Exercises CFT-course fall 2008, set 7.
Due on wednesday, december 3rd, 2008.

. Majorana fermions with periodic and anti-periodic boundary conditions.
The mode expansion for free (Majorana) fermions reads ¢(2) = >, 1,z ""V2 or 1, =
¢ dz =124 (2).
21
. Show that the modes obey {¥n, ¥} = 6ntmo-

We will now consider periodic and anti-periodic boundary conditions for the fermion
¥(z) when z is moved around the origin: 1(e*™'z) = +(z). The modes n are half
integer n € Z + 3 in the periodic (P) case, and integer n € Z in the anti-periodic (A)
case.

. Use the explicit mode expansions to show that
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. Consider (o(c0)[1(21)Y(22)|a(0)), where (o(00)| = limy, (0] (w)w?", and argue that
o ‘changes the boundary conditions on .

. Character formula’s for the Ising model.

. Calculate the character of the vacuum and v sector by calculating the partition function
of states of the form

V_(n-1)/2-pn = V—3/2-psV-1/2-p,|0)
where 0 < p; <py <--- < py.

. Repeat exercise a. for the o sector, by considering
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again with 0 <p; <py < -+ < p,.

Answer:
> n(n+l)/2 0 n(n—1)/2 n(n—1)/2
q q q
S -y Ty 0
n=0 9)n n=1 n>0 even n>1 odd



c. Obtain the last two equalities in (1), by making use of an identity due to Cauchy (which
you don’t have to prove):
n(n—1) /2 n 0O

) v : = 1a+ea

and considering the role of the zero mode 1)y.

3. Modular transformation properties of the Ising characters.

The following definitions and identities are given (q = €*™7):
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a. Show, by making use of the results of exercise 2., that the characters of the Ising model
are given by
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b. Calculate the transformation properties of the Ising characters under the transformation
T — —1/7, by making use of the Poisson resummation formula:
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4. Constraints on ¢ and h; from the fusion rules.

Different conformal field theories can have the same fusion rules. However, for a given
set of fusion rules, the possible values of ¢ and h; are restricted by modular invariance.

We will consider a theory with three fields 1, ¢ and v, with the fusion rules given by
oxo=14+1,0x 1 =0 and ¥ x ¢ = 1. Thus the fusion matrices are (the fields are
ordered as 1,0,1)

1 00 010 0 01
Ni=1010 N,=11 01 Ny=10 10
0 01 010 1 00



These fusion rules are diagonalized by
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Show that the general relation (ST)? = C?, where C = S? is the conjugation matrix

(which satisfies C? = 1), and Tj; = e2(hi=¢/8)§, ; gives rise to the constraints
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