Exercises CFT-course fall 2008, set 8.

Due on wednesday, december 17th, 2008.

1. The quadratic Casimir operator.

The Cartan-Weyl basis reads

$$
\begin{aligned}
{\left[H^{i}, H^{j}\right] } & =0 \\
{\left[H^{i}, E^{\alpha}\right] } & =\alpha^{i} E^{\alpha} \\
{\left[E^{\alpha}, E^{\beta}\right] } & =N_{\alpha, \beta} E^{\alpha+\beta} \quad \alpha+\beta \in \Delta \\
& =\frac{2}{|\alpha|^{2}} \alpha \cdot H \quad \alpha=-\beta \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

The $N_{\alpha, \beta}$ are constants and Δ is the set of all roots.
Show that the Casimir operator

$$
\begin{equation*}
\mathcal{C}=\sum_{i} H^{i} H^{i}+\sum_{\alpha>0} \frac{|\alpha|^{2}}{2}\left(E^{\alpha} E^{-\alpha}+E^{-\alpha} E^{\alpha}\right) \tag{1}
\end{equation*}
$$

commutes with all the generators of the Lie algebra.
Hint: use the invariance of the Killing form to show that $|\alpha|^{2} N_{\alpha, \beta}=|\alpha+\beta|^{2} N_{\beta,-(\alpha+\beta)}$
2. The Freudenthal recursion formula.

In this exercise, we will prove the Freudenthal recursion formula, which gives the multiplicities of the weights λ^{\prime} in a highest weight representation λ, namely $\operatorname{mult}_{\lambda}\left(\lambda^{\prime}\right)$ in terms of the weights above λ^{\prime} :

$$
\left(|\lambda+\rho|^{2}-\left|\lambda^{\prime}+\rho\right|^{2}\right) \operatorname{mult}_{\lambda}\left(\lambda^{\prime}\right)=2 \sum_{\alpha>0} \sum_{k=1}^{\infty}\left(\lambda^{\prime}+k \alpha, \alpha\right) \operatorname{mult}_{\lambda}\left(\lambda^{\prime}+k \alpha\right),
$$

where $\rho=\frac{1}{2} \sum_{\alpha>0} \alpha$.
a. Show that for each weight state $\left|\lambda^{\prime}, i\right\rangle$, where $i=1, \ldots, n_{\lambda^{\prime}}=\operatorname{mult}_{\lambda}\left(\lambda^{\prime}\right)$, in the highest weight representation $|\lambda\rangle$, one has $\mathcal{C}\left|\lambda^{\prime}, i\right\rangle=(\lambda, \lambda+2 \rho)\left|\lambda^{\prime}, i\right\rangle$. and argue that in the subspace $\left|\lambda^{\prime}\right\rangle$, one has $\operatorname{Tr}_{\lambda^{\prime}} \mathcal{C}=n_{\lambda^{\prime}}(\lambda, \lambda+2 \rho)$.
We will now calculate $\operatorname{Tr}_{\lambda^{\prime}} \mathcal{C}$ differently.
b. First, calculate $\operatorname{Tr}_{\lambda^{\prime}} \sum_{i} H^{i} H^{i}$.

To calculate the remainder, we will make use of the fact that all the states $\left|\lambda^{\prime}, i\right\rangle$ can also be considered as weights in a representation of the $s u(2)$ subalgebra $\left(E^{\alpha}, E^{-\alpha}, \frac{2 \alpha \cdot H}{|\alpha|^{2}}=\right.$ $\sqrt{2} H$) (where H is in the Cartan-Weyl basis).
c. Consider the quadratic Casimir \mathcal{C}^{\prime} of this $\operatorname{su}(2)$ algebra. Show that $\mathcal{C}^{\prime}=\frac{1}{2} H^{\alpha} H^{\alpha}+$ $E^{\alpha} E^{-\alpha}+E^{-\alpha} E^{\alpha}$, and $\mathcal{C}^{\prime}\left|\lambda^{\prime}, i\right\rangle=\frac{1}{2}(a(a+2))\left|\lambda^{\prime}, i\right\rangle$, where (the integer) a is the highest weight of the $s u(2)$ representation under consideration.
d. Suppose that the highest weight is in fact $\lambda^{\prime}+k \alpha$, where $k \geq 0$. Show that $a=\frac{2\left(\alpha, \lambda^{\prime}+k \alpha\right)}{|\alpha|^{2}}$ and deduce

$$
\frac{|\alpha|^{2}}{2}\left(E^{\alpha} E^{-\alpha}+E^{-\alpha} E^{\alpha}\right)\left|\lambda^{\prime}\right\rangle=\left(k(k+1)(\alpha, \alpha)+(2 k+1)\left(\lambda^{\prime}, \alpha\right)\right)\left|\lambda^{\prime}\right\rangle
$$

All the weights $\left|\lambda^{\prime}, i\right\rangle$ in the ($n_{\lambda^{\prime}}$-dimensional) weight space $\left|\lambda^{\prime}\right\rangle$ have a corresponding value of k, which can be the same for different weights.
e. Argue that

$$
\operatorname{Tr}_{\lambda^{\prime}} \frac{|\alpha|^{2}}{2}\left(E^{\alpha} E^{-\alpha}+E^{-\alpha} E^{\alpha}\right)=\sum_{k \geq 0}\left(n_{\lambda^{\prime}+k \alpha}-n_{\lambda^{\prime}+(k+1) \alpha}\right)\left(k(k+1)(\alpha, \alpha)+(2 k+1)\left(\lambda^{\prime}, \alpha\right)\right)
$$

f. Finish the proof of the Freudenthal recursion formula.

