Exercises CFT-course fall 2008, set 6.

Due on wednesday, november 19, 2008.

1. The hypergeometric differential equation reads

$$
\left(z(1-z) \partial_{z}^{2}+(c-(a+b+1) z) \partial_{z}-a b\right) f(z)=0
$$

a. Find a solution around $z=0$ by substituting $f(z)=\sum_{n>0} f_{n} z^{n}$, and express the result in terms of $(a)_{n},(b)_{n}$ and $(c)_{n}$, where $(x)_{0}=1$ and $(x)_{n}=x(x+1) \cdots(x+n-1)$, i.e. $(x)_{n}=\frac{\Gamma(x+n)}{\Gamma(x)}$.
Answer: $f(z)=F(a, b, c ; z)=\sum_{n \geq 0} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} z^{n}$. Note: the other solution around $z=0$ reads $z^{1-c} F(a-c+1, b-c+1,2-c ; z)$.
b. When are polynomial solutions of the hypergeometric differential equation possible?
2. In this exercise, we will derive an ordinary differential equation for the four point function of $\phi_{1,2}$ of the minimal models:

$$
G\left(\left\{w_{i}\right\}\right)=\left\langle\phi_{1,2}\left(w_{1}\right) \phi_{1,2}\left(w_{2}\right) \phi_{1,2}\left(w_{3}\right) \phi_{1,2}\left(w_{4}\right)\right\rangle=\left(w_{1}-w_{2}\right)^{-2 h}\left(w_{3}-w_{4}\right)^{-2 h} F(x),
$$

where $x=\frac{\left(w_{1}-w_{2}\right)\left(w_{3}-w_{4}\right)}{\left(w_{1}-w_{4}\right)\left(w_{3}-w_{2}\right)}$, and h is the conformal dimension of $\phi_{1,2}$.
The level-2 null-vector condition translates into the following partial differential equations:

$$
\left(\frac{3}{2(2 h+1)} \partial_{w_{i}}^{2}-\sum_{j \neq i}\left(\frac{\partial_{w_{j}}}{\left(w_{i}-w_{j}\right)}+\frac{h}{\left(w_{i}-w_{j}\right)^{2}}\right)\right) G\left(\left\{w_{i}\right\}\right)=0 .
$$

a. Show, by considering the special values $z_{1}=0, z_{2}=x, z_{3}=\infty, z_{4}=1$, that $F(x)$ satisfies

$$
\left(x(1-x) \partial_{x}^{2}+\left(\frac{2(1-4 h)}{3}+\frac{4(h-1)}{3} x\right) \partial_{x}-\frac{2 h(2 h+1)}{3} \frac{x}{1-x}\right) F(x)=0
$$

b. Show that the differential equation obtained in a. can be brought into the form of the hypergeometric differential equation, by defining a function $H(x)=f(x) F(x)$, such that $H(x)$ satisfies

$$
\begin{equation*}
\left(x(1-x) \partial_{x}^{2}+\left(\frac{2(1-4 h)}{3}+\frac{4(4 h-1)}{3} x\right) \partial_{x}+\frac{4 h(1-4 h)}{3}\right) H(x)=0 \tag{1}
\end{equation*}
$$

3. Show that in the case of the Ising model, two independent solutions of the differential equation (1) (with $h=\frac{1}{16}$) take the form

$$
H^{ \pm}(x)=\sqrt{\frac{1 \pm \sqrt{1-x}}{2}}
$$

by making a suitable (trigonometric) transformation.
Thus, the (chiral) four-point σ-correlator of the Ising model takes the form

$$
\left\langle\sigma\left(w_{1}\right) \sigma\left(w_{2}\right) \sigma\left(w_{3}\right) \sigma\left(w_{4}\right)\right\rangle^{ \pm}=\left(w_{1}-w_{2}\right)^{-1 / 8}\left(w_{3}-w_{4}\right)^{-1 / 8}(1-x)^{-1 / 8} \sqrt{\frac{1 \pm \sqrt{1-x}}{2}}
$$

