Exercises CFT-course fall 2008, set 1.

Due on wednesday, october $8,2008$.

1. Renormalization group flow in one dimension.
a. The one-dimensional Ising model in a (reduced) magnetic field is described by the hamiltonian

$$
H=-K \sum_{j} s_{j} s_{j+1}-h \sum_{j} s_{j}
$$

where $s_{j}= \pm 1$. Perform a renormalization group transformation (with scale factor $b=2$) by summing over every other spin. Discuss the renormalization group flows in the (x, y)-plane, where $x=e^{-2 K}$ and $y=e^{h}$.
b. Let t_{j} be a 'spin' at site j which can take the values $t_{j}=1,2,3$. The one-dimensional three states Potts model is described by the hamiltonian

$$
H=-K \sum_{j} \delta_{t_{j}, t_{j+1}}
$$

Perform a similar renormalization group transformation as in a., and derive the flow equation. Show that there are no non-trivial fixed points.
2. The infinitesimal form of the special conformal transformation.

Write the most general from of the quadratic part of ε_{μ}, namely $\varepsilon_{\mu}=c_{\mu \nu \rho} x^{\nu} x^{\rho}$, to derive the infinitesimal transformation

$$
x^{\mu}=x^{\mu}+b^{\mu} x^{2}-2 x^{\mu}(b \cdot x),
$$

and give the explicit form of b^{μ}.
3. The (finite) special conformal transformations (in d dimensions) have the form

$$
\mathbf{x}^{\prime}=\frac{\mathbf{x}+\mathbf{b} x^{2}}{1+2 \mathbf{b} \cdot \mathbf{x}+b^{2} x^{2}}
$$

a. Derive the scale factor $\Omega(\mathbf{x})$ for this transformation: $\Omega(\mathbf{x})=\left(1+2 \mathbf{b} \cdot \mathbf{x}+b^{2} x^{2}\right)^{2}$
b. Show that $\left|\mathbf{x}_{1}^{\prime}-\mathbf{x}_{2}^{\prime}\right|^{2}=\frac{\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right|^{2}}{\gamma_{1} \gamma_{2}}$, where $\gamma_{i}=\left(1+2 \mathbf{b} \cdot \mathbf{x}_{i}+b^{2} x_{i}^{2}\right)$
c. Show that the special conformal transformations leave angles invariant.
4. Show that the three point functions of quasi-primary fields have the following form

$$
\left\langle\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right)\right\rangle=\frac{C_{123}}{x_{12}^{h_{1}+h_{2}-h_{3}} x_{23}^{h_{2}+h_{3}-h_{1}} x_{13}^{h_{1}+h_{3}-h_{2}}}
$$

The h_{i} are the scaling dimensions of the fields ϕ_{i}.
5. Show that the n point functions of quasi-primary fields satisfy

$$
\begin{aligned}
\sum_{i} \partial_{z_{i}}\left\langle\phi_{1}\left(z_{1}\right) \cdots \phi_{n}\left(z_{n}\right)\right\rangle & =0 \\
\sum_{i}\left(z_{i} \partial_{z_{i}}+h_{i}\right)\left\langle\phi_{1}\left(z_{1}\right) \cdots \phi_{n}\left(z_{n}\right)\right\rangle & =0 \\
\sum_{i}\left(z_{i}^{2} \partial_{z_{i}}+2 h_{i} z_{i}\right)\left\langle\phi_{1}\left(z_{1}\right) \cdots \phi_{n}\left(z_{n}\right)\right\rangle & =0,
\end{aligned}
$$

by considering the infinitesimal form of the global conformal transformations.
6. (Optional). On the course website, http://www.nordita.org/~ardonne/cft-course.html, there are three pictures. What do they correspond to?

