Exercises CFT-course fall 2008, set 7.

Due on wednesday, december 3rd, 2008.

1. Majorana fermions with periodic and anti-periodic boundary conditions.

The mode expansion for free (Majorana) fermions reads $\psi(z)=\sum_{n} \psi_{n} z^{-n-1 / 2}$, or $\psi_{n}=$ $\oint \frac{d z}{2 \pi i} z^{n-1 / 2} \psi(z)$.
a. Show that the modes obey $\left\{\psi_{n}, \psi_{m}\right\}=\delta_{n+m, 0}$.

We will now consider periodic and anti-periodic boundary conditions for the fermion $\psi(z)$ when z is moved around the origin: $\psi\left(e^{2 \pi i} z\right)= \pm \psi(z)$. The modes n are half integer $n \in \mathbb{Z}+\frac{1}{2}$ in the periodic (P) case, and integer $n \in \mathbb{Z}$ in the anti-periodic (A) case.
b. Use the explicit mode expansions to show that

$$
\begin{aligned}
\langle\psi(z) \psi(w)\rangle_{\mathrm{P}} & =\frac{1}{z-w} \\
\langle\psi(z) \psi(w)\rangle_{\mathrm{A}} & =\frac{1}{2} \frac{\sqrt{\frac{z}{w}}+\sqrt{\frac{w}{z}}}{z-w}
\end{aligned}
$$

It is given that

$$
\left\langle\sigma\left(w_{1}\right) \psi\left(z_{1}\right) \psi\left(z_{2}\right) \sigma\left(w_{2}\right)\right\rangle=\frac{1}{2}\left(w_{1}-w_{2}\right)^{-1 / 8} \frac{\left(\frac{\left(z_{1}-w_{1}\right)\left(z_{2}-w_{2}\right)}{\left(z_{1}-w_{2}\right)\left(z_{2}-w_{1}\right)}\right)^{1 / 2}+\left(\frac{\left(z_{1}-w_{2}\right)\left(z_{2}-w_{1}\right)}{\left(z_{1}-w_{1}\right)\left(z_{2}-w_{2}\right)}\right)^{1 / 2}}{\left(z_{1}-z_{2}\right)}
$$

c. Consider $\langle\sigma(\infty)| \psi\left(z_{1}\right) \psi\left(z_{2}\right)|\sigma(0)\rangle$, where $\langle\sigma(\infty)|=\lim _{w \rightarrow \infty}\langle 0| \sigma(w) w^{2 h}$, and argue that σ 'changes the boundary conditions on ψ '.
2. Character formula's for the Ising model.
a. Calculate the character of the vacuum and ψ sector by calculating the partition function of states of the form

$$
\psi_{-(n-1) / 2-p_{n}} \cdots \psi_{-3 / 2-p_{2}} \psi_{-1 / 2-p_{1}}|0\rangle
$$

where $0 \leq p_{1} \leq p_{2} \leq \cdots \leq p_{n}$.
b. Repeat exercise a. for the σ sector, by considering

$$
\psi_{-(n-1)-p_{n}} \cdots \psi_{-1-p_{2}} \psi_{-p_{1}}|\sigma\rangle
$$

again with $0 \leq p_{1} \leq p_{2} \leq \cdots \leq p_{n}$.
Answer:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{q^{n(n+1) / 2}}{(q)_{n}}=\prod_{n=1}^{\infty}\left(1+q^{n}\right)=\sum_{n \geq 0 \text { even }} \frac{q^{n(n-1) / 2}}{(q)_{n}}=\sum_{n \geq 1 \text { odd }} \frac{q^{n(n-1) / 2}}{(q)_{n}} \tag{1}
\end{equation*}
$$

c. Obtain the last two equalities in (1), by making use of an identity due to Cauchy (which you don't have to prove):

$$
\sum_{n=0}^{\infty} \frac{q^{n(n-1) / 2} x^{n}}{(q)_{n}}=\prod_{n=0}^{\infty}\left(1+x q^{n}\right)
$$

and considering the role of the zero mode ψ_{0}.
3. Modular transformation properties of the Ising characters.

The following definitions and identities are given $\left(q=e^{2 \pi i \tau}\right)$:

$$
\begin{array}{ll}
\theta_{2}(\tau)=\sum_{n=\in \mathbb{Z}} q^{(n+1 / 2)^{2} / 2}=2 q^{1 / 8} \prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1+q^{n}\right)^{2} & \eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right) \\
\theta_{3}(\tau)=\sum_{n=\in \mathbb{Z}} q^{n^{2} / 2}=\prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1+q^{n-1 / 2}\right)^{2} & \eta(\tau)^{3}=\frac{1}{2} \theta_{2}(\tau) \theta_{3}(\tau) \theta_{4}(\tau) \\
\theta_{4}(\tau)=\sum_{n=\in \mathbb{Z}}(-1)^{n} q^{n^{2} / 2}=\prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1-q^{n-1 / 2}\right)^{2} &
\end{array}
$$

a. Show, by making use of the results of exercise 2 ., that the characters of the Ising model are given by

$$
\chi_{0}=\frac{1}{2}\left(\sqrt{\frac{\theta_{3}(\tau)}{\eta(\tau)}}+\sqrt{\frac{\theta_{4}(\tau)}{\eta(\tau)}}\right) \quad \chi_{1 / 2}=\frac{1}{2}\left(\sqrt{\frac{\theta_{3}(\tau)}{\eta(\tau)}}-\sqrt{\frac{\theta_{4}(\tau)}{\eta(\tau)}}\right) \quad \chi_{1 / 16}=\frac{1}{\sqrt{2}} \sqrt{\frac{\theta_{2}(\tau)}{\eta(\tau)}}
$$

b. Calculate the transformation properties of the Ising characters under the transformation $\tau \rightarrow-1 / \tau$, by making use of the Poisson resummation formula:

$$
\sum_{n \in \mathbb{Z}} e^{-\pi a n^{2}+b n}=\frac{1}{\sqrt{a}} \sum_{k \in \mathbb{Z}} e^{(b+2 \pi i k)^{2} /(4 \pi a)}
$$

4. Constraints on c and h_{i} from the fusion rules.

Different conformal field theories can have the same fusion rules. However, for a given set of fusion rules, the possible values of c and h_{i} are restricted by modular invariance.
We will consider a theory with three fields $\mathbf{1}, \sigma$ and ψ, with the fusion rules given by $\sigma \times \sigma=1+\psi, \sigma \times \psi=\sigma$ and $\psi \times \psi=1$. Thus the fusion matrices are (the fields are ordered as $1, \sigma, \psi$)

$$
N_{\mathbf{1}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad N_{\sigma}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad N_{\psi}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

These fusion rules are diagonalized by

$$
S=\frac{1}{2}\left(\begin{array}{ccc}
1 & \sqrt{2} & 1 \\
\sqrt{2} & 0 & -\sqrt{2} \\
1 & -\sqrt{2} & 1
\end{array}\right)
$$

Show that the general relation $(S T)^{3}=C^{2}$, where $C=S^{2}$ is the conjugation matrix (which satisfies $C^{2}=1$), and $T_{i, j}=e^{2 \pi i\left(h_{i}-c / 8\right)} \delta_{i, j}$ gives rise to the constraints

$$
h_{\psi}=\frac{1}{2} \bmod 1 \quad h_{\sigma}-c / 8=0 \bmod 1
$$

