Exercises CFT-course fall 2008, set 8.

Due on wednesday, december 17th, 2008.

1. The quadratic Casimir operator.

The Cartan-Weyl basis reads

$$[H^{i}, H^{j}] = 0$$

$$[H^{i}, E^{\alpha}] = \alpha^{i} E^{\alpha}$$

$$[E^{\alpha}, E^{\beta}] = N_{\alpha,\beta} E^{\alpha+\beta} \qquad \alpha + \beta \in \Delta$$

$$= \frac{2}{|\alpha|^{2}} \alpha \cdot H \qquad \alpha = -\beta$$

$$= 0 \qquad \text{otherwise}$$

The $N_{\alpha,\beta}$ are constants and Δ is the set of all roots.

Show that the Casimir operator

$$\mathcal{C} = \sum_{i} H^{i} H^{i} + \sum_{\alpha > 0} \frac{|\alpha|^{2}}{2} \left(E^{\alpha} E^{-\alpha} + E^{-\alpha} E^{\alpha} \right)$$
(1)

commutes with all the generators of the Lie algebra. Hint: use the invariance of the Killing form to show that $|\alpha|^2 N_{\alpha,\beta} = |\alpha + \beta|^2 N_{\beta,-(\alpha+\beta)}$

2. The Freudenthal recursion formula.

In this exercise, we will prove the Freudenthal recursion formula, which gives the multiplicities of the weights λ' in a highest weight representation λ , namely $\operatorname{mult}_{\lambda}(\lambda')$ in terms of the weights above λ' :

$$(|\lambda + \rho|^2 - |\lambda' + \rho|^2)$$
 mult _{λ} $(\lambda') = 2 \sum_{\alpha > 0} \sum_{k=1}^{\infty} (\lambda' + k\alpha, \alpha)$ mult _{λ} $(\lambda' + k\alpha)$,

where $\rho = \frac{1}{2} \sum_{\alpha > 0} \alpha$.

a. Show that for each weight state $|\lambda', i\rangle$, where $i = 1, \ldots, n_{\lambda'} = \text{mult}_{\lambda}(\lambda')$, in the highest weight representation $|\lambda\rangle$, one has $\mathcal{C}|\lambda', i\rangle = (\lambda, \lambda + 2\rho)|\lambda', i\rangle$. and argue that in the subspace $|\lambda'\rangle$, one has $\text{Tr}_{\lambda'}\mathcal{C} = n_{\lambda'}(\lambda, \lambda + 2\rho)$.

We will now calculate $\operatorname{Tr}_{\lambda'} \mathcal{C}$ differently.

b. First, calculate $\operatorname{Tr}_{\lambda'} \sum_i H^i H^i$.

To calculate the remainder, we will make use of the fact that all the states $|\lambda', i\rangle$ can also be considered as weights in a representation of the su(2) subalgebra $(E^{\alpha}, E^{-\alpha}, \frac{2\alpha \cdot H}{|\alpha|^2} = \sqrt{2}H)$ (where H is in the Cartan-Weyl basis).

- c. Consider the quadratic Casimir \mathcal{C}' of this su(2) algebra. Show that $\mathcal{C}' = \frac{1}{2}H^{\alpha}H^{\alpha} + E^{\alpha}E^{-\alpha} + E^{-\alpha}E^{\alpha}$, and $\mathcal{C}'|\lambda',i\rangle = \frac{1}{2}(a(a+2))|\lambda',i\rangle$, where (the integer) a is the highest weight of the su(2) representation under consideration.
- d. Suppose that the highest weight is in fact $\lambda' + k\alpha$, where $k \ge 0$. Show that $a = \frac{2(\alpha, \lambda' + k\alpha)}{|\alpha|^2}$ and deduce

$$\frac{|\alpha|^2}{2} \left(E^{\alpha} E^{-\alpha} + E^{-\alpha} E^{\alpha} \right) |\lambda'\rangle = \left(k(k+1)(\alpha,\alpha) + (2k+1)(\lambda',\alpha) \right) |\lambda'\rangle$$

All the weights $|\lambda', i\rangle$ in the $(n_{\lambda'}$ -dimensional) weight space $|\lambda'\rangle$ have a corresponding value of k, which can be the same for different weights.

e. Argue that

$$\operatorname{Tr}_{\lambda'}\frac{|\alpha|^2}{2} \left(E^{\alpha} E^{-\alpha} + E^{-\alpha} E^{\alpha} \right) = \sum_{k \ge 0} (n_{\lambda'+k\alpha} - n_{\lambda'+(k+1)\alpha}) (k(k+1)(\alpha,\alpha) + (2k+1)(\lambda',\alpha))$$

f. Finish the proof of the Freudenthal recursion formula.