Exercises CFT-course fall 2008, set 12.

1. Derive the Knizhnik-Zamolodchikov equation

$$
\left(\partial_{z_{i}}-\frac{1}{k+g^{\vee}} \sum_{j \neq i} \frac{\sum_{a} t_{\lambda_{i}}^{a} \otimes t_{\lambda_{j}}^{a}}{z_{i}-z_{j}}\left\langle\phi_{\lambda_{1}}\left(z_{1}, \bar{z}_{1}\right) \cdots \phi_{\lambda_{N}}\left(z_{N}, \bar{z}_{N}\right)\right\rangle=0\right.
$$

from the null vector $\left(L_{-1}-\frac{\sum_{a} J_{-1}^{a} t_{\lambda}^{a}}{k+g^{\nu}}\right) \phi_{\lambda}=0$.
2. Solving the Knizhnik-Zamolodchikov equation.

In this exercise, we will solve the KZ equation in the case of $s u(2)_{k}\left(s u(n)_{k}\right.$ is not much more complicated), for the primary fields ϕ_{λ}, where $\lambda=\omega_{1}$, i.e. the fundamental representation.
We define $z_{i j}=\left(z_{i}-z_{j}\right)$, and write the correlator as

$$
\mathcal{G}\left(\left\{z_{i}\right\},\left\{\bar{z}_{i}\right\}\right)=\left\langle\phi_{\lambda}\left(z_{1}, \bar{z}_{1}\right) \phi^{\lambda}\left(z_{2}, \bar{z}_{2}\right) \phi^{\lambda}\left(z_{3}, \bar{z}_{3}\right) \phi_{\lambda}\left(z_{4}, \bar{z}_{4}\right)=\left(z_{14} z_{32} \bar{z}_{14} \bar{z}_{32}\right)^{-2 h} \mathcal{G}(x, \bar{x}),\right.
$$

where $h=h_{\omega_{1}}=\frac{\left(\omega_{1}, \omega_{1}+2 \rho\right)}{2(k+2)}=\frac{3}{4(k+2)}$. The meaning of the notation ϕ^{λ} is that this field corresponds to the conjugate representation ω_{1}^{*} (which gives an additional sign when the t 's act on it). We will use the definition $x=\frac{z_{12} z_{34}}{z_{14} z_{3}}$.
As usual, the correlator decomposes into holomorphic and anti-holomorphic parts, which we denote by $\mathcal{F}(x)$ and $\overline{\mathcal{F}}(\bar{x})$. In addition, it decomposes into (in general) two $s u(2)$ invariant pieces, so we have $\mathcal{F}(x)=I_{1} F_{1}(x)+I_{2} F_{2}(x)$, where $I_{1}=\delta_{m_{1}, m_{2}} \delta_{m_{3}, m_{4}}$ and $I_{2}=\delta_{m_{1}, m_{3}} \delta_{m_{2}, m_{4}}$. Here, the m_{i} refer to the components of the representation of the field at z_{i}.
Finally, after introducing this notation, the chiral part of the KZ equations read

$$
\left(\partial_{z_{i}}-\frac{1}{k+2} \sum_{j \neq i} \frac{\sum_{a} t_{i}^{a} \otimes t_{j}^{a}}{z_{i j}}\right)\left(z_{14} z_{32}\right)^{-2 h}\left(I_{1} F_{1}(x)+I_{2} F_{2}(x)\right)=0
$$

a. Show that the equation for $i=1$ reads

$$
\left[\left(\frac{-2 h}{z_{14}}\right)+\left(\frac{x}{z_{12}}-\frac{x}{z_{14}}\right) \partial_{x}-\frac{1}{k+2}\left(\frac{t_{1}^{a} \otimes t_{2}^{a}}{z_{12}}+\frac{t_{1}^{a} \otimes t_{3}^{a}}{z_{13}}+\frac{t_{1}^{a} \otimes t_{4}^{a}}{z_{14}}\right)\right]\left(I_{1} F_{1}(x)+I_{2} F_{2}(x)\right)=0
$$

and find the three other equations as well.
We will now concentrate on the action of the t 's on the I_{1} and I_{2}. In the fundamental representation of $s u(2)$, one has $\sum_{a} t_{i j}^{a} t_{k l}^{a}=\delta_{i l} \delta_{j k}-\frac{1}{2} \delta_{i j} \delta_{k l}$, from which the value of the quadratic Casimir follows $\sum_{a}\left(t^{a} t^{a}\right)_{i j}=\frac{3}{2} \delta_{i j}$.
b. Calculate the relevant products $\sum_{a} t_{1}^{a} \otimes t_{2}^{a} I_{1}$ etc. and express the result in I_{1} and I_{2} Remember that the t 's act from the right, and with an additional sign, in the case of the conjugate representations, i.e. $\sum_{a} t_{1}^{a} \otimes t_{2}^{a} I_{1}=-\sum_{a, m_{1}^{\prime}, m 2^{\prime}} t_{m_{1}, m_{1}^{\prime}}^{a} t_{m_{2}^{\prime}, m_{2}}^{a} \delta_{m_{1}^{\prime}, m_{2}^{\prime}} \delta_{m_{3}, m_{4}}=$ $-\sum_{a}\left(t^{a} t^{a}\right)_{m_{1}, m_{2}} \delta_{m_{3}, m_{4}}$ etc.
c. Show, by taking a suitable linear combination of the equations, that one ends up with the following coupled equations for F_{1} and F_{2}

$$
\begin{aligned}
& \partial_{x} F_{1}=\frac{-1}{2(k+2)}\left(\frac{3 F_{1}+2 F_{2}}{x}+\frac{F_{1}}{1-x}\right) \\
& \partial_{x} F_{2}=\frac{1}{2(k+2)}\left(\frac{F_{2}}{x}+\frac{2 F_{1}+3 F_{2}}{1-x}\right)
\end{aligned}
$$

d. Decouple the equations, and show that they can be brought into the form of the hypergeometric equation $x(1-x) \partial_{x}^{2} f(x)+(c-(a+b+1) x) \partial_{x} f(x)-a b f(x)=0$. The resulting solutions are

$$
\begin{aligned}
& F_{1}^{(0)}(x)=x^{-2 h}(1-x)^{h_{\theta}-2 h} f\left(\frac{1}{k+2},-\frac{1}{k+2}, 1-\frac{2}{k+2} ; x\right) \\
& F_{2}^{(0)}(x)=\frac{1}{k} x^{1-2 h}(1-x)^{h_{\theta}-2 h} f\left(1+\frac{1}{k+2}, 1-\frac{1}{k+2}, 2-\frac{2}{k+2} ; x\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& F_{1}^{(1)}(x)=x^{h_{\theta}-2 h}(1-x)^{h_{\theta}-2 h} f\left(\frac{1}{k+2}, \frac{3}{k+2}, 1+\frac{2}{k+2} ; x\right) \\
& F_{2}^{(1)}(x)=-2 x^{h_{\theta}-2 h}(1-x)^{h_{\theta}-2 h} f\left(\frac{1}{k+2}, \frac{3}{k+2}, \frac{2}{k+2} ; x\right)
\end{aligned}
$$

where $h_{\theta}=\frac{(\theta, \theta+2 \rho)}{2(k+2)}$, and a convenient normalization is chosen.
e. Which of these solutions form the two different conformal blocks?

