

ever, that the spin fields can not be represented directly in terms of the boson, but

only in its orbifold [96].

Similarly, we will denote by lðAÞ and lðBÞ the ‘‘frustration’’ (or ‘‘fractional do-

main wall’’) or disorder operator [32] for sublattices A and B respectively. In the
two-dimensional classical theory, this is the dual of the order operators and in con-

formal field theory it is also represented by a twist field. It has the same scaling di-

mension as the spin field. On the other hand, in the gauge theory, the disorder

operators correspond to a local violation of the Gauss-Law constraint, Eq. (4.13),

by imposing that Gð~xÞ ¼ �1 just at site ~x, i.e., a static source (i.e., an ‘‘electrode,’’

or Polyakov loop) at site~x. This operator is analogous to the holon (or ‘‘monomer’’)

operator in the Rokhsar–Kivelson quantum dimer model. This expectation value of

products of two operators of this type serves as a test for confinement. The disorder
operators have a non-zero expectation value in the quantum disordered phase. A

simple minded calculation shows that, in in the ordered phase, the ground state with

two such defects (or sources) separated at a distance R, has a non-zero energy UðRÞ,
which grows linearly with R, UðRÞ � rR, consistent with the fact that the defects cre-

ate a fractional domain wall in an ordered state. We expect that the string tension r
vanishes as the critical lines are approached, with a behavior dictated by that of the

gap scale, i.e., n�z. Thus, the excitations created by the disordered operator are con-

fined in the ordered phase.7 In contrast, in the quantum disordered phase, the energy
of a pair of defects saturates to a finite value if R � n. Hence, the disordered phase is

deconfined.

It is also interesting to ask what is the energy cost of a set of vortex configurations

on the quantum critical lines. This can be done in a number of ways. We note here

that using path-integrals the change of the ground state energy can be found by com-

puting the path integral in a background of vortices, normalized by the path-integral

without vortices. Consider the simple (and general) case of two vortices of magnetic

charges �m separated a distance R. Let us denote this amplitude by W ðR; T Þ, where T
is the (infinite) time-span of the system. In the dual gauge theory this is the same as

the computation of two static Wilson (or Polyakov) loops, corresponding to two sta-

tic sources with electric charges �m at a distance R from each other. The energy cost

of these defects is
7 T

stagger
UðRÞ ¼ lim
T!1

�
� 1

T
lnW ðR; T Þ

	
: ð4:15Þ
We can compute UðRÞ by using the path-integral for the quantum Lifshitz theory of

Eq. (2.11) in a background of vortices, which amounts to modifying the action by the

minimal coupling shift
ðr2/Þ2 ! ð~r � ð~r/�~AÞÞ2: ð4:16Þ
he holon operator of the quantum dimer model has the same behavior in both the columnar and

ed phases.
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By explicit calculation we find that
8 W
9 T

point,

give ris

[72]. W
UðRÞ ¼ 0: ð4:17Þ

In other terms, the interaction energy of vortices is zero! A simple way to understand
this results is to recall that, in imaginary time, the quantum Lifshitz model is a theory

of a smectic liquid crystal. The vortex state is just a configuration of screw dislo-

cations running along the z axis (imaginary time). Since the smectic is isotropic and

has no resistance to shear in the xy plane, these defects do not cost any energy. From

a quantum mechanical point of view this result is consistent with the known fact that

at the RK point of the quantum dimer model, the interaction energy of a pair of

monomers is zero.8 In gauge theory language this means that at this critical point

vortices are completely free.9 In contrast, at quantum critical points of Lorentz in-
variant gauge theories, which have z ¼ 1, it is known [97] that at their critical point

the effective interaction has the universal law UðRÞ � 1=R, in all dimensions.

2. Polarization. The polarization operator, the local arrow configuration on a link,

is the natural order parameter. In terms of the order operators it reads P ¼ sðAÞsðBÞ.
As we saw above in the classical ‘‘antiferroelectric’’ ordered phase, P is a natural or-

der parameter, although appropriately staggered expectation values of sðAÞ and sðBÞ
also do not vanish in this ordered phase. The behavior of the polarization operator

on the critical lines of the classical model was studied by Kadanoff and Brown [92],
who found that its scaling dimension is DP ¼ 1=8pj, with j given by Eq. (4.9). From

the results of Appendix A we see that we can identify the polarization operator with

the boson operator P � cosðuÞ in the quantum Lifshitz theory, which has the same

scaling dimension.

3. Mass term. In the classical theory the mass term, or ‘‘energy density,’’ is the

product of two (dual) spin variables s on nearest neighboring sites on the same sub-

lattice. We will denote them by EðAÞ and EðBÞ, respectively. Although in the quan-

tum theory these operators no longer correspond to an energy density, we will define
E ¼ ðEðAÞ þ EðBÞÞ=

ffiffiffi
2

p
, as usual, and refer to this operator as to the mass term since

it drives the theory away from criticality. In [92] it is found that the scaling dimen-

sion of this operator is DE ¼ 1=2pj ¼ 4DP , which led to the identification

E � cosð2uÞ. If we regard this operator as acting on the critical line along the

d ¼ 0 axis, i.e., the six-vertex model, we see that this is a relevant operator for the

quantum Lifshitz model as well. Grinstein�s RG arguments [53] show that this per-

turbation drives the system into a massive phase with a residual unbroken Z2 sym-

metry. This is just the disordered phase of the quantum eight-vertex model, and this
perturbation drives the system towards the Kitaev point. A similar analysis works on

the c2 ¼ d2 þ 2 critical line.
e thank Shivaji Sondhi for this remark.

his result, Eq. (4.17) holds strictly only at the quantum Lifshitz fixed point (or rather line) fixed

Eq. (2.11). However, marginally irrelevant operators such as ðr/Þ4, discussed extensively in [72,73],

e to corrections to scaling which change the behavior of UðRÞ from Eq. (4.17) to a ðlnRÞ=R2 law

e thank T. Senthil for pointing this out to us.
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4. Wilson loops. As it is well known gauge theories, the natural test for confine-

ment is the behavior of the Wilson loop operator Wc ¼
Q

‘2c r
3ð‘Þ, where f‘g is a

set of links that belong to a closed path c on the (direct) lattice (see [54] and refer-

ences therein). Since these operators are off-diagonal in the arrow representation,

i.e., in the representation in which r1 is diagonal, they do not have an analog in
the classical two-dimensional eight-vertex model. A simple argument [31] shows that

in the ordered state, which for c ! 1 is essentially an eigenstate of r1, the expecta-

tion value of the Wilson loop is zero and that first non-zero contribution comes from

acting NðcÞ times with the flip operator, where NðcÞ is the number of plaquettes en-

closed inside the path c, and that the behavior thus found has the form

expð�constantNðcÞÞ, i.e., an area law. Thus the ordered state is a confining phase.

Conversely, deep in the disordered phase, the ground state is essentially an eigenstate

of the flip operator and we get a perimeter law, i.e., deconfinement.
5. Spinors. The classical two-dimensional eight-vertex model has two Majorana

fermion operators wðAÞ and wðBÞ, constructed as usual as products of order and dis-

order operators [32], w � sl. We can also define an analog of the spinors in the

quantum theory (see the discussion in Appendix A on charge and vortex operators

in the 2þ 1-dimensional quantum Lifshitz model). The scaling dimension of the spi-

nors is [92] Dw ¼ ð2pjþ 1=2pjÞ=4, a result familiar from the Luttinger model.

6. Other operators. The classical two-dimensional eight-vertex model contains a

marginal operator E ¼ EðAÞEðBÞ, with scaling dimensionDE ¼ 2, which is responsible
for the lines of fixed points with varying critical exponents. The quantum eight-vertex

model discussed here has a similar behavior. In the quantum Lifshitz model the mar-

ginal operator is10 E � ðr2uÞ2. Another operator of interest is the crossover operator

ðEðAÞ � EðBÞÞ=
ffiffiffi
2

p
which breaks the sublattice symmetry and has scaling dimension

2pj, The operator product expansion of two crossover operators generates an operator
symmetric under sublattice exchange, and is identified with a charge-two vortex oper-

ator. The scaling dimension of this operator is 8pj and it is becomes marginal at

j ¼ 1=4p, driving the Kosterlitz–Thouless transition along the d ¼ 0 line.11 Other in-
teresting operators are the ‘‘mixed’’ operators ~P ¼ sðAÞlðBÞ and ~P 	 ¼ lðAÞsðBÞ, both
with scaling dimension D~P ¼ pj=2. Hence ~P and ~P 	 are vortex operators as well; these

are non-local with respect to P . They have been identified as the holon creation oper-

ators in the context of the quantum dimer model [11].

4.4. Another quantum eight-vertex model

Let us end this section by noting that there is a simpler quantum eight-vertex
model that one can write down whose behavior is quite different from the one we
10 As we noted above, on symmetry grounds a lattice model may generate additional operators which

break rotational invariance, absent at this RK point, which may drive the transitions to be first order, see

[72,73].
11 Notice that the charge-one vortex operator is not allowed in this case, which is the operator driving

the KT transition in the two-dimensional classical XY model [98–101].
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have discussed here. Basically, this model will give weights to all the vertices, accord-

ing to their type. In addition, there will be a flip term. In its dual form the model is
12 T

Goldst
H ¼
X
~r

eaPað~rÞ



þ ebPbð~rÞ þ ecPcð~rÞ þ edPdð~rÞ
�
�
X
~r

s1ð~rÞ; ð4:18Þ
where the projection operators are defined in Eq. (C.15). The conventional Baxter

weights of the classical model (i.e., when the flip term is absent) are a ¼ e�ðeaÞ=ðkBT Þ, etc.

We first note that this model is not of the Rokhsar–Kivelson type. So the ground

state wave function does not look like the statistical weights of the classical two-di-

mensional model, i.e., it is not a linear superposition of states weighted according to

the vertices present. Thus, strictly speaking we can not use the machinery of this pa-

per to study the ground state of this model. We do expect, however, that this model
will have the same ordered phases, just like the ferro-electric and anti-ferro-electric

phases of the eight-vertex model, as well as the same confinement–deconfinement

properties discussed above. In addition, we expect that these ordered phases have

the same spectrum and general properties as the ones we found in the Rokhsar–Ki-

velson type model we studied above. Similarly, in the regime where the flip term

dominates, the ground state of this model is a uniform quantum disordered state,

with the same properties as those of the topological phase of the model studied here.

However, below we will argue that the quantum critical properties are completely
different from the quantum eight-vertex model discussed in the rest of this section.

The model of Eq. (4.18) is ‘‘closer’’ in spirit to the classical eight-vertex model than

the one we discussed in the rest of this section in the sense that this model has more fea-

tures in common with the classical model. In particular, taking ea ¼ eb ¼ ec ¼ ed again
gives us (the dual version) of theKitaevmodel. In addition, by setting ea þ eb ¼ ec þ ed ,
we find that the model reduced to two interpenetrating two-dimensional Ising models

in a transverse field, as the four body interactions cancel. Thus along these curves this

model has second order phase transitions in the universality class of the classical three-
dimensional Ising model, and hence, unlike the quantum eight-vertex model discussed

in this paper whichwe argue has z ¼ 2, themodel of Eq. (4.18) has dynamical exponent

z ¼ 1 and is Lorentz invariant in the critical regime. It is easy to see that this behavior

extends beyond the decoupling point. Indeed, the universality class of the three-

dimensional classical Ising model is controlled by the Wilson–Fisher fixed point and

is accessible by the 4� � expansion. Away from the decoupling point we have then

two three-dimensional Ising models which are coupled through their energy density.

This theory is in the universality class of a two-component real field ðu1;u2Þ, whose
Uð1Þ symmetry is explicitly broken down to a discrete Z2 � Z2 symmetry by quartic

operators of the form u2
1u

2
2. This is a cubic symmetry-breaking perturbation and it is

well known to be perturbatively relevant at the Wilson–Fisher fixed point of the two

decoupled Isingmodels, but irrelevant at theWilson–Fisher fixed point for the classical

XY model.12 It is well known from perturbative 4� � RG studies that the transition
his is a classic example of a dangerously irrelevant operator, since it removes the would-be

one boson from the broken-symmetry phase.
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near the decoupling point that the transition may also become a fluctuation-induced

first order transition depending on the sign of the effective coupling (see for instance

[3,102]).
5. Non-abelian topological states

In this section we broaden our scope and discuss field theories with continuous

non-abelian symmetries. One can of course obtain a quantum critical point with

non-abelian symmetries by taking copies of the quantum Lifshitz Hamiltonian. By

choosing the charge lattice of the vertex operators carefully one can describe a theory

with a non-abelian symmetry, say SUðNÞ. However, the equivalent conformal field

theories thus obtained always have integer central charge and are at level 1. Al-
though critical, such theories only support excitations with abelian statistics. One

may try to attempt to generalize this result to models by writing down a theory with

more structure, such as one related to a Wess–Zumino–Witten model. However,

we will find that, contrary to naive expectation, such theories will turn out not to

be critical but, instead, in a phase with a finite gap, a topological phase, just like

the fractional quantum Hall effect. We will see that it is not at all clear how to find

a conformal quantum critical point with a non-trivial non-abelian symmetry.

Nevertheless it is possible to use the approach of the previous sections to discuss
topological non-abelian phases, even if any associated non-trivial quantum critical

points are not yet known or do not exist. By analogy with the theory of fractional

quantum Hall states, as well as from general results in Chern–Simons gauge theory,

one expects that a time-reversal-breaking topological phase in 2þ 1-dimensions

should have an effective field theory description in terms of a Chern–Simons gauge

theory at some level k. On closed manifolds this is a topological field theory in the

sense that the partition function is independent of the metric of 2þ 1-dimensional

space-time, and that the expectation values of its gauge-invariant observables, the
Wilson loops, depend only on the topology of the loops such as the knot invariants

[26].

By analogy with the approach pursued in the previous sections, we will discuss the

properties of the wave functionals of this theory. This will lead us to consider first

the strong-coupling limit of Yang–Mills theory with a Chern–Simons term, and later

the topological sector of this theory. We will find the ground-state wave functional of

this theory, and show how it is related to a two-dimensional Wess–Zumino–Witten

(WZW) model for a specific choice of polarization (i.e., the choice of canonically
conjugate variables) which is natural in the strong coupling limit of the Yang–Mills

Chern–Simons theory. Even though the WZWmodel is a conformal field theory with

algebraically decaying correlators, the gauge-invariant ground-state correlators in

the two-dimensional quantum theory are exponentially decaying. Topological invari-

ance will only be attained by correlators of gauge-invariant operators, Wilson and

Polyakov loops, and only at long distances. The excitations obey non-abelian statis-

tics: when bringing particles around one another, not only does one pick up phases,

but the order in which they are exchanged affects the final state.
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We will also study a doubled Chern–Simons theory which, contrary to the frac-

tional quantum Hall effect, is time-reversal invariant. Using by now standard meth-

ods, we will construct the ground-state wave functionals of this doubled theory for a

gauge group G at level k, and use its connection with a gauged WZW model to un-

derstand its properties. We note that the doubled theory is often used to circumvent
technical problems involved in the use of the formally anomalous wave functional of

the undoubled theory: see the discussion in the Sections 5.2 and 5.3. The topological

properties of the doubled theory have been recently discussed in depth by Freedman

et al. [49].

5.1. Field theories with continuous non-abelian symmetries

Let us attempt first to construct a non-abelian version of the quantum Lifshitz the-

ory, which one might hope would still be a quantum critical theory. We will follow the

same procedure as in the abelian case. Since there are many two-dimensional Euclid-

ean critical points with non-abelian symmetry, the first thing to try is the above pro-

cedure for making a two-dimensional quantum theory from a two-dimensional
classical theory. This procedure is indeed fairly general. One can easily construct a

set of a appropriate projectors Qi in a lattice model without local constraints. How-

ever, the caveat ‘‘without constraints’’ is quite important: many interesting classical

lattice models have local constraints like in the dimer model and in the six- and

eight-vertex models. This means that one must find a flip operator which respects

the constraints. There is no guarantee that there is a set of flips which are both local

and ergodic. This is particularly apparent in models where the two-dimensional de-

grees of freedom are closed loops. At a critical point, arbitrarily long loops are an im-
portant part of the configuration space, so one must construct some sort of flip which

still acts non-trivially but locally on these loops. In the continuum limit, it is easy to

imagine such flips, but it is not always obvious how to make them act consistently

on the lattice. Nevertheless, the Rokhsar–Kivelson Hamiltonian and the quantum

eight-vertex model provide examples of models where one can solve this problem.

For field theories, the issue is similar. If a theory has an action S2d and one ignores

constraints such as gauge invariance, one can easily find projection operators QðxÞ
which annihilate the state weighted by e�S2d . For a single field u, we have
Q ¼ d
du

þ dS2d
du

; ð5:1Þ
and the Hamiltonian is defined via Eq. (2.9). This Q is hardly unique: one can
multiply it on the left by any operator without changing the ground state. It is im-

portant to note that this construction is not always easy to implement. Many in-

teresting two-dimensional field theories do not have a simple-to-describe action: they

are usually defined instead in terms of representations of an infinite-dimensional

symmetry algebra such as the Virasoro algebra, arising from conformal invariance

[48]. For example, the action of a G=H coset model (e.g., a conformal minimal

model) is written as a gauged WZW model such as we will discuss below; one must

then worry about the constraints of gauge invariance.
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A point we wish to emphasize, however, is that even if one succeeds in construct-

ing such a Hamiltonian, the 2þ 1-dimensional theory may be qualitatively very dif-

ferent from the classical two-dimensional theory. For example, the classical theory

may be critical and have algebraically decaying correlators, but the quantum theory

may have exponentially decaying correlators in the ground state. The reason is that
quantum-ground-state correlators are weighted by jW0j2, not W0. For the models dis-

cussed above, this has effects which are easy to take account of: it is the reason that

the axes in Fig. 5 are labeled by c2 and d2 instead of c and d. If, however, W0 has a

complex part, the effects can be much more dramatic.

Let us first discuss the simplest two-dimensional classical field theories with a non-

trivial non-abelian symmetry. The G principal chiral model is written in terms of a

unitary matrix field g taking values in some simple Lie group G, with action
SPCM ¼ � 1

8pu

Z
d2xTr½g�1oagg�1oag�: ð5:2Þ
This action has a global GL � GR symmetry under g ! LgRy, where L and R are
elements of separate groups dubbed GL and GR. This model looks critical: the cou-

pling constant u is naively dimensionless. However, in two dimensions, the one-loop

beta function is proportional to the curvature of the target-space manifold G. Simple

Lie groups G are curved: for example, SUð2Þ as a manifold is isomorphic to a three-

sphere. Moreover, one finds that the trivial fixed point at u ¼ 0 is unstable, and the

model has a finite correlation length proportional to an exponential in 1=u. Corre-
lators decay exponentially, not algebraically. The phenomenon where a naively di-

mensionless coupling becomes dimensionful due to loop corrections is known in the
particle physics literature as dimensional transmutation; it is familiar in condensed-

matter physics in the Kondo problem and the Hubbard model at half-filling. An-

other reason a gap should appear is that the Mermin–Wagner–Coleman theorem

does not allow Goldstone bosons in two Euclidean dimensions. One would obtain

SPCM in a theory as the low-energy limit of a fermionic theory where one attempts to

spontaneously break the chiral symmetry GL � GR to its diagonal GD subgroup. The

would-be Goldstone bosons would take values on the manifold GL � GR=GD ffi G.
This satisfies the theorem by having the low-energy excitations get a mass and
restoring the symmetry to the full GL � GR.

A critical theory with non-abelian symmetry G does occur when an extra term, the

Wess–Zumino term, is added to SPCM. This term is easiest to write in a three-dimen-

sional space M which has the two-dimensional space of interest as a boundary; we

assume the two-dimensional space has no boundary. It is
CðgÞ ¼ 1

12p

Z
M
d3x�almTr g�1oagg�1olgg�1omg

� 

: ð5:3Þ
One finds that different ways of extending space to three dimensions result only in

changing CðgÞ by 2p times an integer. Thus we can add ikCðgÞ to SPCM for any in-

teger k. This model has a critical point at u ¼ 1=jkj [103]. This theory, with action
IðgÞ ¼ S ðg; u ¼ 1=jkjÞ � ikCðgÞ; ð5:4Þ
PCM



528 E. Ardonne et al. / Annals of Physics 310 (2004) 493–551
has conformal invariance and is known as the Gk Wess–Zumino–Witten (WZW)

model. A great deal of information is known about the WZW model; the most

important for our current purposes is that the correlators decay algebraically, as they

must at a critical point.

Since the WZW model has an explicit action, it is easy to use the trick in Eq. (5.1)
to find a two-dimensional Hamiltonian which has a ground-state wave functional

with amplitudes given by the WZW action, i.e.
W0½g� ¼ e�IðgÞ: ð5:5Þ

The WZW model is critical, so one might guess that the quantum version with this

wave function would also be critical, in the fashion of the theories in the previous

sections. However, it is not. The reason is that the Wess–Zumino term has an i in
front of it, so
jW0½g�j2 ¼ e�2SPCMðg;u¼1=jkjÞ: ð5:6Þ

Thus equal-time correlators in the ground state are weighted with the action of a

theory with a finite correlation length, the principal chiral model. These correlators

decay exponentially.

We do note that when the level k ¼ 1, one can use an alternate method to find the
two-dimensional WZW correlators in the ground-state of a quantum theory. All the

fields of SUðNÞ1 can be written in terms of N � 1 free bosons [48]. The combination

of the corresponding quantum Lifshitz theories will then have the SUðNÞ1 correla-

tors in its ground state. Likewise, OðNÞ1 and SUð2Þ2 can be written in terms of free

Majorana fermions. Since the different bosons or fermions here do not interact, the

physics is the same as that discussed earlier; in particular the model is essentially free,

and the excitations are abelian.

5.2. Yang–Mills, Chern–Simons, and Wess–Zumino–Witten

Since it is not possible to have a wave functional with jW½g�j2 ¼ e�I ½g�, we will need to

work harder to findhow the physics of theWZWmodel can arise in 2 + 1dimensions.A

connection between the WZW model and the wave functions of 2þ 1-dimensional

Chern–Simons gauge theory has long been known [26,104]. Chern–Simons theory

without any matter fields is a topological field theory: the physical states are Wilson

andPolyakov loops, and their correlation functions donot dependondistancebut only
on topological properties of the loops. These correlators can be expressed in terms of

the Verlinde numbers, which also describe the (chiral) fusion rules of theWZWmodel

[105]. These topological field theories have been discussed in detail inmany places. One

discussion of issues closely related to those of interest here is the recent work of Freed-

man et al. [49]; wewill discuss the relation of our results to this paper in the next section.

In this section we will describe a wave functional which after squaring and aver-

aging over fields indeed yields the WZW partition function. We will show that this

wave functional is the ground state of a 2þ 1-dimensional gauge theory. This all
sounds like exactly what we want for a quantum critical point, but in a gauge theory,

physical observables must be gauge invariant. Gauge-invariant states will turn out to
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have a gap, and gauge-invariant correlators in the ground state will be exponentially

decaying. Introducing a gauge field therefore will not yield a quantum critical point

with non-abelian symmetry. It will yield, however, something just as interesting: an

explicit Hamiltonian for a theory in a topological phase.

Before discussing construction of these wave functionals, which was done in great
detail by Witten [51] and whose construction we will follow here, it is worthwhile to

discuss first its physical meaning and to emphasize some well-known facts of Chern–

Simons gauge theories [26]. The ground state wave function of any field theory can

be viewed as the quantum mechanical amplitude of some arbitrary state into the vac-

uum (or ground state), i.e., what we normally call the vacuum state in a given rep-

resentation. As such this amplitude is the functional integral of the quantum field

theory on an open manifold bounded by the initial time surface. However, the par-

tition function of a topological gauge theory such as Chern–Simons is only gauge in-
variant on a manifold without boundary. Thus, the ground state wave function has a

gauge anomaly. Nevertheless, if the wave function is used to compute expectation

values of gauge-invariant observables, the result is gauge invariant. The reason is that

the computation of expectation values (as well as all inner products) involves the

conjugate wave function, i.e., the amplitude to evolve from the vacuum state in

the remote past into the chosen state at the fixed time surface. Consequently, the

gauge anomaly cancels in the computation of the expectation values of gauge-invari-

ant operators. In this way, at a formal level, the computation of expectation values
leads to a formally ‘‘doubled’’ theory even though the number of degrees of freedom

has not changed. In Section 5.3 we will discuss a physically doubled theory which has

a formal relation with what we do in this section. There is an extensive literature on

the technical issues involved in this problem: the relevant discussion for the analysis

done in this paper can be found in [51,106–108].

We should note here that the gauge anomaly of the wave function is formally

(mathematically) analogous to the gauge anomaly of Chern–Simons theory on man-

ifold with a spatial edge. In the latter, the anomaly is physical: to cancel the anomaly
the gauge-invariant theory must include physical degrees of freedom residing at this

1þ 1-dimensional boundary. In the incompressible fractional quantum Hall fluid,

this results in physical edge states [109,110].

Another important fact is that, since Chern–Simons gauge theory is a topological

field theory, the partition function on a closed space-time manifold is independent of

the metric. However, the boundary of the manifold and the choice of polarization

break the general coordinate invariance of Chern–Simons theory. In particular,

the choice of holomorphic polarization induces a conformal structure in the wave
functional [26,104] which is absent in other polarizations [111]. We will see that

the conformal wave function arises naturally in a specific theory, the strong-coupling

limit of the Yang–Mills Chern–Simons theory.

The wave functional of interest was discussed in depth by Witten [51]. It involves

the WZW field g coupled to a gauge field Ai taking values in the Lie algebra of G. It is
most convenient to write the gauge field in complex coordinates Az � ðA1 � iA2Þ=2
and Az � ðA1 þ iA2Þ=2. When the symmetry GR of the WZW model is gauged, the

closest thing to a gauge-invariant action is
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Iðg;AÞ ¼ IðgÞ þ k
4p

Z
d2zTr 2Azg�1ozg

�
� AzAz



: ð5:7Þ
This action is not gauge invariant; the subgroup GR of GL � GR is anomalous [51].

Indeed, the fields under gauge transformations Uðz; zÞ in GR as
g ! gU ; Ai ! U�1AiU þ U�1oiU ; ð5:8Þ

so that the action Iðg;AÞ transforms as
Iðg;AÞ ! Iðg;AÞ þ k
4p

Z
d2zTr AzUozU�1

�
� AzUozU�1



� ikCðUÞ: ð5:9Þ
Note, however, that the variation of Iðg;AÞ under gauge transformations is inde-

pendent of g. If we were to simply square a wave functional proportional to e�Iðg;AÞ,

the WZW term in the action would cancel and we would be back a gauged principal
chiral model. Instead, we define a wave functional depending only on A by doing the

path integral over g
W½A� �
Z

½Dg�e�Iðg;AÞ: ð5:10Þ
This wave functional does yield the full WZW partition function after squaring

and integrating over A [51]. We define this integrated jWj2 as
jWj2 � 1

volĜ

Z
½DA�jW½A�j2; ð5:11Þ
where we have divided the measure by the volume of the gauge group Ĝ because it

follows from Eq. (5.9) that even though W½A� is not gauge invariant, W½A�W½A� is.
Substituting the definition Eq. (5.10) gives
jWj2 ¼ 1

volĜ

Z
½DA�½Dg�½Dh�1�e�Iðg;AÞ�ðIðh�1;AÞÞ	 ;

Iðg;AÞ þ ðIðh�1;AÞÞ	 ¼ IðgÞþ IðhÞþ k
2p

Z
d2zTr Azg�1ozg

�
�Azozh � h�1 �AzAz



:

Note that we have defined A so that ðAzÞy ¼ �Az, i.e., covariant derivatives have no i
in them. We have also used the easily proven fact that IðhÞ ¼ I	ðh�1Þ. Since the

integral over A is Gaussian, it can easily be done, giving
jWj2 ¼ 1

volĜ

Z
½Dg�½Dh�1� exp

�
� IðgÞ � IðhÞ þ k

2p

Z
d2zTr g�1ozgozh � h�1

� 
	
:

This can be simplified by using the Polyakov–Wiegmann formula [112]Z

IðghÞ ¼ IðgÞ þ IðhÞ � k

2p
d2zTr g�1ozgozh � h�1

� 

: ð5:12Þ
Thus the integrand depends only on the product f � gh, so we can change variables

to f , which cancels the volume of the gauge group. This yields the final expression

for the normalization [51]Z

jWj2 ¼ ½Df �e�Iðf Þ: ð5:13Þ
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Thus, remarkably, the integrated square of the wave functional W½A� ends up giving

the full WZW path integral, including the imaginary piece: because of the path

integral, the right-hand-side of Eq. (5.13) is positive and real as it must be.

To reemphasize a point made earlier, (5.13) does not mean we have now found a

2þ 1-dimensional quantum critical point whose equal-time correlators are those of
the WZW model. We must first find a Hamiltonian which has W½A� in Eq. (5.10) as

its ground state. Once having found that, the physically relevant operators are only

those satisfying the proper gauge-invariance properties and regularization. After hav-

ing done so, we will end up seeing that despite sharing some key properties with the

WZW model, the 2þ 1-dimensional model is gapped and has exponentially decaying

correlators.

To find such a Hamiltonian, let us go back to the definitions Eqs. (5.7) and (5.10)

of the wave functional W½A�. Because the only dependence on Az is through the
quadratic term, we have
d
dAz

�
� k
4p

Az

	
W½A� ¼ 0: ð5:14Þ
With a little more work [51], one also can show that
Dz
d
dAz

�
þ k
4p

DzAz �
k
2p

Fzz

	
W½A� ¼ 0; ð5:15Þ
where we have define the covariant derivatives via Dig ¼ oig � gAi and

DiAj ¼ oiAj þ ½Ai;Aj�. The field strength is defined as Fzz ¼ ozAz � ozAz þ ½Az;Az�.
We would therefore like to find a Hamiltonian with a ground-state wave function

satisfying Eqs. (5.14) and (5.15). As noted in [51], these equations arise in the canon-

ical quantization of Chern–Simons theory [104], so this suggests we look there. The

precise Hamiltonian turns out to be given by the strong-coupling limit of Yang–Mills
theory with a Chern–Simons term [107]. In the action, we have a gauge field Al tak-

ing values in the Lie algebra of G; here l ¼ 0; 1; 2 and Al depends on space and time.

The action for the strong-coupling limit of Yang–Mills theory on a three-manifoldM
includes only the electric-field term, namely
SSC ¼ 1

2e2

Z
M
Tr F0iF 0i
� 


: ð5:16Þ
This term is not Lorentz-invariant, but does preserve two-dimensional rotational
symmetry. The Chern–Simons term is
SCS ¼
k
4p

Z
M
�lmaTr AlomAa

�
þ 2

3
AlAmAa

�
: ð5:17Þ
Under gauge transformations UðxÞ belonging to G, the integrand in SSC is invariant,

but the integrand in SCS is not
SCS ! SCS þ
k
4p

Z
M
�lmaTr ol Aa

��
þ UomU�1

�

þ kCðUÞ: ð5:18Þ
For the manifold M a three-sphere, the latter term turns out to be the winding

number of the gauge transformation UðxÞ, and is an integer times 2pk [113].
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The Chern–Simons term is gauge invariant ifM has no boundary, and k is an integer.

If M has a spatial boundary, one must include massless chiral fermions on the edge

to restore gauge invariance, giving for example the famous edge modes in the

fractional quantum Hall effect [5].

The Hamiltonian with (5.10) as a ground-state wave functional comes from
canonically quantizing the theory with action
S ¼ SCS þ SSC; ð5:19Þ

following, for instance, [104,107,113]. Since this is a fairly standard computation, we

will be brief here. The gauge invariance allows us to fix temporal gauge A0 ¼ 0, so

that the degrees of freedom are the gauge fields A1 and A2. Their canonical momenta

are
Pi ¼
1

e2
F0i þ

k
8p

�ijAj: ð5:20Þ
The Chern–Simons term contributes nothing to the Hamiltonian, because all the

terms are first-order in time derivatives. The classical Hamiltonian in the strongly
coupled limit is therefore
H ¼ 1

e2

Z
d2xTr½ðF0iÞ2� ¼ e2

Z
d2xTr Pi

�"
� k
8p

�ijAj

	2
#
: ð5:21Þ
Expanding A and F in terms of generators T a of the Lie algebra of G, we impose the

canonical commutation relations
½Aa
i ð~xÞ;Pb

j ð~yÞ� ¼ idijd
abdð2Þð~x�~yÞ: ð5:22Þ
One of the effects of the Chern–Simons term is that A1 and A2 do not commute. In

the Schr€odinger picture, Pj is given by
Pj ¼ �i
d
dAj

; ð5:23Þ
operating on the wave functionals.

The Hamiltonian of this theory in the Schr€odinger picture has a very simple form.

Because F0i includes Pi, one has the usual ordering ambiguity in the quantum Ham-

iltonian. We define
E ¼ i

e2
F01ð þ iF02Þ ¼

d
dAz

� k
4p

Az; ð5:24Þ
so that
½Eað~xÞ; ðEbð~yÞÞy� ¼ k
2p

dabdð2Þð~x�~yÞ: ð5:25Þ
The operators E and Ey are like annihilation and creation operators. We then nor-

mal-order the Hamiltonian as in Section 2, subtracting the vacuum energy to give
H ¼ e2
Z

d2xTr Eyð~xÞEð~xÞ
h i

: ð5:26Þ
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Thus the Hamiltonian of strongly coupled Yang–Mills theory with a Chern–Simons

term is precisely of the form Eq. (2.9), like all the others discussed in this paper.

Moreover, the annihilation relation EW½A� ¼ 0 here is identical to the relation Eq.

(5.14). We thus have found an explicit Hamiltonian whose ground state obeys the

first of the two relations satisfied by W½A� above.
Finding the Hamiltonian alone does not complete the canonical quantization of

gauge theories with a Chern–Simons term. Fixing the gauge A0 ¼ 0 still allows

time-independent gauge transformations. Moreover, there is no time derivative _A0

in Eq. (5.19), so A0 should be viewed as a Lagrange multiplier which results in a con-

straint. When we are canonically quantizing the theory in A0 ¼ 0 gauge, this con-

straint is implemented on the wave functions. Specifically, one has
13 F

superc

states
Dz
d
dAz

�
þ Dz

d
dAz

þ k
4p

ozAz �
k
4p

ozAz

	
W½A� ¼ 0: ð5:27Þ
This operator is the generator of time-independent gauge transformations on Az and

Az, so this condition amounts to requiring that the wave function be invariant under
such transformations. Another way of viewing this constraint is as requiring that the

wave functionals obey the non-abelian version of Gauss� Law. Requiring Gauss� Law
along with Eq. (5.14) yields Eq. (5.15), the other desired relation: adding Eqs. (5.14)

and (5.15) together yields Eq. (5.27). Moreover, the fact (5.9) that W½A� is not gauge
invariant is precisely the effect of the fact (5.18) that the Chern–Simons action is not

gauge invariant when there are boundaries [104]; one can think of the constant-time

slice required to define a wave functional as a boundary in space time.

We have seen that the wave functional Eq. (5.10) indeed describes a zero-energy
ground state of the 2þ 1-dimensional theory with action Eq. (5.19). We now need to

understand the correlators in the ground state and the excited states. Luckily, the

former issue has been studied in [106,114–116], and the latter in [107,108]. We will

show in the next subsection that the ground-state are those of a topological field the-

ory, and that one can prove there is a gap in the spectrum.

5.3. The doubled theory

It is both convenient and physically important to study the wave function of the

‘‘doubled’’ theory, where we have two gauge fields A and B. The three-dimensional

action is the sum of an action of the form of Eq. (5.19) for both fields, where the

Chern–Simons term for the field A has coefficient k, while that for B has coefficient

�k. As opposed to Chern–Simons theory with a single field, the doubled theory is

also invariant under time reversal and parity, if the fields A and B are exchanged un-

der these transformations.13 The two fields are not coupled in the action, so formally

the wave functional of the doubled theory factorizes
or this reason, this theory has arisen for example in theories of quantum computation and in

onductivity [49,50] and in effective ‘‘coset’’ field theories of the non-abelian fractional quantum Hall

[117–119].
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v½A;B� / W½A�W½B�: ð5:28Þ

There is also a compelling technical reason to study the doubled theory. We will

show that the doubled theory amounts to gauging a non-anomalous symmetry. In
particular, after integrating out one of the gauge fields (a simple Gaussian inte-

gration), the wave functional is gauge invariant in the remaining field. The theory

can be quantized consistently; effectively the regularization (the measure of the

path integral) couples the two copies. Thus in spite of this factorization of the

wave function, the operators that create the physical states are made of operators

acting on each sector, carefully glued together to satisfy the requirements of

gauge invariance.

Canonically quantizing the doubled theory is straightforward, since the action
splits into decoupled pieces. The ground-state wave functional of the doubled theory

can be written as [51]
v½A;B� �
Z

½Dg�e�Iðg;A;BÞ; ð5:29Þ
where
Iðg;A;BÞ� IðgÞþ k
4p

Z
d2zTr 2Azg�1ozg

�
þ2Bzgozg�1�AzAz�BzBzþ2BzgAzg�1



:

ð5:30Þ

One can prove that v½A;B� / W½A�W½B� indirectly by showing that v½A;B� satisfies
both (5.14) and (5.15) for A, and the conjugate equations for B. Directly, we prove

this by first noting that the Polyakov–Wiegmann identity (5.12) yields
Iðg;AÞ þ ðIðh;BÞÞ	 ¼ Iðh�1g;A;BÞ � k
2p

Z
d2zTr ðgDzg�1ÞðhDzh�1Þ

� 

:

where the covariant derivatives are Dzg�1 ¼ ozg�1 þ Azg�1 and Dzh�1 ¼ ozh�1þ
Bzh�1. In the path integral we can split apart the last term by introducing an auxiliary

gauge field C
W½A�W½B� ¼
Z

½Dg�½Dh�1�e�Iðg;AÞ�ðIðh;BÞÞ	

¼
Z

½Dg�½Dh�1�½DC� exp
�
� Iðh�1g;A;BÞ � k

2p

Z
d2zTr aCzðgDzg�1Þ

�
þ aCzðhDzh�1Þ þ a2CzCz


	
;

where a is a (small) coupling constant. The terms linear in C can be removed by

redefining g and h. Namely, under g ! g þ dg for small dg, the action
Iðg;AÞ ! Iðg;AÞ þ k
2p

Z
d2zTr gDzg�1ozðdgg�1Þ

� 

: ð5:31Þ
Thus if we redefine the fields g and h so that dg and dh�1 obey aCz ¼ ozðdgg�1Þ and
aCz ¼ �ozðhdh�1Þ, the mixed terms cancel and the field C decouples. The integrand
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then only depends on the combination h�1g, so changing variables to f ¼ h�1g yields

v½A;B�, up to a factor of the volume of the gauge group
W½A�W½B� ¼
Z

½Dg�½Dh�1�e�Iðh�1g;A;BÞ ¼ vol Ĝ v½A;B�: ð5:32Þ
To understand this wave functional v½A;B�, we compute its integrated norm. One
can easily do one of the two functional integrals over the gauge fields in the same

manner as before, yielding [51]
Z
½DB�jv½A;B�j2 ¼

Z
½Dg�e�IG=Gðg;AÞ; ð5:33Þ
where IG=G is the action of the G=G gauged WZW model, namely
IG=Gðg;AÞ ¼ IðgÞ þ k
2p

Z
d2zTr Azg�1ozg

�
þ Azgozg�1 � AzAz þ AzgAzg�1



:

ð5:34Þ

As opposed to Iðg;AÞ in Eq. (5.7), this action is gauge invariant, because one is

gauging the full GL � GR symmetry of the WZW model. This means the path integral

of the doubled theory is well defined and free of anomalies, as well as parity-

invariant.

Let us compare the doubled theory to the undoubled one. For the undoubled the-

ory, we found that the effective partition function jWj2, the ground-state wave func-
tional squared and integrated over the (one) gauge field, was that of the WZW
model. However, constructing excited states and operators directly in the undoubled

theory appears to be problematic due to the gauge anomaly discussed above. Al-

though it would seem that a priori one could not require that operators be gauge in-

variant if the ground-state wave functional itself is not, as we emphasized in Section

5.2, from general considerations of Chern–Simons theory we know that the physical

observables are gauge invariant, that only gauge invariant observables must be con-

sidered, and that their expectation values are free of any anomalies. However, while

this is apparent in the path-integral construction of the quantum theory, it is not so
apparent if one is to use the wave function, i.e., in terms of a chiral Euclidean WZW

model. As we discussed above, at this level one is led to introduce a formal ‘‘dou-

bled’’ theory even for the undoubled theory. Thus, although the wave function itself

factorizes the physical states cannot be constructed in terms of arbitrary factors from

each sector of the doubled theory. Hence, the requirement of gauge invariance can

spoil the apparent factorization suggested by the wave function v½A;B� of Eq. (5.29).
The formally correct way to define the correlators in the undoubled theory is in

the doubled theory: one can always introduce another field B and then integrate it
out. The reason for doing this is that the doubled theory can be properly regulated,

because (5.33) is gauge invariant. All the formal manipulations done above are well

founded, because the path integral can be defined properly. In contrast in a truly

doubled theory, the gauge-invariant physical observables couple to both fields which

must then be regarded as genuine degrees of freedom. In contrast, in the undoubled

theory, the additional degrees of freedom are a formal device used to regulate the
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theory.14 This means that correlators in both theories are those of the G=G gauged

WZW model, which is anomaly free. These correlators have been studied in great

detail [106,114,115]. In particular, careful discussions of the proper regularization

of this theory can be found in these papers. As common in non-abelian gauge theo-

ries, to properly do these path integrals, one needs to introduce fermionic ghosts.
One then finds a BRST charge QBRST obeying ðQBRSTÞ2 ¼ 0; physical states are anni-

hilated by it. We can thus consistently demand that states and physical operators be

gauge invariant.

A relation between the G=G gauged WZW model and topological field theory was

conjectured in [106] and proven in [51]. In particular, it was shown that once we in-

tegrate over A as well, the resulting partition function jvj2 is independent of the met-

ric of two-dimensional space. The correlators in the ground state therefore are

independent of distance, and given by a topological field theory. A topological field
theory is obtained by studying the states which are annihilated by QBRST but not gi-

ven by QBRST acting on something else. In mathematical language, the physical states

of the topological theory are given by the cohomology of QBRST. It was derived di-

rectly in [120] that the correlators of the G=G topological field theory are given in

terms of the Verlinde numbers [105], which give the dimensions of conformal blocks

in the ordinary WZW model.

Going to the doubled theory has therefore allowed us to not only avoid technical

problems, but also to prove that the ground state correlators are those of a topolog-
ical field theory. We should stress once again that the doubled theory used here has

twice as many degrees of freedom as the undoubled theory. It is a physically distinct

time-reversal invariant theory, unlike the undoubled theory which breaks time-rever-

sal symmetry. This physical difference is apparent from the construction of its ob-

servables: it has twice as many ‘‘anyons,’’ which come in time-reversed pairs. On a

torus, the Wilson loops of the corresponding topological field theory wind around

both cycles [49]. The weights of the loops can be defined locally, and one can see

how the non-abelian statistics arise [49]. The results of this section show how this
precise topological field theory arises as the ground state of a specific Hamiltonian.

We note in addition that if one specializes these results to an abelian gauge field, the

topological field theory obtained is known as a (two-dimensional) BF theory

[106,121]. Recently, Freedman et al. [122] have discussed (reasonably local) lattice

models of interacting fermions and bosons, which they argue have topological

ground states with some of the topological algebraic structure of the doubled non-

abelian Chern–Simons theories. It is reasonable to expect that the universal long-dis-

tance structure of the wave functions of these topological ground states, at least deep
in the topologically ordered phase, has the same structure of the wave functions we

discussed in this section.

Since we have an explicit Hamiltonian Eq. (5.26) (plus the analogous term for the

B gauge field), we can go beyond the topological field theory describing the ground

state. Because of the commutation relations (5.25), Ey acts like a creation operator.
14 This approach is reminiscent of stone soup.
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However, in a non-abelian gauge theory, E and Ey are not gauge invariant, so the

appropriate states are slightly more complicated than just EyW½A�. The simplest can-

didate is [107]
waðx;A;BÞ ¼ EybðxÞ
Z

½Dg�Tr½T agðxÞT bg�1ðxÞ�e�Iðg;A;BÞ: ð5:35Þ
Once this amplitude is squared and B is integrated over, one obtains a gauge-

invariant probability. In the 2þ 1-dimensional picture, one can think of one of

these states as a Polyakov loop, which intersects two-dimensional space at a

single point x. The commutation relation Eq. (5.25) shows that this is indeed an

eigenstate with a gap proportional to k. A more thorough treatment, taking into

account the measure of the path integral, shows that the gap is shifted to

e2ðk þ 2cAÞ=ð4pÞ, where cA is the quadratic Casimir of the adjoint representation

of the Lie algebra of G [108]. For our purposes, the important point is that there
is indeed a gap.

We have thus seen that correlators of Wilson loops in the ground state of

strongly coupled Yang–Mills theory are given by a topological field theory. We

have also seen that the theory has a gap, so it is indeed in a topological phase.

The last thing we would like to discuss is the ground-state correlators for oper-

ators not in the topological theory. In other words, we wish to consider the full

set of physical operators (i.e. those annihilated by QBRST), including those which

are given by QBRST acting on something else. Because our Hamiltonian involves
only the electric and not the magnetic field, it is not Lorentz invariant. Thus

the existence of a gap does not immediately require that correlators decay expo-

nentially. However, in this theory, they do, as implied by the results of [116]. We

noted above that proper quantization of gauged WZW models requires introduc-

ing fermionic ghosts, and a fermionic operator QBRST. A fermionic symmetry sug-

gests the appearance of supersymmetry, and indeed the G=G topological field

theory can also be obtained from a supersymmetric field theory where the super-

symmetry charge is ‘‘twisted’’ into QBRST [106,123–125]. The supersymmetric field
theory also describes the correlators of the full theory, not just the topological

subsector. For the case where G ¼ SUðNÞ at level k, the appropriate two-dimen-

sional field theory is a (twisted) supersymmetric sigma model, where the bosonic

fields take values on the ‘‘Grassmannian’’ manifold UðN þ kÞ=ðUðNÞ � UðkÞÞ
[116]. It is likely that the other simple Lie groups end up giving supersymmetric

sigma models on the analogous Grassmannians.

This means we have now come full circle! We started without gauge fields, and

found that the equal-time correlators are those of the principal chiral model, a
two-dimensional sigma model with a curved target space. These correlators are ex-

ponentially decaying. We then introduced gauge fields, in the hope of finding a quan-

tum critical point. After this lengthy discussion, we have ended up showing the

ground state is described by a supersymmetric two-dimensional sigma model with

a curved target space, the Grassmannian. This means that the correlators here are

exponentially decaying as well, and the theory is in a topological phase whose prop-

erties are encoded in the wave function v½A;B�.
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Appendix A. Operators of the quantum Lifshitz field theory

In addition to the products of field operators uð~xÞ, in what follows we will be

interested in two types of local operators: charge and vortex operators. The charge

operators are
Onð~xÞ ¼ e�inuð~xÞ; ðA:1Þ

where n 2 Z. This operator creates a boson coherent-state which we will refer to as a

charge n excitation. The vortex operators are
~Omð~xÞ ¼ e
i
R

d2zuð~zÞPð~zÞ
; ðA:2Þ
where
uð~zÞ ¼ m argð~z�~xÞ; ðA:3Þ

where 06 argð~z�~xÞ6 2p is the argument of the vector ~z�~x (with a branch cut

defined arbitrarily along the negative x axis). The action of the operator ~Omð~xÞ on an
eigenstate of the field operator j½u�i is simply a shift
e
i
R

d2zuð~zÞPð~zÞj½u�i ¼ j½uð~xÞ � uð~xÞ�i: ðA:4Þ

In other words, it amounts to s singular gauge transformation. Therefore, its action

is equivalent to coupling the field u to a vector potential whose space components ~A
satisfy
I

c
d~z �~A½~z� ¼ 2pm; ðA:5Þ
for all closed paths c which have the point~x in their interior, and zero otherwise. In

particular, the wave function of the state resulting from the action of the vortex
operator on the ground state is:
Wm½~x� ¼ h½u�j~Omð~xÞjvaci ¼
1ffiffiffiffiffi
Z

p e
�j

2

R
d2zð~ru�~AÞ2

; ðA:6Þ



E. Ardonne et al. / Annals of Physics 310 (2004) 493–551 539
where ~A is any vector field which satisfies Eq. (A.5). The (equal-time) ground state

expectation value of a product of vortex operators with magnetic charges fmlg, i.e.
the overlap of the state with k vortices at locations~xl and magnetic charge ml with the

vortex-free ground state wave function, is therefore
hvacj~Om1
ð~x1Þ � � � ~Omk ð~xkÞjvaci ¼

1

Z

Z
Due�j

R
d2zð~ru�~AÞ2

; ðA:7Þ
where Z is given by Eq. (2.11). The vector potential in Eq. (A.7) satisfies
eijriAj ¼ 2p
Xk
l¼1

mld
2ð~z�~xlÞ: ðA:8Þ
This result is equivalent to the expectation value of the vortex operator in the two-
dimensional classical c ¼ 1 compactified free bose field discussed extensively by

Kadanoff [66] (see also [48]).

The boson propagator of this theory, in imaginary time t, is
Gð~x�~x0; t � t0Þ ¼ huð~x; tÞuð~x0; t0Þi ¼
Z

dx
2p

Z
d2q

ð2pÞ2
eixðt�t0Þ�i~q�ð~x�~x0Þ

x2 þ j2ð~q2Þ2
; ðA:9Þ
which has a short-distance logarithmic divergence. From now on we will use instead

the regularized (subtracted) propagator
Gregð~x; tÞ � Gð~x; tÞ � Gða; 0Þ ¼ � 1

8pj
ln

j~xj2

a2

 !"
þ C 0;

j~xj2

4jjtj

 !#
ðA:10Þ
where a is a short-distance cutoff and Cð0; zÞ is the incomplete C function
Cð0; zÞ ¼
Z 1

z

ds
s
e�s: ðA:11Þ
The regularized propagator has the asymptotic behaviors
Gregð~x; tÞ ¼
� 1

4pj
ln

j~xj
a

 !
for jtj ! 0;

� 1

8pj
ln

4jjtj
a2c

� 	
for j~xj ! a;

8>>><>>>: ðA:12Þ
where ln c ¼ C ¼ 0:577 . . . is the Euler constant.

The correlation functions of the charge operators are
hOnð~x; tÞyOnð~x0; t0Þi ¼ en
2Gregð~x�~x0;t�t0Þ: ðA:13Þ
At equal (imaginary) times, jt � t0j ! 0, it behaves like
hOnð~x; 0ÞyOnð~x0; 0Þi ¼
a

j~x�~x0j

 ! n2
4pj

; ðA:14Þ
which implies that the operator On has (spacial) scaling dimension
Dn ¼
n2

: ðA:15Þ

8pj
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For j~x�~x0j ! a, its asymptotic behavior is instead given by
hOnð~0; tÞyOnð~0; t0Þi ¼
a2c

4jjt � t0j

� 	 n2
8pj

: ðA:16Þ
This behavior is manifestly consistent with a dynamical critical exponent z ¼ 2.

It is straightforward to show by an explicit calculation of the overlap of Eq. (A.8),

which is completely analogous to the classical vortex correlation functions of the

two-dimensional Gaussian model [66], that the (spacial) scaling dimension of the

vortex of magnetic charge m is
Dm ¼ 2pjm2: ðA:17Þ
Appendix B. U(1) Gauge-theory for the quantum six-vertex model

In this Appendix, we describe the quantum six-vertex model in the language of
gauge theory. The quantum eight-vertex model will be described in Appendix C.

We will follow closely the gauge theory description of the quantum dimer model,

which is described in detail in [13]. We note that this gauge theory is not simply

an abelian version of the gauge theory discussed in Section 5.

We define link variables Eið~xÞ, where~x labels the vertices and i ¼ 1; 2 indicates the

direction; the unit vector in direction i is denoted by~ei. The link variables are integer

valued, and can be viewed as the eigenvalues of angular momentum operators which

we will also denote by Eið~xÞ. We assign the values E1 ¼ 1 and E2 ¼ 1 to the right and
up going arrows, respectively, while for the left and down going arrows we have

E1 ¼ �1 and E2 ¼ �1. An example is given in Fig. 7. In the Hamiltonian, we need

a term which will lead to a restriction to those states in which all the Eið~xÞs have val-
ues �1. Such a term is
HE ¼ 1

k1

X
~x;i

E2
i ð~xÞ



� 1
�2
; ðB:1Þ
in the limit k1 ! 0.

The six-vertex model also requires that the same number of arrows point in and

out at a vertex. This is precisely a lattice version of Gauss� law. Defining the lattice

divergence as D�
i Eið~xÞ � E1ð~xÞ � E1ð~x�~e1Þ þ E2ð~xÞ � E2ð~x�~e2Þ, one easily finds that

only for the six vertices of type a; b, and c, we have
D�
i Eið~xÞ ¼ 0: ðB:2Þ
Fig. 7. The �electric� fields associated to a particular vertex.
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The lattice differentiationD�
i is defined byD�

i f ð~xÞ � f ð~xÞ � f ð~x�~eiÞ. In the following,
when dealing with sums over the plaquettes of the lattice, we will frequently

use Dif ð~xÞ � Dþ
i f ð~xÞ � f ð~xþ~eiÞ � f ð~xÞ. Of course, the constraint has to commute

with all the terms in the Hamiltonian. In the following, we will find that this is indeed

the case.
The two main ingredients in the gauge theory description are the flip term which

flips the flippable plaquettes (see below) and a potential term, which give a finite

weight to (only) the flippable plaquettes. Flippable plaquettes are those which have

both nd ¼ end ¼ 0. Pictorially, a flippable plaquette here is one where the arrows

around the plaquette point either all clockwise or all counterclockwise:
ðB:3Þ
In terms of the electric field, this can be written as
HV ¼ V
64

X
�

ðD2E1Þ2ðD1E2Þ2ðE1 � E2Þ2; ðB:4Þ
where the sum is over all the plaquettes of the lattice. The factors ðD2E1Þ2 and

ðD1E2Þ2 make sure that the arrows on opposite links of the plaquette are anti-par-

allel. The factor ðE1 � E2Þ2 checks if two arrows on one vertex are both pointing
clockwise or both counterclockwise.

As the Eið~xÞs have the integers as their eigenvalues, the canonically conjugate

operators, aið~xÞ are phases, i.e., 06 aið~xÞ < 2p. Using the commutation relations
ajð~xÞ;Ej0 ð~x0Þ
h i

¼ idjj0d~x;~x0 ; ðB:5Þ
it is easy to show that the operators e�iajð~xÞ act as raising and lowering operators on

the Es, and thus e.g., the operator e�2ia1ð~xÞ will flip the arrow pointing outward from~x
to the arrow pointing inward. We can use these raising and lowering operators to

write the term in the Hamiltonian which flips the flippable plaquettes
Ht ¼ �2t
X
�

cos 2
X

ajð~xÞ
 !

; ðB:6Þ
where
P

ajð~xÞ ¼ D1a2ð~xÞ � D2a1ð~xÞ is the oriented sum of the as around a pla-

quette. The total Hamiltonian of the gauge theory version of the six-vertex model is

therefore
H6v ¼ HE þ Ht þ HV : ðB:7Þ
As usual, the Rokhsar–Kivelson point is located at t ¼ V .
We will proceed by going to the dual formulation of the theory, and show that the

theory is equivalent to a height model (which is well know). Doing the duality basi-

cally amounts to solving the (electrostatic) constraint. In the process, it gets replaced

by a magnetic constraint. To solve the constraint, we introduce the new variables

Sð~rÞ, which live on the sites of the dual lattice (or plaquettes of the direct lattice);
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these operators have the integers as their spectrum. In addition, we need the fields

Bið~rÞ, which live on the links of the dual lattice. We can now write the ‘‘electric’’ fields

Ei as follows:
Eið~xÞ ¼ �ij D�
j Sð~rÞ



þ Bjð~rÞ

�
: ðB:8Þ
Substituting this in the constraint D�
i Ei ¼ 0 gives the �magnetic� constraint

�ijD
�
j Bkð~rÞ ¼ 0, so Bk is curl free, and can be written as a gradient. But, as the there

are no sources, we can do even better, as becomes clear when we interpret Sð~rÞ as a
height variable which lives on the plaquettes of the direct lattice.

We will first recall the known fact that the configurations of the six-vertex model

can be mapped onto height configurations. The rules are as follows. First, pick a ref-

erence site, and give it a reference height, say Sð~0Þ ¼ 0. Then, if one crosses an out-

going arrow clockwise (both seen from the vertex), the height decreases by one, while

crossing an incoming arrow (again in a clockwise manner), the height increases by
one. As all the vertices have two incoming and two outgoing arrows, this indeed

gives a consistent height configuration. So, as an example, around an a vertex we

have

We now assume that the Sð~rÞs appearing in Eq. (B.8) can in fact be interpreted as the

heights of the plaquettes. Because of the duality Eq. (B.8), the Bi are now completely

determined by the Ei, because they determine S via the height rule. So we found that
interpreting the Sð~rÞ as heights amounts to picking a gauge for the Bið~rÞ. Combining

the height rule of the previous paragraph with Eq. (B.8), we easily find that

Bjð~rÞ � 0.

To complete the duality transformation, we need to transform the flip term. This

will involve the canonically conjugate variable to Sð~rÞ. Let us call this the momentum

P ð~rÞ, which satisfies ½P ð~rÞ; Sð~r0Þ� ¼ id~r;~r0 . Again, acting with eiPð~rÞ on the plaquette at~r
will increase the eigenvalue of Sð~rÞ by one. Flipping a plaquette changes S by �2, so

we find that we can write the flip term of the Hamiltonian as Ht ¼�2t
P

~r cosð2P ð~rÞÞ.
In other words, we find that the circulation around the plaquette at ~r is given byP

ajð~xÞ ¼ P ð~rÞ.
In principle, we could go on to describe the eight-vertex model in a similar fash-

ion. The main difference with the six-vertex model is that the constraint (B.2) is no

longer satisfied. One can introduce a matter field which has no-zero values on the d
vertices. In addition, a flip term which flips every plaquette has to be constructed.

This flip term has to commute with the new constraint. It turns out that this is in-

deed possible, but the flip term will involve the conjugate of the matter field. Also,
one would need a potential term which gives weights plaquettes according to the

vertices present on the plaquette. However, as there is a more natural gauge de-

scription, which is based on the Z2 symmetry of the eight-vertex model, we will dis-

cuss and use that description of the quantum eight vertex model in the next

appendix.
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Appendix C. A Z2 gauge theory for the quantum eight vertex model

In this appendix, we will discuss a Z2 gauge theory which can be viewed as an ex-

tension of the Kitaev model which incorporates vertex weights differing from unity.

The model we will discuss is of the Rokhsar–Kivelson type, but it is not the simplest
quantum generalization of the classical eight-vertex model, as we pointed out in

Section 4.

C.1. The Z2 gauge theory

In this model, spins living on the bonds of the square lattice are the degrees of

freedom. Thus, on every link of the square lattice, we define a Pauli algebra of

2� 2 Hermitian matrices ra
j ð~xÞ, where a ¼ 1; 2; 3 labels the three Pauli matrices,

and for a lattice site~x, we denoted the orientation of the link by j ¼ 1; 2 (1¼ hori-

zontal and 2¼ vertical). (Thus, the degrees of freedom live half-way between the lat-

tice sites~x and~xþ~ej, where~ej is a unit vector along the direction j.) In what follows

we will take the states j "i (an ‘‘up’’ spin) and j #i (a ‘‘down’’ spin) as the states which
diagonalize r1 (instead of r3, as it is customary). The relation with the eight-vertex

model is simple. Up-spins correspond to arrows pointing up or to the right, while

down spins correspond to arrows pointing down or to the left. Around each vertex,

the number of up-spins has to be even. In this section, we will denote the vertex by~x
and the associated plaquette by its south-west corner~x.

For details, see [31,54]. The constraint can written in a simple form.15
15 T

directi
r1
1ð~xÞr1

1ð~x�~e1Þr1
2ð~xÞr1

2ð~x�~e2Þ ¼ 1; 8~x: ðC:1Þ

The term which flips all the arrows around a plaquette can be written in terms of r3s
Hflip ¼ �
X
~x

r3
1ð~xÞr3

1ð~xþ~e2Þr3
2ð~xÞr3

2ð~xþ~e1Þ: ðC:2Þ
This flip operator commutes with the constraint, because a vertex and a plaquette

have either 0 or 2 common bonds. Hence, both operators can be diagonalized si-

multaneously. In the model considered by Kitaev [42], equal weight is given to all

types of vertices, so no term in the Hamiltonian is required. To go beyond the point
a ¼ b ¼ c ¼ d ¼ 1, we need a term which will weight the plaquettes according to the

types of vertices present. Thus, we will need to introduce operators which can discern

among the various vertices. In addition, the ‘‘weight’’ of the vertex depends on its

position in the plaquette under consideration.The notation that we use is summa-

rized in Fig. 8.

Let us start by giving the terms which give a non-zero contribution for a; b; c, and
d vertices, respectively (but zero otherwise). Let us define the ‘‘vertex magnetiza-

tions’’:
hroughout we use the upper label to indicate the Pauli matrix and the lower label to indicate

on.



Fig. 8. Notation for the rs; a ¼ 1; 2; 3 is the Pauli matrix label.
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Sað~xÞ ¼
1

4
r1
1ð~xÞ



þ r1

2ð~xÞ þ r1
1ð~x�~e1Þ þ r1

2ð~x�~e2Þ
�
;

Sbð~xÞ ¼
1

4
r1
1ð~xÞ



� r1

2ð~xÞ þ r1
1ð~x�~e1Þ � r1

2ð~x�~e2Þ
�
;

Scð~xÞ ¼
1

4
r1
1ð~xÞ



� r1

2ð~xÞ � r1
1ð~x�~e1Þ þ r1

2ð~x�~e2Þ
�
;

Sdð~xÞ ¼
1

4
r1
1ð~xÞ



þ r1

2ð~xÞ � r1
1ð~x�~e1Þ � r1

2ð~x�~e2Þ
�
:

ðC:3Þ
With this notation, the projectors onto the vertices a, b, c, and d are just the squares

of the vertex magnetizations of Eq. (C.3):
Pa ¼ S2
a ; Pb ¼ S2

b ; Pc ¼ S2
c ; Pd ¼ S2

d ; ðC:4Þ
It is straightforward to show that these operators act as projection operators

on vertices of type a, b, c and d, respectively, i.e., they yield 1 when acting

on the corresponding vertex and zero otherwise. It is elementary to check
that
Pa þPb þPc þPd ¼ I; ðC:5Þ
where I is the identity operator.

We can now write down the potential term which assigns weights to the plaquettes

in the same way as done by the projectors of Section 4. Flipping a plaquette will
change a d vertex to an a vertex if the d vertex is in the south-west or north-east

‘‘even’’ corner of the plaquette. A d at the other ‘‘odd’’ corners will go to a b under

the flip. In short, de $ ae, do $ bo. For cs this is opposite, namely ce $ be, co $ ao.
The potential term will involve all four vertices around a plaquette, and thus we need

to distinguish between the different position in the plaquette. This is achieved by the

following, albeit rather cumbersome, term



16 I

asymm
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HV ¼
X
~x

d
a
Pað~xÞ

�
þ c
b
Pbð~xÞ þ

b
c
Pcð~xÞ þ

a
d
Pdð~xÞ

	
� c

a
Pað~x

�
þ e1Þ þ

d
b
Pbð~xþ e1Þ þ

a
c
Pcð~xþ e1Þ þ

b
d
Pdð~xþ e1Þ

	
� c

a
Pað~x

�
þ e2Þ þ

d
b
Pbð~xþ e2Þ þ

a
c
Pcð~xþ e2Þ þ

b
d
Pdð~xþ e2Þ

	
� d

a
Pað~x

�
þ e1 þ e2Þ þ

c
b
Pbð~xþ e1 þ e2Þ þ

b
c
Pcð~xþ e1 þ e2Þ

þ a
d
Pdð~xþ e1 þ e2Þ

	
: ðC:6Þ
The potential term (C.6) assigns potential energies to the plaquettes in the same way

as is done by the projectors of Section 4. That is, the potential is the product of

vertex weights obtained by flipping the plaquette, divided by the product of the

vertex weights of the plaquette itself. As mentioned before, the two-body terms only

couple spins on the same sublattice. The most non-local terms in the potential energy

term consist of eight-body interactions. Of course, a plaquette potential energy term
of this sort is needed, if one assigns weights to plaquettes.16 Note that for a ¼ b ¼ 1

and c ¼ d (or c ¼ 1=d), the eight-body terms cancel each other. However, there will

remain four and six-body interactions, which will mix different sublattices.

The total Hamiltonian for theZ2 gauge theory of the quantum eight vertex model is
Hq8v ¼ HV þ Hflip; ðC:7Þ

where the two terms are given by (C.2) and (C.6). The states in this model have to

satisfy the constraint (C.1). We can check these formulas in a few limits. For
a ¼ b ¼ c ¼ d ¼ 1, each factor in (C.6) will be 1 when acting on states satisfying the

constraint. Hence, the potential term became the identity operator, which merely

results in an energy shift, and thus we find back the Kitaev model, as we must.

Another interesting limit is d ! 0. As was discussed in Section 4.1, this limit gives

a slight generalization of the six-vertex model, in the sense that plaquettes which

have nd ¼ end ¼ 1 or nd ¼ end ¼ 2 will have finite energy, and they can be interpreted

as static defects. As can be seen from the potential term (C.6), plaquettes which have

nd > end will be suppressed as they receive infinite energy. The flip term has to be
modified, because we need to have a flip term which commutes with the constraint,

which has become a stronger statement in the six-vertex case, namely (cf. Eq. (B.2))
r1
1ð~xÞ � r1

1ð~x�~e1Þ þ r1
2ð~xÞ � r1

2ð~x�~e2Þ ¼ 0 8~x: ðC:8Þ

The flip term which preserves the six-vertex constraints is
Hflip;6v ¼ �
X
~x

r�
1 ð~xÞr�

2 ð~x



þ e1Þrþ
1 ð~xþ e2Þrþ

2 ð~xÞ þ h:c:
�
; ðC:9Þ
n spite of the appearances, HV as given in Eq. C.6 respects rotational invariance; the apparent

etry is due to the use of the vertex weights as labels.
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where the raising and lowering operators (in the representation we use) are given by
r� ¼ 1

2
ðr3 � ir2Þ; ðC:10Þ
To make contact with the flip term for the eight-vertex model, we rewrite Eq. (4.12)
as
Hflip;q8v ¼ �
X
~x

rþ
1 ð~xÞ



þ r�

1 ð~xÞ
�

rþ
2 ð~x



þ e1Þ þ r�

2 ð~xþ e1Þ
�

� rþ
1 ð~x



þ e2Þ þ r�

1 ð~xþ e2Þ
�

rþ
2 ð~xÞ



þ r�

2 ð~xÞ
�
: ðC:11Þ
The flip term for the six-vertex model is therefore precisely the flip term for the eight-

vertex model minus the terms which cause the six-vertex constraint to be violated. It

is easily checked that the six-vertex flip term Eq. (C.9) commutes with the constraint

(C.8). We thus find that on the level of the wave function, the limit d ! 0 is smooth,

as the amplitude of the configurations which contain d vertices goes to zero. In

addition, for d 6¼ 0, the flip term commutes with constraint (C.1), while for d ¼ 0, the
flip term commutes with the Uð1Þ constraint (C.8). Thus, the symmetry is enhanced

from Z2 for d 6¼ 0 to Uð1Þ for d ¼ 0, as was to be expected.

C.2. The dual of the gauge theory

We now have a Rokhsar–Kivelson generalization of the eight-vertex model, in a

gauge-theory language. We can use this representation of our model to study the var-

ious phases. However, this is more easily done in a dualized version, as the dual takes
the form of an Ising model. In the dual picture, the spin degrees of freedom will live

on the sites of dual square lattice, i.e., the centers of the plaquettes of the direct lat-

tice. Thus, we will label by~r the site of the dual lattice on the center of the plaquette

labeled by~x (its SW corner). Of course, the potential term in the dual language will

still be quite formidable. We will denote the dual Pauli operators by s1 and s3.
To start with the flip term, the product of r3s around a plaquette becomes s1 on the

plaquette [31,54]
s1ð~rÞ ¼ r3
1ð~xÞr3

2ð~xþ~e1Þr3
1ð~xþ~e2Þr3

2ð~xÞ: ðC:12Þ

To see what happens with the constraint and the projector operators defined by Eqs.
(C.3) and (C.4) we need the dual form of the r1s living on the links. In term of the

dual variables s3, and using the notation of Fig. 9, the r1s are given by
r1
1ð~xÞ ¼ s3ð~rÞs3ð~r �~e2Þ; r1

2ð~xÞ ¼ s3ð~rÞs3ð~r �~e1Þ: ðC:13Þ

We thus easily find that the constraint is automatically satisfied (again, going to

the dual picture amounts to solving the constraint). Also, it is trivial to show

[31,54] that the inverse relation, i.e., to express the dual lattice s3 operators in terms

of the r1 operators of the original lattice is
s3ð~rÞ ¼
Y
‘2Cð~rÞ

r1ð‘Þ; ðC:14Þ



Fig. 9. The dual lattice sites are labeled by~r.
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where f‘g is a set of links of the direct lattice pierced by a path Cð~rÞ on the dual

lattice ending at the dual site~r (but which is otherwise arbitrary); see Fig. 10.

Note that we need to choose the spin on one of the plaquettes; all the others are

subsequently determined by the rxs on the links. In terms of the dual variables, the

projection operators for site~x, defined by Eq. (C.4), take the form
Pað~xÞ ¼
1

4
1



þAð~rÞ þBð~rÞ þ Cð~rÞ
�
;

Pbð~xÞ ¼
1

4
1



�Að~rÞ �Bð~rÞ þ Cð~rÞ
�
;

Pcð~xÞ ¼
1

4
1



�Að~rÞ þBð~rÞ � Cð~rÞ
�
;

Pdð~xÞ ¼
1

4
1



þAð~rÞ �Bð~rÞ � Cð~rÞ
�
;

ðC:15Þ
where A;B, and C are given by
Að~rÞ ¼ s3ð~r �~e1Þs3ð~r �~e2Þ;
Bð~rÞ ¼ s3ð~rÞs3ð~r �~e1 �~e2Þ;
Cð~rÞ ¼ s3ð~rÞs3ð~r �~e1Þs3ð~r �~e1Þs3ð~r �~e1 �~e2Þ:

ðC:16Þ
We see that we the interaction in these projectors has the same structure as in the

spin representation of the classical eight-vertex model: it consists of two-body terms
Fig. 10. The dual path C.
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on interpenetrating sublattices, and a four-body term, which couples the two sublat-

tices. In the total interaction term, all the two-body interaction terms will only cou-

ple spins on the same sublattice. The four and six body interaction terms (of which

there are many!), couple the sublattices. The same holds for the eight-body term, nat-

urally. Let us state the dual form of the theory
Hq8v;dual ¼ HV;dual �
X
~r

s1ð~rÞ; ðC:17Þ
where HV;dual is given by (C.6), but now with the projectors given in Eq. (C.15). Thus,

formally this theory takes the form of a (multi-spin) Ising model in a transverse field.

However, the two-body interactions only couple spins on the same sublattices,

together with the multi-spin terms conspire to change the quantum critical behavior

from the conventional z ¼ 1 Lorentz-invariant criticality of the standard Ising model
in a transverse field to the z ¼ 2 quantum critical behavior discussed in the rest of

this paper.

Now that we found the dual version of our gauge theory, we would like to discuss

the limits a ¼ b ¼ c ¼ d ¼ 1 and d ¼ 0. Again, the first limit brings us back to the

Kitaev point, because the potential term becomes the identity operator again, and

we are left with the very simple spin flip term of Eq. (C.17), Hf ¼ �
P

~r s
1ð~rÞ. The

limit d ! 0 is however more complicated in this dual gauge theory. First of all,

we now do need a constraint, which was not present for d 6¼ 0. Moreover, the flip
term now only can act, depending on the surrounding spins. Let us start by dualizing

the constraint Eq. (C.8), which results in
s3ð~rÞ



� s3ð~r �~e1 �~e2Þ
�

s3ð~r



�~e1Þ þ s3ð~r �~e2Þ
�
¼ 0 8~x: ðC:18Þ
Obviously, the eight-vertex flip term s1ð~rÞ does not commute with this constraint. To

find a flip term which does commute with the constraint, we dualize the six-vertex flip

term (C.9), which results in
Hflip;q6v ¼ � 1

8

X
~r

s1ð~rÞ 1



� s3ð~r þ~e1Þs3ð~r þ~e2Þ
�

� 1



þ s3ð~r �~e1Þs3ð~r þ~e2Þ
�

1



þ s3ð~r þ~e1Þs3ð~r �~e2Þ
�
: ðC:19Þ
The factors in bracket can be seen to give a non zero result only on plaquettes which

are flippable. Hence, this flip term commutes with the constraint (C.18). Of course,

this can also be checked explicitly. Apart from a factor s2, there are factors de-

pending on the s3s coming form both the flip term and the constraint. The signs in

this product conspire in such a way to render the commutator zero.
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