
ar
X

iv
:h

ep
-t

h/
97

02
19

4v
1 

 2
7 

Fe
b 

19
97

hep-th/9702194

February 1997

LECTURES ON CONFORMAL FIELD THEORY

AND KAC-MOODY ALGEBRAS

Jürgen Fuchs X

DESY

Notkestraße 85

D – 22603 Hamburg

Abstract.

This is an introduction to the basic ideas and to a few further selected topics in
conformal quantum field theory and in the theory of Kac-Moody algebras.

These lectures were held at the Graduate Course on Conformal Field Theory and
Integrable Models (Budapest, August 1996). They will appear in a volume of the
Springer Lecture Notes in Physics edited by Z. Horvath and L. Palla.

——————
X Heisenberg fellow

1

http://arXiv.org/abs/hep-th/9702194v1
http://arXiv.org/abs/hep-th/9702194


Contents

Lecture 1 : Conformal Field Theory 3

1 Conformal Quantum Field Theory 3

2 Observables: The Chiral Symmetry Algebra 4

3 Physical States: Highest Weight Modules 7

4 Sectors: The Spectrum 9

5 Conformal Fields 11

6 The Operator Product Algebra 14

7 Correlation Functions and Chiral Blocks 16

Lecture 2 : Fusion Rules, Duality and Modular Transformations 19

8 Fusion Rules 19

9 Duality 21

10 Counting States: Characters 23

11 Modularity 24

12 Free Bosons 26

13 Simple Currents 28

14 Operator Product Algebra from Fusion Rules 30

Lecture 3 : Kac--Moody Algebras 32

15 Cartan Matrices 32

16 Symmetrizable Kac-Moody Algebras 35

17 Affine Lie Algebras as Centrally Extended Loop Algebras 36

18 The Triangular Decomposition of Affine Lie Algebras 38

19 Representation Theory 39

20 Characters 40

Lecture 4 : WZW Theories and Coset Theories 42

21 WZW Theories 42

22 WZW Primaries 43

23 Modularity, Fusion Rules and WZW Simple Currents 44

24 The Knizhnik-Zamolodchikov Equation 46

25 Coset Conformal Field Theories 47

26 Field Identification 48

27 Fixed Points 49

28 Omissions 51

29 Outlook 52

30 Glossary 53

References 55

2



Lecture 1 : Conformal Field Theory

1 Conformal Quantum Field Theory

Over the years, quantum field theory has enjoyed a great number of successes. Nevertheless,
from a conceptual point of view the situation is far from satisfactory, and in some respects it
even resembles a disaster. Indeed, beyond perturbation theory many of the methods used in
phenomenologically successful models cannot be justified rigorously. For instance, a thorough
understanding of path integrals is essentially only available for free fields, or for topological
‘field’ theories which have a finite-dimensional configuration space. Also, the relation between
the elementary ‘point-like’ quantum fields (whatever the precise meaning of such quantities
may be) and the actual particle contents of a theory is often obscure. (The elementary fields
may be regarded as a coordinatization of the field space, while the particles have a meaning
independent of a choice of coordinates; typically a distinguished and / or manageable choice of
field coordinates which directly correspond to particles is not available.) On the other hand,
frameworks whose foundations are mathematically sound, like e.g. Wightman field theory [104]
or C∗-algebraic approaches [70], are difficult to relate to concrete models, and indeed have
traditionally been plagued with a scarcity of models to which they apply. For example, the
proper treatment of U(1)-charges (which are coulombic rather than localized) in the framework
of algebras of local observables is still problematic.

It is worth stressing that ‘quantum field theory’ is not a protected term, but is used for a
variety of rather different concepts. 1 In particular there are two basically different points of
view of the relation between ‘quantum’ versus ‘classical’ field theories. One may either try to
quantize a classical theory (say by canonical quantization or using path integrals), or directly
start at the quantum level, e.g. by describing the field and observable algebras, in which case a
classical theory may be obtained by performing a suitable limit. It is far from obvious that the
resulting quantum, respectively classical, theory is uniquely determined. Another important
difference concerns the description of observables. In some approaches these are characterized
quite concretely (e.g. as gauge respectively BRS invariant combinations of the elementary field
variables of the classical theory), in others they appear more abstractly as operators on a Hilbert
space which at an initial stage are only known via their general algebraic properties.

Conformal field theory admits formulations which directly approach the exact theory at the
quantum level, but nevertheless describe observables quite explicitly and handle large classes
of models simultaneously. In particular many quantities of interest can be calculated exactly

rather than only in a (typically at best asymptotic) perturbation series. In addition, for a
large number of models there exists (or is at least conjectured) a Lagrangian / path integral
realization, so that in principle one can study such models in several guises and e.g. compare
with conventional perturbation theory. Conformal field theory can therefore help to bridge the
gap between various approaches to quantum field theory.

Here and below, by the term conformal field theory I refer to models in one or two space-
time dimensions which are relativistic quantum field theories and possess conformal symmetry.
What precisely this characterization means will be studied shortly. Again one must note that

1 While a lot of physicists believe to know exactly what quantum field theory is, you will most probably get
two different answers when you ask any two of them. And not only the methods and results are under debate,
but even the basic questions to be asked.
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the term ‘conformal field theory’ is not protected and can stand for a variety of different formu-
lations. Here I approach this subject from the perspective of quantum field theory. However,
in this introductory exposition I will not attempt to build exclusively on general field theoretic
considerations, but rather I concentrate on certain basic algebraic structures and assume that
the reader has already some faint acquaintance with fundamental field theoretic notions that
will play a rôle, such as the operator product algebra, correlation functions and fusion rules.
On the other hand, in a sense I start from scratch, in that at least I try to indicate each logical
step explicitly, even though I probably do not provide sufficient explanation for all of them.

The motivations to study conformal field theories are manifold, and I am content to just drop
a few keywords here: 2 field theories describing systems at the critical point of a second order
phase transition in statistical mechanics; vacuum configurations of strings and superstrings;
braid group statistics; topological field theory; invariants of knots and links, and of three-
manifolds; integrable systems as perturbed conformal models; the fractional quantum Hall
effect; high temperature superconductivity.

In the study of conformal field theories, the following two issues prove to be most fundamen-
tal. First, the classification programme; and second, the complete solution, by reconstruction
from certain basic data (possibly obtained in the course of classification), of specific models.
We will encounter various manifestations of these two aspects of conformal field theory in the
sequel. They indicate that these theories are very special indeed: while (contrary to the im-
pression that is occasionally given) a classification of all conformal field theories or a complete
solution of any arbitrary given conformal field theory model is totally out of reach, one can

classify large classes of conformal field theories, and one can solve very many models to a large
extent.

2 Observables: The Chiral Symmetry Algebra

One of the ultimate goals of a physical theory is to predict the outcome of all possible mea-
surements. Accordingly, a basic step in the investigation of a conformal field theory consists of
characterizing its observables. In quantum physics, one thinks of observables as operators acting
on a Hilbert space of physical states. Moreover, in relativistic quantum field theory it is usu-
ally necessary to consider operators which are bounded (only these can be continuous) and are
localized in some compact space-time region, i.e. act as the identity outside [70]. Observables
localized in space-like separated regions commute (locality principle). In contrast, below I will
work with non-localized unbounded operators; that this does not lead to any severe problems
has its origin in the fact that these observables enjoy an underlying Lie algebra structure. To
obtain localized bounded operators one would, roughly speaking, have to smear these operators
with test functions of compact support and form bounded functions thereof.

The most important subset of these observables of a conformal field theory is provided
by the conformal symmetry itself. Conformal transformations of space-time – i.e. of a (pseu-
do-)Riemannian manifold – are by definition those general coordinate transformations which
preserve the angles between any two vectors, or what is the same, which scale the metric
locally by an over-all factor (Weyl transformations). In a flat space-time of D > 2 dimen-
sions the infinitesimal conformal transformations consist of translations, rotations (respectively

2 For more details I refer to the references listed in section 28, to other lectures delivered at this school, as
well as to the huge number of works where such motivations are advertised.
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Lorentz boosts), a dilation and so-called special conformal transformations; these generate a
(D+1)(D+2)/2 -dimensional Lie algebra, which is a real form of so(D+2,C) (e.g. so(D, 2) in
the case of Minkowski space). 3 In contrast, for D=2 any arbitrary holomorphic mapping of the
(compactified) complex plane is angle-preserving. Thus in complex coordinates z, z̄, infinitesi-
mal conformal transformations are generated by mappings which transform z as z 7→ z + η(z)
by functions which do not depend on z̄ – a basis of which is given by η(z) = − zn+1ǫ for n∈Z

– and by analogous mappings of z̄ with functions which do not depend on z. On functions of
z, z̄ these mappings are generated by differential operators

ln = −zn+1∂z and l̄n = −z̄n+1∂z̄ , (1.1)

respectively. The operators ln satisfy the commutator relations

[lm, ln] = (m− n) lm+n , (1.2)

and an analogous formula holds for the l̄n. In mathematical terms, this means that both the ln
and the l̄n span an infinite-dimensional Lie algebra; moreover, these two algebras are combined
as a direct sum, i.e. one has [lm, l̄n] = 0. The Lie algebra defined by (1.2) is known as the Witt

algebra.
The formula (1.2) was obtained by purely classical considerations. In quantum theory, there

are analogous operators Ln with n∈Z, but now they satisfy

[Lm, Ln] = (m− n)Lm+n + 1
12 (m3 −m) δm+n,0C . (1.3)

That is, they again give rise to a Lie algebra, but there appears an additional generator C; C
is a central element, i.e. has zero Lie bracket with the whole algebra,

[C,Ln] = 0 . (1.4)

The infinite-dimensional Lie algebra 4 defined by (1.3) and (1.4) is called the Virasoro algebra

and denoted by Vir . In short, the Lie brackets of Vir differ from their classical counterpart only
in the term with C; the generator C, which in mathematics is known as the canonical central
element or central charge, is therefore in physics also referred to as the conformal anomaly. As
in the classical situation one deals in fact with the direct sum of two Virasoro algebras, the
second one being generated by operators L̄n, n∈Z, and C.

In a purely mathematical context, the relations (1.3) arise – by solving a cohomology prob-
lem [53] – as the unique non-trivial central extension of (1.2). Field-theoretically, (1.3) is
obtained by making a general ansatz for the equal-time commutator of the ‘energy-momentum
tensor’, whose Fourier--Laurent components are the operators Ln and L̄n (see equation (1.25)
below). When one imposes the requirements that the Wightman axioms are satisfied, that the
system is dilation invariant, and that the energy-momentum tensor is a conserved 5 (Noether)

3 More generally, the real form is so(p + 1, q + 1) for signature ((+)p, (−)q).
4 Let me remind you at this point that, by definition, a Lie algebra over C (or similarly over R, or more

generally over any field of scalars {ξ}), is a vector space with a bilinear product – called the Lie bracket and
denoted by [ · , · ] – which is antisymmetric and satisfies the Jacobi identity. In physics, the most common
realization of a Lie bracket is as the commutator with respect to an underlying associative product.

5 Also note: That the energy-momentum tensor is both conserved and traceless implies that the ‘dilation
currents’ xµTµν are conserved.
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current, this equal-time commutator becomes a finite sum of products of (derivatives of) the δ-
function multiplied with local operators, and this result – known as the Lüscher--Mack theorem
[57] – is equivalent to (1.3).

Let me point out once more that in a quantum field theoretic setting the physical meaning
of the generators of conformal symmetry is as providing (non-bounded, non-localized) observ-
ables, in the same spirit as e.g. momentum and angular momentum are observables in ordinary
one-particle quantum mechanics. A brief characterization of a conformal field theory is there-
fore that the observable algebra contains (the direct sum of two copies of) the Virasoro algebra.
In general, the full observable algebra of a conformal field theory may be larger, though. But
by considerations based on properties of conserved currents, similarly as in the proof of the
Lüscher--Mack theorem, one can argue that the observables (regarded as Fourier--Laurent com-
ponents of conserved currents) still generate a Lie algebra, and the direct sum structure persists
as well. In short, the observables of a conformal field theory form an infinite-dimensional Lie
algebra Wtot over C with countable basis, which can be written as

Wtot = W ⊕W ′ with W⊃Vir and W ′⊃Vir . (1.5)

There is a variety of names for the two direct summands W and W ′: the holomorphic / anti-
holomorphic, or chiral / antichiral, or left / right subalgebras. When one considers only one of
these subalgebras, one refers to the observables as the chiral symmetry algebra. As a conse-
quence of the direct sum structure, for many purposes one can restrict ones attention to one
‘chiral half’ of the two-dimensional theory, and I will do so for the time being. (For aspects of
the two-dimensional theory see e.g. sections 7, 9, 14 below. Also note that one needs not nec-
essarily require that the left and right chiral halves have isomorphic chiral symmetry algebras;
when W ′ 6∼= W, then one speaks of a ‘heterotic’ theory.)

Unless stated otherwise, from now on it will be assumed that W is maximal , i.e. that it
already includes all (chiral) observables. W has a basis of the form {W i

n} ∪ {Cℓ}, where the
index n of W i

n takes values in Z, while the index i takes values in a set I ≡ {0, 1, 2, ...} which
may be finite or possibly infinite, and where the Cℓ are central elements satisfying [Cℓ, · ] = 0.
The Virasoro generators can be identified as Ln ≡ W 0

n . At least for m∈{0,±1} any generator
W i

n then satisfies
[W 0

m,W
i
n] ≡ [Lm,W

i
n] = ((∆i − 1)m− n)W i

m+n , (1.6)

with certain numbers ∆i which must be positive integers (on the other hand, for i=0 and
m 6= {0,±1}, there is in addition the central term). In particular, the subscript n already
determines the Lie bracket with the Virasoro algebra generator L0,

[L0,W
i
n] = −nW i

n . (1.7)

In fact, this subscript even supplies us with a Z-grading of W , i.e. the structure constants of
W , defined by 6 [W i

m,W
j
n] =

∑
p∈Z

∑
k∈I f

ij ,p
mn,k W

k
p are subject to the condition

f ij ,p
mn,k = 0 for p 6= m+ n . (1.8)

6 In principle, on the right hand side infinitely many terms may appear. In this case strictly speaking one
does not deal with a proper basis of a Lie algebra, and a completion with respect to a suitable topology is
needed. However, as it turns out, when applied to any vector in the relevant space H of physical states, only
a finite number of terms is non-zero, owing to the fact that the generators W i

m act ‘locally nilpotently’ in H.
This is also one of the reasons why considering formally infinite series as in (1.24) below does not lead to any
serious problems.
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Also, central elements have grade 0.
For the time being I will not be more specific about the algebra W . Later on, we will

encounter important examples, the so-called current algebras. Other possibilities are super-
symmetric extensions 7 of the Virasoro algebra, and many more chiral algebras are described
in detail in the lectures by Gerard Watts.

Before proceeding, let me point out that the restriction to one chiral half requires in par-
ticular to regard z and z̄ as two independent complex variables; z̄ is to be identified with the
complex conjugate of z only once the two chiral halves of a two-dimensional theory are com-
bined. That this is a sensible way to proceed is far from obvious, and actually the interpretation
of this prescription depends in part on the context in which the conformal symmetry is consid-
ered:

When arising in minkowskian quantum field theory, the variables z and z̄ take their values
on circles that are obtained as the two compactified light-cones x0 = ± x1 of the two-dimen-
sional theory, from which they are extended to the punctured plane C \{0}. Identification of
z̄ as the conjugate of z thus amounts to considering an analytical continuation of the original
minkowskian theory to euclidean signature which does not coincide with the usual Wick rota-
tion.

In applications to string theory, the punctured plane arises as the image of the cylindrical
world sheet swept out by a closed relativistic string. In the description of phase transitions, z is
the complex coordinate of a euclidean two-dimensional field theory. The meaning of separating
z and z̄ is in these cases less clear.

At the level of the chiral algebra, taking z and z̄ as independent amounts to regarding W
and W as algebras over the complex numbers. It is tempting to interpret the identification of z̄
with the complex conjugate of z as considering a suitable real form of the complex Lie algebra,
but this is actually not quite correct.

3 Physical States: Highest Weight Modules

Once we know the observables, the next logical step is to investigate how they ‘act’ on a space

H of physical states. Ideally, this way in the end we describe all properties of a conformal field
theory model in terms of its (maximal) chiral symmetry algebra W . Now in the conventional
operator approaches to quantum field theory, H is a separable Hilbert space and the observables
are contained in the algebra of bounded linear operators on this Hilbert space. As already
pointed out, here we are in a somewhat different situation. Nevertheless, the following basic
requirements are still implicit in the concept of a space of physical states:
(H1) H is a representation space of the observable algebra, i.e. of W .
In the following I will employ the shorter term module common in mathematics as a synonym
for ‘representation space’; elements of H are denoted by v, w, ... .
(H2) The representation of W on H is unitary. Correspondingly, H is endowed with a positive
hermitian product (· | ·), so that it becomes a pre-Hilbert space.
(H3) The spectrum condition: The energy is bounded from below.

In order that the qualification ‘unitary’ in property (H2) makes sense, W must be endowed

7 The extension is by normal ordered products of supercurrents; the supercurrents themselves have half
integral ∆, i.e. are not observables and hence are not contained in W .
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with a generalized complex conjugation, i.e. a mapping x 7→ x∗ satisfying

(x∗)∗ = x , (ξx)∗ = ξ̄ x , (xy)∗ = y∗ x∗ (1.9)

(in mathematical terms: W must be a ∗-algebra), such that

(v |xw) = (x∗v |w) (1.10)

holds for the hermitian product on H. In the last of the relations (1.9) (and, likewise, often
implicitly below), one works in fact within the universal enveloping algebra of W, i.e. with the
associative algebra U(W) that (roughly) can be described as consisting of formal products of
elements of W , with the Lie bracket of W equal to the commutator in U(W).

In formulating the spectrum condition (H3), it is in particular assumed that among the
observables there is an energy operator. In chiral conformal field theory this operator is provided
by the Virasoro generator L0, as follows from the rôle played by L0 in applications. Briefly, L0

acts as −z ∂
∂z

and hence measures the mass (or scaling) dimension, i.e. L0O=∆·O for operators
O∼ (length)−∆ ∼ (mass)∆ ∼ (energy)∆. Also, it is implicit in formulating property (H3) that
the action of L0 on H can be diagonalized, so that (L0)

∗ = L0 by (H2). The eigenvalue ∆ of L0

on an eigenvector in H is called the conformal dimension or the conformal weight of the vector.
Furthermore, together with the relation [L0,W

i
n] = − nW i

n (1.7), property (H3) implies that
every vector in H is annihilated by all W i

n with sufficiently large n, and (because L1 augments
the L0-eigenvalue by 1) that any vector v∈H satisfies (L1)

Nv=0 for large enough N .

Let me now analyse the structure of W a bit further. Because of its graded structure (see
equation (1.8)), as a vector space W is the direct sum W = W−⊕W0 ⊕W+ of subalgebras
W± and W0 which are given by

W± := span{W i
n | i∈I, ±n> 0} , W0 := span{W i

0 | i∈I} . (1.11)

Further, again because of (1.7) (namely, [L0,W
i
n] 6= 0 for n 6= 0), the zero mode subalgebra W0

contains a maximal abelian subalgebra W◦ ⊂ W with L0 ∈ W◦, and there are subalgebras
W± ⊆ W0 ⊕W± such that

W = W− ⊕W◦ ⊕W+ (1.12)

is a triangular decomposition of W, which means that

[W±,W◦ ⊕W±] ⊆ W± , [W+,W−] ⊆ W◦ . (1.13)

Lie algebras which enjoy a triangular decomposition possess a distinguished class of modules,
the so-called highest weight modules. Such modules V are by definition generated by a highest

weight vector vh.w.. This means the following. First,

V ⊆ U(W−) vh.w. , (1.14)

i.e. all vectors in a highest weight module V can be obtained from the highest weight vector
vh.w.∈V by acting with the universal enveloping algebra of W−; thus the elements of W− play
the rôle of creation operators. Second, all elements of W+ act on vh.w. as annihilation operators:

x+vh.w. = 0 for all x+∈W+ . (1.15)
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And third, vh.w. is an eigenvector of the abelian algebra W◦. In other words, for any highest
weight vector vA there is a linear function λA: W◦ → C such that

x◦ vA = λA(x◦) · vA (1.16)

for all x◦∈W◦; I will call λA the weight of vA with respect to W◦.
Owing to L0 ∈ W◦ and relation (1.7), every highest weight module of W satisfies the

spectrum condition (H3). However, not any arbitrary highest weight module of W qualifies as a
subspace of H: the unitarity property (H2) must be satisfied as well. 8 Now every highest weight
module V is already endowed with a natural hermitian product; this is uniquely specified by
the value on the highest weight vector, say (vh.w.|vh.w.) = 1, namely by choosing a basis of W in
such a way that

(W i
n)∗ = W ī

−n , (1.17)

where i 7→ ī is some involutive permutation of the index set, and then implementing the property
(1.14). If the so obtained product is degenerate, then the subspace of V consisting of all null

vectors, i.e. vectors vnull which are orthogonal with respect to the form (· | ·) to all of V (i.e.
(vnull |w) = 0 for all w ∈ V ), is a submodule of V , and hence V is reducible (but not fully
reducible). On the other hand, every unitary highest weight module V is in fact also irreducible,
i.e. W acts on V by an irreducible representation R.

Now for any vector vA, a simple way to construct a highest weight module is to act freely

with the enveloping algebra U(W−); the module

VA = U(W−) vA . (1.18)

obtained by this construction is known as the Verma module generated by vA. Verma modules
are typically neither irreducible nor unitary; however, in the cases of interest in conformal field
theory the submodule of VA consisting of null vectors is a maximal submodule, and by ‘setting
the null vectors to zero’ (or, in more mathematical terms, by taking the quotient of VA by this
submodule) one arrives at a module HA which is unitary and irreducible. Also, any highest
weight module with highest weight vector vA can be understood as some quotient of VA. It
follows that each irreducible sub-W-module of the space H can be obtained in this fashion,
with A some index labelling the module.

The conformal weight of the highest weight state vA of HA will be denoted by ∆A. When
v∈HA is an eigenvector of RA(L0)

9 of eigenvalue ∆, then m := ∆A−∆ is a non-negative integer,
which for v=W i1

−m1
· · ·W il

−ml
vA (mp ≥ 0 for p=1, 2, ... , l) can be computed as m=

∑l
p=1mp; m

is called the grade of v.

4 Sectors: The Spectrum

One can summarize some of the results reviewed above by stating that the properties (H1) to
(H3) imply that H has the structure of a (possibly infinite) direct sum

H =
⊕

A
HA (1.19)

8 While unitarity is an obvious requirement in quantum field theory, in statistical mechanics systems it is not
always necessary. Nevertheless the W-modules arising in conformal field theory applications to statistical me-
chanics are highest weight modules (except in so-called ‘logarithmic’ conformal field theories, which I disregard
here, compare section 28), for a reason which is still mysterious to me.

9 Henceforth, the symbol R will almost always be suppressed.
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of unitary irreducible highest weight modules HA of W . However, these requirements do not

specify which of the various unitary irreducible highest weight modules of W appear in the
sum (1.19). The set of irreducible modules which do appear constitutes the spectrum of the
conformal field theory; these spaces are also called the physical irreducible modules of W, or
the superselection sectors of the theory, or briefly the sectors.

Any observable which appears as a central element of W not only acts as a constant in each
sector HA (this is just a corollary of Schur’s lemma), but in fact it must act by one and the
same constant on all sectors. This condition constitutes a strong restriction on the spectrum.
Its origin is that central charges cannot be localized; in the context of local observables which
are required to form a simple associative algebra, any central charge must therefore be a scalar
multiple of the unit operator. Frequently this requirement also arises, at a more practical level,
from the fact that one must work with expressions which only make sense when these charges
are regarded as numbers; cf. e.g. the Sugawara formula (4.3) below.

It is an important result, known as naturality, that once the eigenvalues of all central
elements of W are fixed (and provided that W is maximal), in the spectrum of a chiral half of
a conformal field theory each (isomorphism class of) unitary irreducible highest weight module
appears precisely once. (The derivation of this assertion [87] is beyond the scope of these
lectures.) When the number of sectors is finite, then the conformal field theory is called a
rational theory. This name originates from the observation that in a rational conformal field
theory both the eigenvalues of (canonically normalized) central elements and all conformal
dimensions ∆A are rational numbers.

Among the spectrum of a conformal field theory there is a distinguished sector H◦ with
∆◦ = 0. Its presence is implied by another basic property of quantum field theory, namely the
existence of a vacuum state. This is a vector v◦ in H◦ (unique up to scalar multiplication) which
is invariant under all unbroken symmetries of the theory. In the present context this means
that v◦ is in particular W◦-neutral, i.e. x◦v◦ = 0 for all x◦∈W◦, or in short, λ◦ ≡ 0. Naively
one might expect that v◦ also has all other symmetries of the theory, in particular that it is
conformally invariant, i.e. is annihilated by all Ln. But for c 6= 0 this would be incompatible
with the relations (1.3) of Vir. Rather, one can only require that v◦ be annihilated by Ln with
n≥−1. Similar remarks apply to the action of other elements W i

n∈W on the vacuum; in short,
v◦ respects the maximally possible number of symmetries of the theory. As a consequence, v◦
is a highest weight vector of W . The irreducible submodule H◦ of H which contains the special
vector v◦ is called the vacuum sector of the theory.

That v◦ is annihilated by Ln with n≥−1 means that it is both a highest weight vector with
respect to Vir and invariant under the subalgebra

P := Vir0,±1 ≡ span{L1, L0, L−1} ∼= sl(2) (1.20)

of Vir (the projective, or Möbius, transformations); this subalgebra is isomorphic to sl(2). 10

Note that the projective transformations are precisely those whose classical counterpart is well-
defined on the whole Riemann sphere so that they can be exponentiated so as to provide finite
conformal transformations. Namely, the action of −zn+1∂z is non-singular at z = 0 only for
n ≥ −1, and non-singular at z = ∞ (where it acts as w1−n∂w with w = 1/z) only for n ≤ 1.

10 When the field of scalars is restricted from C to R, one obtains the real form su(1,1) ∼= sl(2, R) of sl(2).
Together with the anti-holomorphic counterparts L̄0, L̄±1 one arrives at a real form of so(4); this is precisely
the conformal algebra that one would get when ‘naively’ extrapolating from arbitrary D > 2 to D = 2.
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Let me also remark that in some applications one may well need the full conformal in-
variance, so that according to the remarks above the conformal symmetry must not have an
anomaly, i.e. one needs c = 0. This happens e.g. in string theory. In that case there is an extra
contribution to c from the ghost fields which are employed to gauge-fix two-dimensional gravity,
so that the requirement is that cmatter = −cghost, e.g. cmatter =26 for the bosonic string. 11

For unitarity, the numbers ∆A, and hence the conformal weights of all L0-eigenvectors in H,
must in fact be non-negative. Namely, consider first vectors v which are quasi-primary, which
means that they are annihilated by L1. Then due to [L1, L−1] = 2L0 and (L−1)

∗ =L1 one has
‖L−1 v‖2 = 2∆v ‖v‖2, which by unitarity implies that ∆v ≥ 0. (Also, ∆v =0 iff L−1v= 0, in
which case together with L1v=0 it follows that v is invariant under the projective subalgebra
P (1.20) of Vir.) Further, for any arbitrary vector v∈H let N be the smallest natural number
such that (L1)

Nv = 0 (which exists, see before equation (1.11)); then the vector ṽ := (L1)
N−1v

is non-zero and also quasi-primary. Since the conformal dimensions of v and ṽ are related by
∆ṽ = ∆v − (N−1), ∆v < 0 would imply that ∆ṽ < 0, which as already discussed cannot happen.

A similar argument shows that ‖L−nv◦‖2 = (n3 −n) ·c/12 for all n ∈ N, so that (taking
n > 1) for unitarity it is required that c > 0. Further constraints on the spectrum are obtained

by studying the positivity of ‖W i1
−n1

· · ·W ip
−np

vA‖ systematically. That is, at any fixed grade one
considers the matrix of inner products of all basis states; a necessary condition for unitarity
is that each such matrix has non-negative determinant (one needs not impose strict positivity,
because one can ‘decouple’ null vectors, which corresponds to quotienting the Verma module
VA). To analyze this condition one writes the inner products as expectation values of W-
generators with respect to the highest weight vector, which can be calculated by using the
bracket relations of W . In practice this can become very hard; for W =Vir the result is that
for c≥ 1 there is no restriction on the conformal dimensions, while below c=1 only the discrete
set

c = cm := 1 − 6
m(m+1) with m ≥ 3 (1.21)

of c-values is allowed, and for each of these specific values only a finite set

∆ = ∆m;p,q :=
((m+1)p−mq)2−1

4m(m+1)
with 1 ≤ p, q ≤ m− 1 (1.22)

of conformal weights is possible; the theories with these values of c and ∆ are known as the
minimal unitary models of the Virasoro algebra. Thus all unitary theories with c< 1 are ratio-
nal. But even when the unitarity requirement is dropped, one still needs c< 1 for rationality.
In other words, for rational theories with central charge c ≥ 1, the chiral symmetry algebra W
is always larger than Vir.

5 Conformal Fields

Even though one is ultimately interested in observable quantities only, i.e. in matrix elements

11 In this context it is less obvious that (the matter part of) the conformal field theory should be unitary.
(What one has to achieve is unitarity on a certain cohomology of V ir ; for this it is certainly helpful to start
from a unitary conformal field theory, but I do not know whether this is really necessary.) Also, typically one
‘compactifies’ the string theory by stipulating that cmatter is the sum of a contribution from space-time and one
from some ‘internal’ theory. When the space-time is flat, each space-time dimension corresponds to one free
boson and hence (see section12) contributes 1 to c ; but it is not clear to me why in our world where space-time
is only asymptotically flat its contribution to c should have precisely the integral value c =4.
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of observables, in quantum field theory it is often convenient to employ non-observable objects
in intermediate steps of calculations. When such objects are operators on the space H, they
are referred to as fields. Generic fields are distinguished from the observables by the fact that
in terms of the sector decomposition (1.19) of H, they act as HA →HB with B 6=A, while
observables act within each individual subspace HA. 12 In conformal field theory, one realizes
field operators ϕ via the so-called state-field correspondence; the basic idea is that one generates
all vectors in H from the vacuum v◦ by applying suitable point-like conformal fields ϕ(z,z̄),
according to

v∆,∆̄ = lim
z,z̄→0

ϕ∆,∆̄(z, z̄) v◦ . (1.23)

Here the labels indicate the conformal weights of the fields, respectively of the vectors v∆,∆̄

(usually more labels are needed to distinguish the fields, especially when W ⊃ Vir). The
formula (1.23) is often read as the definition of the vector v∆,∆̄ ∈ H; in the present spirit, it
rather specifies the rôle played by the fields ϕ.

The precise meaning of the prescription (1.23) and of the formal objects ϕ introduced there
is not at all obvious, and depending on the framework adopted to interpret these quantities it
can be a delicate issue to verify that the limit in (1.23) makes sense. To investigate this one
best starts with the case where the vector v∆,∆̄ lies in the vacuum sector H◦, so that the fields
are actually observables. Now the maximality requirement imposed on the chiral symmetry
algebra W means in particular that any operator on H which does not belong to W changes
the sector; thus in order for v∆,∆̄ to lie in H◦, the fields must be suitable combinations of the
generators W i

n. The correct interpretation of the fields is then as generating functions

W i(z) =
∑

n∈Z

z−n−∆i W i
n , (1.24)

or in other words, the generators of W are regarded as moments or modes of W i(z). In the
case of the Virasoro generators, this generating function

T (z) =
∑

n∈Z

z−n−2 Ln , (1.25)

plays the rôle of the energy-momentum tensor ; that is, in models which can also be formulated
in a Lagrangian setting, it describes the response of the Lagrangian density to a variation of
the space-time metric. 13 One must note that in the formula (1.24) the variable z is introduced
just as a formal indeterminate. When z is interpreted in terms of a world sheet, and hence
is regarded as a complex variable, then the W i

n are just the Fourier--Laurent modes of W i(z),
and one must worry about the convergence of expressions like (1.24). One way to attack this
problem is to think of fields as operator valued distributions, and to work with localized bounded
operators (by smearing with test functions and exponentiating), which can e.g. be analyzed in
the framework of Wightman field theory [104] or of the algebraic theory of superselection sectors
[70]. Here I rather describe the (much less rigorous) formulation that is based on the work of

12 Such a distinction only makes sense if one demands that the superposition principle is not universally valid.
In other words, only those vectors in H which lie in one of the subspaces HA are regarded as corresponding to
proper physical states.

13 This manipulation makes sense even for theories on flat space-times, because the operations of variation
and of taking the limit that the metric becomes flat do not commute.
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Belavin, Polyakov and Zamolodchikov [11] and is sometimes called the bootstrap approach.
Another alternative, at least as far as the mathematical aspects of the theory, rather than
its physical interpretation, are concerned, is to think of z as a formal (in the well-defined
mathematical sense) variable; this leads to the concept of a vertex operator algebra [37].

Interpreting z as a complex variable, one can invert the relation (1.24), so as to write the
Laurent modes as contour integrals of fields multiplied with powers of z,

W i
m = 1

2πi

∮

0

dz zm+∆i−1W i(z) (1.26)

(recall that ∆i∈Z), where integration is over some curve encircling zero.
When it comes to genuine fields ϕ(z,z̄) rather than observables, it is worth to return to the

issue of which properties characterize a ‘conformal field theory’. What one has to demand is
that the ‘space of all fields’ carries a representation of the conformal group, respectively of the
conformal algebra – analogously to what one is used to from Lorentz covariant theories in which
the fields carry an action of the Lorentz group and in which, as a consequence, the excitations
can be classified by representations of that group. But not all fields one can think of are on the
same footing. In particular, the following ones are distinguished:

The (Vir-) primary fields. These are defined by the requirement that the state v∆,∆̄ (1.23) is
a Vir -highest weight state, i.e. is annihilated by all Ln with n > 0.

The (Vir-) quasi-primary fields. For these, v∆,∆̄ is annihilated by L1, and hence is a highest
weight state of the Möbius subalgebra P (1.20) of Vir .

In the relations of the sl(2)-algebra P the central term is absent, so that one can identify
the generators L0, L±1 with the corresponding generators of the Witt algebra (1.2). Quasi-
primary fields are therefore also called ‘non-derivative’ fields. In terms of the Laurent modes,
the distinguished behavior of these types of fields is demonstrated by (1.6), which in terms
of fields can be rewritten as [Lm,W

i(z)] = zm+1∂W i(z) + (m+1)∆iz
mW i(z): when (1.6) holds

for m=0 and ±1, then W i(z) is quasi-primary, while if it holds for all m∈Z, then W i(z) is
primary. Analogous relations hold for every (quasi-) primary field φ: [Lm, φ(z)] = zm+1∂φ(z) +
(m+1)∆φz

mφ(z); in particular, in the limit z→ 0 one obtains

[Ln, φ(0)] =





0 for n > 0 ,

∆ · φ(0) for n = 0 ,

∂φ(0) for n = −1 .

(1.27)

Non-primary fields are called secondary fields or descendants (and also the term ‘ancestor’
for primary field is used). Among the fields that correspond to the vectors in an irreducible
highest weight module HA of W there is precisely one primary field φA; it corresponds to the
highest weight vector. The collection of these fields, consisting of the primary φA and all its
descendants, is called the family of φA and is denoted by [φA]. By the grade of a descendant of
φA one means the grade of the corresponding vector in HA.

The simplest example of a primary field, present in every conformal field theory, is the
identity field 1. It satisfies ∂1 = 0, and hence corresponds to the vacuum vector v◦; its first
non-trivial descendant is the energy-momentum tensor T (z):

lim
z→0

T (z) v◦ =
∑

n∈Z
z−n−2Lnv◦ = L−2v◦ . (1.28)
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T (z) is the prime example of a quasi-primary field.
The Lie brackets of the Laurent components of all quasi-primary fields in the chiral symme-

try algebra W read [W i
m,W

j
n] = dijp

i δm+n,0 +
∑

k C
ij
k q

ijk
mnW

k
m+n, where the structure constants

pi (which are combinations of eigenvalues of central charges) and qijk
mn are rational numbers

for which explicit expressions in terms of ∆i, respectively, m, n and ∆i, ∆j , ∆k are known
[14]. Here I use the notations dij := 〈W i

∆i
W j

−∆j
〉 and Cijk := 〈W i

∆i
W j

−∆j
W k

∆j−∆i
〉 as well as∑

jd
ijdjk = δi

k and Cij
k :=

∑
lC

ijldlk, where 〈· · ·〉 denotes the vacuum expectation value, defined
as

〈X〉 := (v◦ |X v◦) . (1.29)

Bounded operators on a Hilbert space can be multiplied. Analogously one would like to
multiply in a suitable way the fields ϕ(z,z̄) that occur in the present setting. Just like in other
approaches to quantum field theory there arises the problem that such products tend to be
singular, at least in the limit of ‘coinciding points’. A way out is to consider normal ordered

expressions, i.e. set

:W i
mW

j
n: =

{
W i

mW
j
n for n > 0 ,

W j
nW

i
m for n ≤ 0

(1.30)

(say) for bilinears in the modes W i
n. (The normal ordering prescription adopted here is not

at all the only possible one. Whenever one changes the treatment of only a finite number of
terms (in a quite arbitrary manner), one obtains another sensible normal ordering.) The normal
ordered products (1.30) share the property of the generators W i

n to act locally nilpotently on H.
Also, the normal ordering of fields W i(z) is obtained from the normal ordering of their modes
W i

n via the series expansion (1.24). It follows e.g. that all commutators of normal ordered
products of fields in W are fully determined by those of the energy-momentum tensor and of
the Virasoro-primary fields in W, and that normal ordered products of quasi-primary fields are
generically not quasi-primary.

6 The Operator Product Algebra

In a chiral conformal field theory – a chiral half of a two-dimensional theory – the fields depend
on a single complex variable z. As long as one deals with a single field, say W i(z), it suffices to
describe it for values of z which lie on a closed curve encircling zero, say the unit circle, since
then one recovers all its modes W i

n by the formula (1.26). However, as soon as one intends
to analyze products of fields, one must at least ‘smear’ the circle. Namely, when expressed in
terms of fields, the abstract Lie bracket of modes should correspond to the commutator with
respect to a suitable associative product; now inserting (1.26) into a Lie bracket yields (with a
suitable labelling of integration variables) the difference

[W i
m,W

j
n] = [ 1

2πi

∮

0

dz 1
2πi

∮

0

dw − 1
2πi

∮

0

dw 1
2πi

∮

0

dz] zm+∆i−1wn+∆j−1W i(z)W j(w) (1.31)

of two double contour integrals, where in each term the integrations must be performed in the
indicated order. One would like to rewrite this expression in a form where there is a single
contour integration over fields W k(z) multiplied with suitable powers of the position, so as
to recover the result for the Lie bracket [W i

m,W
j
n] as a linear combination of modes W k

p . To
achieve this, one interprets the first pair of integrations as to be performed for |z|> |w| and the
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second for |w|> |z|. Thus the formal product of fields appearing in (1.31) is to be understood
as the radially ordered product ℜ, defined for arbitrary fields ϕ1 and ϕ2 by

ℜ(ϕ1(z)ϕ2(w)) :=

{
ϕ1(z)ϕ2(w) for |z| > |w| ,
ϕ2(w)ϕ1(z) for |w| > |z| . (1.32)

For fixed value of w (say) one can now deform the two z-contours in the formula (1.31) and
merge them to a single one encircling the point w. One then arrives at the desired result for
the commutator by postulating that the radially ordered product of two fields whose positions
are sufficiently close can be written as a linear combination of fields evaluated at (say 14) w,
multiplied with suitable powers of z−w. The so obtained decomposition is called the operator

product expansion of the fields W i(z) and W j(w).
When one knows the structure constants of W , one can determine the singular part of

operator product expansions by requiring that the contour integrations
∮
0
dw

∮
w
dz yield the

correct result. E.g. the Virasoro algebra amounts to the product

ℜ(T (z)T (w)) =
1/2

(z−w)4 C + 2
(z−w)2 T (w) + 1

z−w ∂wT (w) + Oreg . (1.33)

Here Oreg stands for (an infinite power series of) terms which in the limit z → w are regular and
hence do not affect the result for [Lm, Ln]. (More generally, only singular terms in expansions
like (1.33) are relevant to the observables; the regular terms in fact do not have any meaning
independent of the sector, e.g. their precise form depends on the choice of normal ordering
prescription in the different sectors.) It is common to refer to radially ordered products (1.32)
just as operator products and to omit the symbol ℜ; I will usually follow this habit.

In the two-dimensional theory, we have both the chiral and the antichiral algebras W and
W ; they commute, and correspondingly the operator product of fields W i(z) and W j(w̄) just
coincides with their normal ordered product. But we may also consider operator products of
the W i(z) with arbitrary fields ϕ. For instance, for the operator product of a primary field
with T one finds

T (z)φ(w, w̄) = ∆
(z−w)2 φ(w, w̄) + 1

z−w ∂wφ(w, w̄) + Oreg , (1.34)

which upon Laurent expansion correctly reproduces the formula (1.27) for the commutator
[Ln, φ].

The singular terms in an operator product ϕ1(z)ϕ2(w) of the type above are called the
contraction of ϕ1 and ϕ2 and are denoted by ϕ1(z)ϕ2(w). Also, the term of order (z − w)0

is essentially the normal ordered product :ϕ1 ϕ2: – when the particular normal ordering pre-
scription

:ϕ1(z)ϕ2(z): := 1
2πi

∮

w

dz (w − z)−1 ℜ(ϕ1(z)ϕ2(w)) (1.35)

(which is slightly different from the one presented in (1.30)) is adopted, then it is indeed
precisely the normal ordered product, i.e. one has

ϕ1(z)ϕ2(w) = ϕ1(z)ϕ2(w) + :ϕ1(z)ϕ2(z): +O(z−w) . (1.36)

14 One may also choose the positions of these fields at z, or also at (z + w)/2 or
√

wz or any other function
which smoothly approaches w in the limit z → w.
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Besides the conformal invariance, a second basic property of two-dimensional conformal
field theories is that operator products cannot only be defined when one of the fields belongs
to the chiral algebra, but for arbitrary pairs of fields. That is, there is a closed operator

product algebra among all fields, and the operation involved is indeed a product in the sense
that it is associative. It is expected that this structure is a direct consequence of fundamental
properties of quantum field theory. But when trying to construct it this way one faces quite
a few subtleties, and to the best of my knowledge a complete derivation from first principles
has never been given. Instead, one usually postulates the existence of a closed associative
operator product algebra as a separate input , called the bootstrap hypothesis or requirement.
Note, however, that operator product expansions do not converge in the operator norm, but
only weakly, i.e. when applied to a vector in the state space H. Thus while one may regard the
collection of all fields as a vector space (over some function field), the operator product does
not really make this space into an associative algebra in the mathematical sense. 15

Operator products of primary fields φ can be written in the form

φA(z,z̄)φB(w,w̄) =
∑

C

C C
AB (z−w)∆C−∆A−∆B(z̄−w̄)∆̄C−∆̄A−∆̄BφC(w,w̄) + . . . , (1.37)

where the ellipsis stands for contributions of descendant fields ϕC ∈ [φC ]. The numbers C C
AB

introduced in (1.37) are called the operator product coefficients of the theory. The corresponding
coefficients which involve descendants are completely fixed by the W-symmetry in terms of those
of the primaries (and of their conformal weights and the values of central charges). For instance,
the coefficient with which the descendant ∂nϕ of a quasi-primary field ϕ appears equals the
coefficient for ϕ multiplied by (n!)−1

∏n−1
l=0 (l+∆A−∆B +∆ϕ)/(l+2∆ϕ). On the other hand, the

relation between the operator product coefficients for quasi-primaries and those for primaries
has been worked out in some detail only for W =Vir [11]. Nevertheless, at least in principle it is
possible to solve the theory completely, i.e. to compute all correlation functions, by expressing
them in terms of the coefficients C C

AB involving only primaries and of the structure constants
of W. The determination of the numbers C C

AB is therefore one of the main goals in conformal
field theory.

7 Correlation Functions and Chiral Blocks

Operator product expansions like (1.34) or (1.37) can only be valid when applied to vectors
in H. In fact, because the presence of additional fields typically affects manipulations with
integration contours, strictly speaking they even only hold when matrix elements with respect

15 The theory of vertex operator algebras [37] provides a means for formulating operator products in a purely
algebraic setting, without having to resort to arguments based on complex analysis, e.g. contour deformation
or analytic continuation. The basic structures of a vertex operator algebra are an infinite set of products
and the action of the derivative ∂; the commutator with respect to the first of these products yields the
Lie algebra structure of the space W◦ of zero modes. The variables z etc. are treated as formal variables,
which implies e.g. that (z −w)−1 is interpreted as z−1(1−w/z)−1 = z−1

∑
n≥0(w/z)n. Thus in particular

1/(z −w)+1/(w− z) = z−1
∑

n∈Z
(w/z)n, which in terms of complex analysis corresponds to the delta function

on the unit circle. The relation with the radial ordering prescription is that upon re-interpreting the variables
as complex numbers, the formal power series occurring in the vertex operator formulation become convergent
series precisely if the relevant numbers are radially ordered in the appropriate manner.
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to vectors in H are taken, e.g. for vacuum matrix elements

G({zj},{z̄j}) ≡ 〈ϕ1(z1, z̄1)ϕ2(z2, z̄2) · · ·ϕp(zp, z̄p)〉
:= (v◦ |ϕ1(z1, z̄1)ϕ2(z2, z̄2) · · ·ϕp(zp, z̄p) v◦) .

(1.38)

Such a vacuum expectation value is called the (p -point) correlation function of the fields
ϕ1, ϕ2, ... , ϕp.

Given the operator product algebra, one can in principle evaluate any correlation function
by expressing successively all products as linear combinations of fields until one ends up with a
linear combination of fields acting on v◦, and then using the fact (see below) that the only field
with non-vanishing one-point function is the identity primary field 1. In practice, this procedure
only works in simple cases such as free field theories. However, some general properties of
correlators can be derived without a detailed knowledge of the operator products. They are
implied by the so-called Ward identities for W , which are obtained as follows. Consider a
correlation function of the form 〈W i(z)ϕ1(z1,z̄1)ϕ2(z2,z̄2) · · ·〉, multiplied with some power zn,
and perform a z-integration over a contour C that encircles all of the ‘insertion points’ zi.
By deforming C to infinity one learns that for n>−∆i this integrated correlator vanishes; on
the other hand, after deforming the contour into a union of contours each of which encircles
precisely one of the insertion points zj , one can insert the operator product W i(z)ϕ1(zj , z̄j) and
perform the integration for each of these contours separately. These manipulations amount to a
linear differential equation for the correlation function 〈ϕ1(z1, z̄1)ϕ2(z1, z̄1) · · ·〉. In particular,
in the case of W i(z) =T (z), the operator product (1.34) leads to the projective Ward identities

p∑

i=1

zn
i (zi

∂
∂zi

+ (n+ 1)∆i)G({zj},{z̄j}) = 0 for n∈{0,±1} (1.39)

for correlation functions of primary fields. When W =Vir 16 and the number p of insertions is
small, the projective Ward identities are particularly effective:

The relation (1.39) with n = −1 tells us that one-point functions are constant. Thus they
satisfy 〈φA〉 = lim

z→0
〈φA(z)〉 = (v◦ |vA), which is non-zero only if φA = φ◦ = 1.

In the case of two-point functions G ≡GAB = 〈φA(z1)φB(z2)〉, the general solution of the
n=−1 identity is G =G(z1 − z2); the n=0 identity then gives GAB ∝ (z1 − z2)

−∆A−∆B , and
finally n=1 shows that ∆A = ∆B. When the chiral symmetry algebra W is maximally extended,
the constant of proportionality (which is not fixed by the Ward identities, since they are linear),
is zero unless φ2 is the conjugate field of φ1, which carries the complex conjugate representation
of W . Thus 〈φA φB〉 ∝ δA,B+ , where φA+ = (φA)+.

Similarly, three-point functions are completely fixed up to a multiplicative constant:

GABC ∝ (z1 − z2)
∆C−∆A−∆B(z2 − z3)

∆A−∆B−∆C (z3 − z1)
∆B−∆C−∆A . (1.40)

For four-point functions the situation is already more involved (they will be studied in more
detail in section 14 and section 24). The projective Ward identities only imply that every
four-point function can be written as an arbitrary function of a certain variable w, multiplied
with definite powers (which are linear combinations of the conformal weights) of the coordinate
differences zi − zj . This variable w is a cross-ratio of the insertion points; e.g. one may choose

16 When W is strictly larger than V ir, a more detailed analysis is required.
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w = (z2−z1)(z3−z4)/(z3−z1)(z2−z4), which is obtained by applying to all insertion points the
(finite) projective transformation z 7→ (z2−z1)(z−z4)/(z−z1)(z2−z4), upon which z1, z2, z3, z4
are mapped to ∞, 1, w, 0. In other words, without loss of generality we can set three of the
insertion points to ∞, 1, 0, i.e. consider correlators of the form

G(z,z̄) ≡ GABCD(z,z̄) = 〈φA(∞,∞)φB(1,1)φC(z,z̄)φD(0,0)〉 . (1.41)

(In the case of three-point functions one can analogously map the insertion points to the fixed
values ∞, 1, 0, which explains why in that case the dependence on the zi is completely fixed.
More generally, any p-point function with p ≥ 3 can be written as a function of p−3 cross-ratios,
multiplied by powers of the coordinate differences zi − zj.)

The Ward identities involve only one chiral half of the theory, so that when studying them
one can ignore the presence of the antichiral half. Of course, there are analogous identities
involving the antichiral algebra, too. As a consequence, the correlation function of a two-di-
mensional theory that is obtained by combining its two chiral halves can be expressed as a
linear combination of the products of independent solutions FI(z) and FI(z̄) of the chiral and
antichiral Ward identities,

G(z,z̄) =
M∑

I=1

M̄∑

Ī=1

aIĪ FI(z)FI(z̄) . (1.42)

The individual solutions FI and FI are called the chiral blocks (or also the conformal blocks)
of G.

For p> 3 the sum (1.42) contains, in general, more then one term (see also section 14), and
hence does not factorize into a chiral and an antichiral part. This means in particular that
(except for the observables W i(z)) such a factorization is not possible for the fields ϕ=ϕ(z,z̄). 17

But still, as also indicated by the form (1.42) of correlators, one can regard primary fields φ as
combinations

φA(z, z̄) =
∑

q cq ̟q(z) ¯̟ q̄(z̄) (1.43)

of suitable chiral objects ̟q and ¯̟ q̄, which are called chiral vertex operators. In order for
this decomposition to make sense, for each primary φA the label q must be understood as
standing not only for A, but also for two additional primary field labels B,C 18 such that
̟q ≡ ̟A;B,C constitutes a map HB → HC which intertwines the action of the chiral algebra,
i.e. ̟A;B,C ◦ RB(W i

n) = RC(W i
n) ◦ ̟A;B,C. In terms of operator products, the restriction to

a specific source HB and range HC corresponds to considering only the terms involving the
family [φC ] in the operator product φAφB; correspondingly, the coefficients cq ≡ cA;B,C in (1.43)
are in fact nothing but the operator product coefficients C C

AB .
By construction, the chiral blocks can be interpreted as the vacuum expectation values

of suitable chiral vertex operators, e.g. FI = 〈̟◦;A,A̟A;B,I̟I;C,D+̟D+;D,◦〉 for the four-point
function GABCD. Chiral blocks are generically not functions, but are multi-valued. 19 They are
single-valued on a suitable multiple covering of the complex plane (and hence can be regarded

17 Note in particular that the notation ϕ(z) that I occasionally used above was just an abbreviation to indicate
the z-dependence of ϕ(z,z̄).

18 as well as possibly some multiplicity label, compare section 9.
19 Sometimes the blocks are also called holomorphic respectively anti-holomorphic blocks. Thus in this context

the term ‘holomorphic’ is used in a rather loose sense; even the full correlation functions are in general only
meromorphic (they can have a pole whenever two insertion points coincide).
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as sections of some (projectively flat) bundle over the Riemann sphere). Analytic continuation
of a chiral block connects the different sheets of that covering. Correspondingly, the exchange
of two chiral vertex operators is governed by a representation of the braid group rather than
the permutation group.

The requirement that the chiral and antichiral blocks combine to single-valued correlation
functions of the two-dimensional theory yields algebraic equations for the linear coefficients aIĪ

in (1.42). In principle, these equations can be solved to obtain these coefficients up to over-all
normalization; the latter is left undetermined because the Ward identities are linear differential
equations. For the three-point functions there is often only a single chiral block and hence only
a single coefficient a ≡ aABC . In this case comparison with the operator product algebra (1.37)
shows that aABC = CABC :=

∑
D C D

AB dDC , where

dAB := (z1 − z2)
2∆A(z̄1 − z̄2)

2∆̄A〈φA(z1)φB(z2)〉 ∝ δA,B+ (1.44)

plays the rôle of a metric in the space of fields. In short, the three-point functions of primary
fields are essentially the operator product coefficients.

Lecture 2 : Fusion Rules, Duality and Modular Transformations

8 Fusion Rules

In the first lecture we learned that upon forming radially ordered products and when con-
sidered inside correlation functions, the fields ϕ of a conformal field theory realize a closed
associative operator product algebra. Unfortunately, in practice this structure looks extremely
complicated. However, a large amount of information about the operator products is already
contained in a much more transparent structure, the so-called fusion rules. Roughly speak-
ing, the fusion rules constitute the basis-independent contents of the operator product algebra,
i.e. count the number n

C

AB
of times that the family [φC ] of the primary field φC appears in

the operator product of primaries φA and φB. In other words, they tell how many distinct
couplings among primary fields, respectively W-families, are possible. To encode this informa-
tion, one associates to each primary field φA an abstract object ΦA, and introduces an abstract
multiplication ‘ ⋆ ’ by writing

ΦA ⋆ ΦB =
∑

C n
C

AB
ΦC . (2.1)

The integers n
C

AB
are known as the fusion rule coefficients. Note that the product (2.1) is not

isomorphic to the ordinary tensor product of modules of the chiral symmetry algebra W . 20

Let me comment on how to actually read the fusion rules off the operator product algebra. 21

The W-family [φC ] occurs in the product of φA with φB iff n
C

AB
is non-zero. This might suggest

20 This follows directly from the observation that upon forming tensor products all central charges add up
(e.g. ctot = c1 + c2), whereas the fusion product yields an object which appears in the same theory and hence
has the same values of central charges as the original fields. (For a description of fusion products which closely
resembles a (z-dependent) tensor product, see [59]. Another approach to fusion products [107] is via Connes
fusion.)

21 In practice, one rather proceeds the other way round, i.e. given the fusion rules, one determines (though
not uniquely) differential equations for chiral blocks, and thereby the operator product coefficients, from general
principles of conformal field theory. For some details see section 14.
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that n
C

AB
can take only the values 0 or 1, corresponding to the alternative whether [φC ] appears

in φA(z)φB(w) or not. But one and the same family [φC ] may couple in several distinct ways to
φA and φB so that values n

C

AB
> 1 are possible as well. Accordingly, the fields ϕC appearing in the

expansion (1.37) are not necessarily all distinct, i.e. it may happen that ϕC1
=ϕC2

for C1 6=C2;
nevertheless it is not allowed just to add up the corresponding operator product coefficients,
because the relative values of coefficients involving different members of a family [φk] are fixed
by the Ward identities of W . If the full operator product algebra is known, the presence of a
coefficient n

C

AB
larger than unity can therefore be inferred as follows. One subtracts the leading

contribution to the operator product φAφB, corresponding to the descendant ϕ of φC with
the lowest allowed grade, and likewise all contributions involving descendants at higher grades
whose presence is dictated by the Ward identities; then n

C

AB
> 1 iff afterwards there is still

some contribution to φAφB left over which involves members of [φC ]. It follows e.g. that for
n

C

AB
> 1 the minimal grades of the fields that contribute to the n

C

AB
different couplings between

φA, φB and [φC ] must all be distinct. (E.g. there is at most one non-vanishing coupling among
the primaries φA, φB, φC ; this is actually a necessary condition for excluding chiral blocks with
logarithmic singularities.)

It turns out to be convenient to formalize the general properties of fusion rules which are
implied by the principles of conformal field theory that I outlined in lecture 1. To this end one
regards the objects ΦA and numbers n

C

AB
as the basis elements and structure constants of a ring

over the integers Z or of an algebra over the complex numbers C . These structures are called
the fusion ring , respectively the fusion algebra, of the conformal field theory; their defining
properties are the following:

(F1) they are commutative and associative, and they have a unit element (namely, Φ◦, the
abstract object associated to the identity primary field);
(F2) there is a distinguished basis (namely the one consisting of the ΦA) in which the structure
constants are non-negative and which contains the unit element;
(F3) the evaluation at the unit element provides an involutive automorphism, called the con-

jugation and denoted by ΦA 7→ (ΦA)+.

In terms of the structure constants n
C

AB
, these properties read as follows.

(N1) n
C

BA
=n

C

AB
,

∑
D
n

D

AB
n

E

DC
=

∑
D
n

D

BC
n

E

DA
and n

C

◦B
= δ C

B
;

(N2) n
C

BA
≥ 0 ;

(N3) CAB ≡ n
◦

AB
= δA,B+ for some order-two permutation A 7→ A+ of the index set (such that

(ΦA)+ = ΦA+), and (A+)
+

=A as well as n
C+

A+B+ =n
C

AB
.

It then also follows that n
ABC

:= n
C+

AB
is totally symmetric.

Note that in the identification of the ΦA as a basis it is implicit that for all A,B the
number

∑
C n

C

AB
is finite; conformal field theories which satisfy this requirement are called

quasi-rational . A rational conformal field theory, i.e. one with only a finite number of sectors,
is also quasi-rational; while this is not manifest in the definition, it follows easily from the very
existence of a fusion ring. It is worth stressing that (quasi-) rationality is not a fundamental
property of conformal field theories. However, in practice it is often indispensable, since it
allows one to perform many calculations explicitly. This manifests itself for the first time when
one studies the representation theory of the fusion ring. (Whether the concept of a fusion ring
is still applicable in non-quasi-rational theories is not known.) Accordingly, I will from now on
restrict my attention to rational conformal field theories only, unless stated otherwise.

The fusion ring of a rational conformal field theory is a finite-dimensional commutative
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associative ring. As a consequence, each of its irreducible representations is one-dimensional,
and every finite-dimensional representation is isomorphic to the direct sum of such irreducible
representations. In particular, the adjoint representation πad, defined by πad(ΦA) :=NA, where
NA denotes the matrix with entries (NA) C

B
=n

C

AB
, must be isomorphic to the direct sum of

one-dimensional irreducible representations (in fact, each inequivalent one-dimensional repre-
sentation appears in this sum precisely once). In other words, there exists a unitary matrix
S which ‘diagonalizes the fusion rules’ in the sense that – simultaneously for all values of the
label A – the matrix

DA := S−1
NA S (2.2)

is diagonal, and also the relation CS = S∗ is valid.
It should be noted that the row and column labels of the matrix S that is introduced

this way are a priori on a rather distinct footing: the row index labels the elements ΦA of the
distinguished basis, while the column index counts the inequivalent one-dimensional irreducible
representations πB. While the two sets of labels have the same order (so that, as I already did
above, one can use the same symbols for either type of labels), in general there does not exist a
canonical bijection between them. As it turns out, however, for those fusion rings which occur in
conformal field theory such a canonical bijection does exist, and moreover, when implementing
this bijection the diagonalizing matrix S possesses the highly non-trivial property of being
symmetric, and also satisfies SA◦> 0 (in particular SA◦ ∈ R) for all values of the label A. It
then follows that the one-dimensional irreducible representations πA obey

πA(ΦB) ≡ (DB) A
A = SBA/S◦A . (2.3)

As a consequence, the relation (2.2) amounts to an expression 22

n
C

AB
=

∑

D

SADSBD(S−1)CD

S◦D
(2.4)

of the fusion rule coefficients in terms of the matrix S, and also that S2 =C, so that (2.4) can
be rewritten more symmetrically as n

ABC
=

∑
D SADSBDSCD/S◦D.

9 Duality

The associativity of the operator product algebra implies that the fusion rules are associative
as well. I will now use the same information to deduce properties of the correlation functions.
Let us study the four-point functions G = 〈φAφBφCφD 〉 of primary fields. Applying the
operator product algebra on the first two and on the last two fields, one has 〈φAφBφCφD 〉 =
〈 (φAφB) (φCφD) 〉 ≡ 〈ℜ(ℜ(φAφB)ℜ(φCφD)) 〉, which pictorially amounts to

t@
@@

�
��

�
��

@
@@

B C

A D

=
∑

I

@
@@

�
��

�
��

@
@@

B C

A D

I
(2.5)

22 This is not yet the Verlinde [105] formula, because at this point there is no connection to modular trans-
formations yet – this interpretation must be postponed until section 11.
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But using associativity of the operator product algebra, one could also form products in a
different order (in fact this is implicit in the very notation: usually I do not write any brackets
to indicate the order in which multiple products are performed), resulting in pictures like

∑

K

K

B C

�
��

@
@@

@
@@

�
��

A D

or
∑

J

!!!!!!

�
��

aa

aaaa

@
@@

B C

A D

J
(2.6)

Of course, because of the radial ordering prescription each of these choices is only valid for
a definite order of the absolute values of the insertion points zi of the fields φA, ... , φD, and
hence the different pictures describe functions which coincide only upon an appropriate analytic
continuation. Now when the two chiral halves of a two-dimensional theory are combined, so
that z̄i is identified as the complex conjugate of zi, one must require that every correlation
function is single-valued on the Riemann sphere when the dependence on both zj and z̄j is
accounted for; thus the three descriptions above for the four-point correlators G must yield one
and the same function. Together with (1.42) this yields the crossing symmetry relations for the
four-point functions, which when choosing the insertion points as in formula (1.41) read

GABCD(z,z̄) = GBCDA(1− z, 1− z̄) = z−2∆C z̄−2∆̄C GACBD(z−1, z̄−1) . (2.7)

On the other hand, each of the pictures describes the chiral blocks in a different ‘channel’,
and hence combining the two chiral halves amounts to three different decompositions of the
four-point function as a sum over products of chiral blocks (for more details, see section 14
below). In a quasi-rational theory the sums are finite, and as a consequence [84] the different
systems of chiral blocks are linearly related:

F̂ABCD,K(z1, z2, z3, z4) =
∑

I
FKI [

BC
AD ]FABCD,I(z2, z3, z4, z1) ,

F̌ABCD,J(z1, z2, z3, z4) =
∑

I
BJI[

BC
AD ]FABCD,I(z1, z3, z2, z4) .

(2.8)

The coefficients F[BC
AD ] and B[BC

AD ] that appear in these linear relations are called the fusing and
braiding matrices, and the corresponding manipulations with chiral blocks as visualized in the
pictures above are referred to as fusing and braiding transformations, or generically as duality

transformations. Strictly speaking, the indices I and J that I used to label the various blocks
in a given channel generically do not just count the intermediate primary fields, but for the case
of fusion rule coefficients larger than 1 also the various possible couplings among their families,
i.e. they stand for multi-indices, e.g. I ≡ (α, I, β) with α∈{1, 2, , ... ,n I

AB
}, β∈{1, 2, , ... ,n D

IC
}.

For notational simplicity, in (2.8) and also below I suppress all multiplicity indices. 23

The fusing and braiding matrices obey a number of compatibility relations, which can
be derived by considering suitable duality transformations of higher p-point functions and

23 Those readers who want to see them are referred to e.g. [44].

The relation with the notation used there is FαIβ,γJδ[
AB
CD ] = F

(ABC)D
αIβ,γJδ and

BαIβ,γJδ[
AB
CD ] =

∑
K

∑
λ,µ,ν((F (BAC)D )−1)αIβ,λKνR

(AB)K
λ,µ F

(ABC)D
µKν,γJδ .
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demanding that the result does not depend on the individual set of transformations, but only
on the initial and final configurations of (external and intermediate) fields. These relations
can all be reduced to those obtained for five-point functions and which involve five and six
different configurations, respectively [88]; the latter are called the polynomial equations, or
more specifically, the pentagon and hexagon equations and read

FHI[
AB
EF ] FJF [CD

EG ] =
∑

K
FKF [BD

IG ] FJI[
AK
EG ] FHK[AB

JD ] ,
∑

K
BKI [

AB
DE ] BGE[ AC

KF ] BHK[BC
DG ] =

∑
L
BLE[BC

IF ] BHI[
AC
DL] BGL[AB

HF ]
(2.9)

(note that the required summations do not amount to matrix multiplication of the F and B
matrices). When also correlation functions on higher genus Riemann surfaces are considered,
then there arises one additional independent relation, obtained from manipulating one-point
blocks on the torus. In principle one may start from the fusion rules to set up the system (2.9)
of polynomial equations and then solve this system for the F and B matrices, but already for a
small number of sectors this becomes very hard (see [44] for examples).

10 Counting States: Characters

The structure of an irreducible highest weight module HA of the chiral algebra W is rather
complicated. But a lot of information is already contained in its weight system, i.e. in the
collection of weights λ of the vectors in a basis of HA. To keep track of the weight system of
a module, one sums over formal exponentials eλ of its weights, counting their multiplicities,
or what is equivalent (writing eλ =(vλ |eW◦vλ) with vλ the orthonormal basis vectors of HA),
takes the trace over the module of formal exponentials of elements W◦ of W◦. The so obtained
quantity 24

χA(W◦) := trHA
eW◦ (2.10)

is called the character of the irreducible W-module HA. (Compare the characters of irreducible
modules of Lie algebras, see section 20).

It is often convenient to regard χA as a function of complex variables, which are the coef-
ficients in an expansion of a generic element W◦ of W◦ in some suitable basis, and for some
purposes it is sufficient to specialize to characters at vanishing values of some of these variables.
A very specific, but nevertheless most important, case is provided by the Virasoro-specialized

character, for which W◦ is taken to have only a component in the direction of L0 − 1
24
C (the

inclusion of the central term is for simpler modular transformation properties):

χA(τ) := trHA
e2πiτ(L0−C/24) . (2.11)

It is a function of one complex variable τ and (provided that the chiral algebra W is of ‘at
most polynomial growth’, which seems to be the case in all conformal field theories) converges

24 That this construction makes sense has its origin in the fact that for any set of numbers an indexed by Z,
the formal Laurent series f(q) :=

∑
n anqn in some indeterminate q contains the same information as the an.

Here this recipe is generalized to the case where multiplicities are labelled by weights rather than by integers;
accordingly one associates to each weight λ a formal variable eλ on which one imposes the usual properties of
exponentials, i.e. eλeµ = eλ+µ and e0 =1. In more mathematical terms, the basic observation is that the weights
form an abelian group L under vector addition. The formal exponentials constitute a basis for the group algebra
CL of L. When considered as elements of CL, one can add up these exponentials, and hence can consider χ

A as
an element of this group algebra, respectively, in the case of infinite-dimensional modules, of some completion
of the group algebra.

23



in the upper half-plane. By construction, χA(τ) · exp(−2πiτ(∆A−c/24)) is a power series in
q = exp(2πiτ), with the coefficient of qn the dimension of the subspace of vectors of grade n.

The Vir-specialized character χA(τ) can be interpreted as a chiral block for the ‘0-point
correlation function’ (or vacuum-to-vacuum amplitude) on a torus with modular parameter τ ,
which in the diagrammatic description used in (2.5) corresponds to a one-loop graph without
any external lines. By identifying L0−C/24 as a Hamiltonian, χA(τ) can also be regarded as a
partition function,

χA(τ) = trHA
e−βH , (2.12)

in a thermal state of complex inverse temperature β= −2πiτ ; in particular, τ→ i0 and τ→ i∞
correspond to the high and low temperature limit, respectively.

Once the characters are known, the computation of the 0-point function on the torus for
the full two-dimensional conformal field theory with symmetry algebra W⊕W amounts to
specifying non-negative integers ZAB which tell how often the chiral block corresponding to
the irreducible W-representation labelled by A gets combined with the antichiral block for the
irreducible W-representation labelled by B. The total partition function of the conformal field
theory is then given by

Z ≡ Z(τ, τ̄)|
τ̄∗=τ

:=
∑

A,B

χA(τ)ZABχB(τ̄)|
τ̄∗=τ

, (2.13)

where we have to identify τ̄ with the complex conjugate of τ . To qualify as a partition function
of a physical theory, the matrix Z clearly must fulfill a number of consistency requirements. By
construction, its entries ZAB are non-negative integers; moreover, the vacuum sector H◦ must
be unique, and hence one needs Z00 = 1. Further properties arise from modular invariance, to
be discussed in the next section.

11 Modularity

The space of characters of the unitary irreducible highest weight modules of the chiral algebra
W of a rational conformal field theory carries a unitary representation of the group SL2(Z).
(The elements of SL2(Z) are 2× 2 -matrices with integral entries and determinant one.) To
show this crucial fact of life would go much beyond the scope of this review, and in fact I am
not aware of any rigorous proof. 25 A matrix M ∈ SL2(Z) acts on the characters by a change
of parameters which depends in a specific way on the entries of M ; in the particular case of
Virasoro-specialized characters, the action is given by

τ 7→Mτ :=
aτ + b

cτ + d
for M =

(
a b
c d

)
(2.14)

(a, b, c, d ∈ Z, ad− bc = 1), i.e. M ·χ(τ) :=χ(Mτ). Note that here the elements M and −M
of SL2(Z) act in the same way, so that the Virasoro-specialized characters actually carry a
representation of the quotient group PSL2(Z) = SL2(Z)/{11,−11}. This group is known as
the modular group of the torus, and correspondingly the mapping (2.14) is called a modular

transformation.
The parameter τ which (for convergence of χ(τ)) takes values in the upper complex half-

plane can indeed be interpreted geometrically as parametrizing a torus, namely the one obtained

25 Actually in all known theories the SL2(Z)-representation factorizes through some finite-index subgroup.
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by identifying the opposite edges of the quadrangle with corners 0, 1, τ and 1+τ in the complex
plane. The complex structure on this torus depends on τ only up to modular transformations.

The group SL2(Z) is freely generated by two elements S and T modulo the relations
S2 =(ST )3 and S4 = 11. For PSL2(Z) these get supplemented by the relation S2 = 11; in the
general case, S2 =C is the matrix for the conjugation A 7→ A+, i.e. CAB = δA,B+ ; thus the
action of modular transformations on the space of characters of primary fields is a genuine
representation of the twofold cover SL2(Z) of the modular group PSL2(Z) precisely when the
conjugation is non-trivial. The elements S and T are represented on the modular parameter τ
as

T : τ 7→ τ + 1 and S : τ 7→ −1/τ . (2.15)

(In terms of the temperature β−1 =(−2πiτ)−1, S exchanges the low and high temperature
regimes – or, thinking of β as a coupling constant, the strong and weak coupling regions.)
The corresponding matrices that act on the space of characters as χA(τ + 1) =

∑
B TAB χB(τ)

and χA(−1/τ) =
∑

B SAB χB(τ) are, correspondingly, referred to as the (modular) S-matrix
and T-matrix of the conformal field theory. From the definition (2.11) of Virasoro-specialized
characters it follows immediately that the T-matrix is diagonal and unitary, with entries

TAA = exp(2πi∆A − c/24) . (2.16)

In contrast, the explicit form of the S-matrix, which turns out to be a symmetric and unitary
matrix, is much more difficult to obtain; in fact it is by no means obvious that the modular inver-
sion S closes on the space of characters. In particular, knowing only the Virasoro-specialized
characters is typically not sufficient to determine S (e.g., conjugate fields φA and φA+ have
identical Virasoro-specialized characters); rather one must use the full characters.

It is by no means accidental that in the definition (2.2) I used the same letter S for the
matrix that diagonalizes the fusion rules as for the matrix that implements τ 7→−1/τ . Namely,
for a modular invariant rational conformal field theory this diagonalizing matrix (when normal-
izations are chosen in such a way that it is symmetric) coincides with the modular inversion
S as introduced here. With this identification, the identity (2.4) expressing the fusion rule
coefficients through S is known as the Verlinde formula [105]. 26

In order to construct a conformal field theory consistently on a Riemann surface of genus
larger than zero, the partition function (2.13) must be invariant under the modular transfor-
mations of that surface, in particular under (2.14) in the case of the torus which has genus
1. I should point out that, as a consequence, modular invariance is a basic property of any
conformal field theory model that is relevant to string theory, but that it is not a fundamental
property of conformal field theory as such, and there are situations where it is absent. (For
instance, in the case of the critical Ising model modular invariance restricts the number of
sectors to three, which have the same highest weight with respect to the chiral and the an-
tichiral Virasoro algebra. These correspond to the identity field, the energy operator and the
order parameter of the Ising model, as listed in table (4.20) below. But for many purposes one
must also consider other sectors, which correspond to the disorder parameter and to a chiral

26 The existing derivations of the Verlinde formula range from formal manipulations with chiral blocks (see
e.g. exercise 3.6 in [88]), localization of path integrals [12] and surgery manipulations on three-manifolds [4]
to highly non-trivial arguments in algebraic geometry ([10, 29]; for reviews and further references, see [9] and
[102]). Typically the more rigorous the arguments are, the more restricted is the range of theories to which they
apply; e.g. the algebraic geometry derivation applies only to the case of (most) WZW theories.
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or antichiral free fermion.) Also, in general more requirements than just modular invariance
are necessary for the existence and consistency of a conformal field theory. It is therefore not
surprising that there exist modular invariant partition functions which cannot correspond to
any conformal field theory (for some examples, namely so-called extensions of WZW theories
by spin-1 currents which do not describe a conformal embedding, see [46]).

The requirement that (2.13) is invariant under the modular transformations (2.14) is equiv-
alent to demanding that the matrix Z = (ZAB) satisfies

[Z, S] = [Z, T ] = 0 , (2.17)

i.e. commutes with both the S- and the T-matrix. An immediate consequence of [Z, T ] = 0
is that the ‘conformal spin’, i.e. the combination ∆− ∆̄ of conformal dimensions, must be an
integer, so that each field is ‘local’ with respect to all other fields. As a consequence, at any
genus all correlation functions of the two-dimensional theory are single-valued functions.

There always exists a straightforward solution to the constraints (2.17), namely Z = 11. This
is called the diagonal or A-type modular invariant. When W is maximal, then this is in fact [87]
the only solution, up to possibly a permutation which is an automorphism of the fusion rules,
i.e. ZAB = δA,πB with n

πC

πA,πB
=n

C

AB
. However, often one does not know the maximal chiral

algebra, so that it makes sense to analyze the constraint (2.17) also in the case of non-maximal
W (but with the theory still being rational). As it turns out, (2.17) constitutes a powerful
restriction, and its implementation is a highly non-trivial task. So far the solutions have been
classified only for very specific types of theories, e.g. for the WZW theories (see section 21)
based on A(1)

1 , the Virasoro minimal models [21], for WZW theories based on A(1)

2 [62], and for
N = 2 superconformal minimal models [64].

12 Free Bosons

The simplest examples of conformal field theories are those which describe massless free bosons
or fermions. Here I will sketch the bosonic case. The classical action for a massless free boson X
living on aD-dimensional space-time manifold of metric gµν reads SX ∝

∫
dDx

√
det g gµν∂µX ∂νX.

Variation of SX with respect to gµν yields the energy-momentum tensor

Tµν = −∂µX∂νX + 1
2
gµν

∑
σ,τ g

στ ∂σX ∂τX , (2.18)

which is conserved (
∑

µ ∂
µTµν = 0) and has trace

∑
µ T

µ
µ ∝ 1−D/2. Thus in D=2 dimensions

Tµν is traceless; in complex coordinates, this means Tzz̄ = 0, so that conservation reduces to
∂z̄Tzz =0 = ∂zTz̄z̄, or in other words, T ≡Tzz =T (z) and T̄ ≡Tz̄z̄ = T̄ (z̄), as is needed for a
conformal field theory.

As the energy-momentum tensor T has conformal weight ∆ = 2, at the classical level the
boson X has scaling dimension zero. Correspondingly, X is not a proper conformal field in the
sense of section 5; it can be written as X(z,z̄) = X(z) +X(z̄) where X(z) has an expansion

X(z) = X0 − iP ln(z) + i
∑

n∈Z\{0}

1
n
Jn z

−n . (2.19)

Thus X is not single-valued on the complex plane. But the derivatives ∂X and ∂̄X (which
appear in the action SX) are, and so are (suitably normal ordered) exponentials :eiqX: . The
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canonical commutation relations for the free boson X yield Heisenberg relations for its modes:
[X0, Jn] = 0 for n 6=0 and

[X0, P ] = i , [Jm, Jn] = mδm+n,0 . (2.20)

The chiral algebra W of this theory is the semi-direct sum of the Virasoro algebra gen-
erated by T (z) and a Heisenberg algebra which is generated by the Virasoro-primary field
J =

∑
n∈Z

Jnz
−n−1 (J0 ≡P ). In terms of X these fields read

J(z) = i ∂X(z) , T (z) = −1
2
:∂X(z) ∂X(z): = 1

2
:J2(z): . (2.21)

Using the two-point function 〈X(z)X(w)〉≃ − ln(z−w) and Wick’s rule for calculating corre-
lators of normal ordered products of free fields, one checks that the conformal central charge
has the value c=1 and that J has conformal weight ∆J =1. The zero mode subalgebra W◦ is
spanned by L0 and the zero mode J0 ≡P of the field J . The primary fields of this theory are
φq = :eiqX: ; they are labelled by charges, i.e. J0-eigenvalues, q∈R, and their fusion rules read
Φp ⋆ Φq = Φp+q.

To be precise, these statements refer to the situation that the modes of the classical bosonX,
in particular the zero mode X0, are allowed to take values on the whole real line R. In contrast,
when the boson is compactified on a circle of radius R, in the sense that one identifies the values
X0 and X0 + 2πR of the zero mode, and when in addition R2 = 2N is an even integer, then
there are two additional (Virasoro- and J-primary) fields in W which have conformal dimension
∆ = N . Moreover, in this case the theory is rational, and with a suitable normalization of the
current J the possible charge values are q ∈ {0, 1, ... , 2N−1}. The conformal dimension of a
primary field of charge q is then ∆q = q2/4N . The fusion rules read Φp ⋆Φq = Φp+q mod 2N , and
the modular S-matrix has entries

Spq = exp(−πi pq/N )/
√

2N . (2.22)

Similarly, when R2 =2r/s (r, s coprime) is any other rational number, the theory is still rational
and the chiral algebra W contains additional fields of conformal weight ∆ =N := rs in W . But
in the general case W contains fields of still higher weight, and one deals with a non-diagonal
extension of the theory that has squared radius 2N . However, the theories with radius R
and radius 2/R, which look most different when formulated in terms of a classical action, are
actually one and the same conformal field theory; in particular for R2 =2/N one recovers a
diagonal theory.

All the theories just described have c=1. In fact, any other unitary rational c=1 conformal
field theory can be formulated in terms of a free boson as well. Namely, each of those theories
can be obtained as a so-called orbifold of the theory of a free boson on a circle. In general,
forming an orbifold of a conformal field theory means that one restricts the observables to
those invariant under some (discrete) group Z of automorphisms. In the case at hand, Z must
be a discrete subgroup of O(3), which leads to three isolated rational theories for which Z
is non-abelian, and to a continuous family of theories for which Z = Z2, with the non-trivial
element corresponding to the identification of X with −X. For rational square radius, the
latter Z2-orbifolds are again rational theories, but for non-rational values of R2 they are not
even quasi-rational.

More generally, free bosons are important not only as theories in their own right, but
can serve as a starting point for the description of many other theories, too. A particularly

27



interesting possibility is to modify the theory in such a way that X still has the correlation
functions of a free boson, but that the form (2.21) of T (z) is changed the by addition of a term
proportional to ∂2X, which corresponds to the presence of a background charge in a Coulomb
gas. This way one can in particular obtain a free field realization of the minimal series (1.21)
of unitary models with c< 1.

13 Simple Currents

Each fusion ring contains a distinguished basis element, the unit element Φ◦. This element
clearly has the property to be invertible within the ring, i.e. in mathematical terms, it is a unit

of the ring. But a fusion ring may contain also further basis elements which are units in this
sense. These are called simple currents of the ring, or of the conformal field theory, and they
turn out to be of considerable importance. In the theory of a free boson at rational square
radius that was just described, in fact each basis element Φp is a simple current, with inverse
(Φp)

−1 = Φ2N−p. Another important example for a simple current is the field which implements
the GSO projection in superstring theory. In this section I sketch the most intriguing properties
of simple currents; for more details see e.g. [100] and [43].

A simple current J can be equivalently characterized as a primary field for which the fusion
product with the conjugate field just yields the unit element,

J ⋆ J+ = Φ◦ , (2.23)

or for which the fusion rules are simple in the sense that for each A the fusion product J ⋆ ΦA

belongs again to the distinguished basis (it is then simply written as ΦJA ≡ ΦJ⋆A). In terms of
the fusion rule coefficients this means that

∑
C
n

C

JB
=1 for all B. Yet another characterization

is that S◦J =S◦◦ (while S◦A>S◦◦ for every ΦA which is not a simple current). 27 Due to the
associativity of the fusion product, the product of two simple currents is again a simple current.
Simple currents thus form an abelian group under the fusion product, i.e. a subgroup of the
fusion ring (this group has been termed the center of the theory). A rational theory can of
course accommodate only finitely many simple currents. This implies that simple currents are
unipotent; the smallest positive integer N ≡ NJ such that JN = Φ◦ is called the order of J
(here J2 ≡ J ⋆ J, etc.). Furthermore, any simple current organizes the primary fields into orbits
[ΦA] := {ΦA,ΦJA,ΦJ2A, ... ,ΦJN−1A}; the size NA := |[ΦA]| of any orbit [ΦA] is a divisor of the
order N = |[Φ◦]| of J.

A crucial result about simple currents [100, 75] is that in a unitary theory, S-matrix elements
involving fields on the same simple current orbit differ only by a phase:

SJpA,JqB = e2πipQJ(B)e2πiqQJ(A)e2πipqQJ(J) · SAB . (2.24)

Here QJ(A) is the monodromy charge of φA with respect to J, defined as the combination

QJ(A) := ∆J + ∆A − ∆JA mod Z (2.25)

27 The term ‘current’ is chosen [99] in anticipation of the fact that these fields can be used for an extension
of the chiral symmetry algebra, and (also when the conformal dimension is not equal to 1) such a field is often
called a current. The qualification ‘simple’ refers to the behavior with respect to fusion rules (and to correlation
functions as well, see [45]), but also fits with the fact that in algebraic quantum field theory a superselection
sector with statistical dimension equal to 1 is called a simple sector.
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of conformal weights (in a rational theory, QJ(A) is a rational number). The monodromy
charge is additive under the operator product, i.e. for any C with n

C

AB
6= 0 one has QJ(A) =

QJ(B) + QJ(C) mod Z. Based on (2.24), one can show that for any simple current which
satisfies NJ∆J∈Z, the matrix Z with entries

ZAB = N
NA

NA−1∑

n=0

δB,JnA δ
(Z)(QJ(A) + n

2
QJ(J)) (2.26)

provides a modular invariant. Here δ(Z) denotes the function with δ(Z)(x) = 1 for x ∈ Z and
δ(Z)(x) = 0 otherwise. Note that all non-zero entries of Z are between fields on the same simple
current orbit. If the center is the cyclic group {Φ◦, J, J

2, ... , JN−1} ∼= ZN generated by a simple
current J, then (2.26) is the only modular invariant of the theory with this property. When the
center is not cyclic, then there are further possibilities for simple current extensions which are
parametrized by the so-called discrete torsion [82].

When ∆J is integral, the presence of δ(Z) in (2.26) means that only fields with vanishing
monodromy charge occur, and the modular invariant reduces to

Z =
∑

A: QJ(A)=0

N
NA

|
NA−1∑

n=0

χ
JnA|2. (2.27)

Invariants of this type are called integer spin simple current extensions. They are interpreted as
diagonal invariants of a theory with an extended chiral algebra W , with the additional fields in
W being the simple currents Jn. Note that typically several irreducible modules of the original

chiral algebra Wunext. combine to a single irreducible module of W ; according to (2.27), the
characters of the irreducible W-modules are proportional to the orbit sum

∑
n
χ

J
n
A. Moreover,

not every irreducible Wunext.-module will be contained in a module of W, and this is precisely
encoded in the requirement of vanishing monodromy charge.

The orbit sums of characters of the original ‘unextended’ theory appear in (2.27) with
multiplicities N/NA. Orbits A with N/NA > 1 are called fixed points of the simple current J.
To interpret these multiplicities, one must recall (see section11) that for maximally extended W
each (equivalence class of) irreducible W-module appears precisely once. Thus a multiplicity in
front of the complete square indicates that there exist several non-isomorphic W-modules which
reduce to one and the same module of Wunext., or in other words, that such a term corresponds
to several distinct primary fields in the conformal field theory with the enlarged chiral algebra.
However, this prescription is unambiguous only for N/NA = 2 or 3. For larger values it can also
happen that one must include (part of) the prefactor N/NA into the extended character; as this
can only be done for complete squares, the number of distinct possible interpretations is then
equal to the number of ways that N/NA can be written as a sum of squares. For example, when
N/NA =5 one either deals with five inequivalent W-modules which have (Wunext.-specialized)
character

∑NA−1
n=0

χ
J

n
A, or else with one such module plus another W-module whose character

equals twice that sum.
Given an invariant of the type (2.27), it is in general a highly non-trivial task to investigate

whether a fully consistent conformal field theory can be associated to that modular invari-
ant. In particular one would like to compute the relevant SL2(Z)-representation. While the
T-matrix for the extended theory is just the restriction of the original T-matrix to allowed
orbits, for the S-matrix one only gets some constraints involving the S-matrix of the original
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theory, and determining those elements which involve two fixed points proves to be an intricate
problem. However, recently a general class of solutions to this fixed point resolution problem
was constructed [49, 7]; this construction yields in particular a general closed expression for the
S-matrix.

14 Operator Product Algebra from Fusion Rules

The results of section 7 show that the operator product coefficients of primary fields are the
normalizations of the corresponding three-point functions, but these normalizations cannot be
determined from the Ward identities. With the help of four-point functions, on the other hand,
one can compute the operator product coefficients. Indeed, for maximal W the coefficients aIĪ

that appear in the decomposition (1.42) of four-point correlators into three-point functions are
of the form aIĪ = aIδĪ ,πI for some permutation π. Moreover, provided that the chiral blocks are
correctly normalized, the aI are just the products C I

ABCICD of the relevant operator product
coefficients. As a consequence, one can regard a conformal field theory as completely solved once
all four-point functions of its primaries are known. These correlators, in turn, can be deduced
from the fusion rules of the theory by using general analytic properties of the correlators to
construct linear differential equations which they must satisfy. 28 The independent solutions of
these differential equations are the chiral blocks, which transform into each other under duality
transformations (see (2.8)). Having obtained explicit formulæ for the blocks, one can therefore
determine the duality matrices F and B and express the coefficients aI , and hence the operator
product coefficients, through the entries of these matrices [13, 39, 41].

To achieve this result in practice, one just exploits the following basic properties of (rational
or quasi-rational, genus zero) conformal field theories:

invariance of the vacuum vector v◦ under the projective sl(2)-algebra (1.20) (see section 4);

existence of a closed associative operator algebra (1.37) whose structure ‘constants’ are of a
specific form that is compatible with the W-symmetry (section 6);

factorization into chiral and antichiral blocks (section 7);

independence of the chiral blocks.
First, one can invoke projective invariance to work with four-point correlators G(z,z̄) which

are of the special form (1.41). Next, the closure of the operator product algebra implies that G
can be written as a sum of products of three-point functions (compare the picture (2.5)), and
because of the W-symmetry the contributions from each ‘intermediate’ family [φI ] combine to
a block of definite analytic behavior. Furthermore, by the fact that the symmetry algebra is
the direct sum W⊕W of two chiral halves, the z- and z̄-dependence factorize, which amounts
to the decomposition (1.42). The number M ( = M̄ for maximally extended W) of blocks in
(1.42) is determined as

M =
∑

I

n
I

AB
n

ICD
, (2.28)

with I labelling the intermediate families [φI ], through the fusion rule coefficients n
C

AB
.

Now recall that the chiral blocks are, generically, not ordinary functions but multi-valued.
When the chiral blocks FI(z) are known, then requiring that G(z,z̄) becomes single-valued when
z̄ is taken to be the complex conjugate of z – which can be encoded in the crossing symmetry

28 Often these differential equations also follow from the presence of null vectors in the Verma modules of W .
An example is provided by the Knizhnik--Zamolodchikov equations which will be discussed in section 24.
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relations (2.7) – determines the complex constants aIĪ up to an over-all factor. By considering
the collection of all four-point functions of primary fields (and fixing a definite normalization
of each primary field), one can compute these over-all factors, too.

To determine the chiral blocks, one observes that according to the operator product expan-
sion (1.37), φi(z,z̄)φj(w,w̄) depends on z and w as (z−w)α, with α determined by the conformal
dimensions of the fields involved. More precisely,

FI(z) ∝ z−∆C−∆D+∆̃
(CD)
I for z → 0 . (2.29)

Here ∆C is the conformal dimension of the primary field φC , while ∆̃(CD)

I = ∆(CD)

I + µ(CD)

I is
the conformal dimension of that field ϕI ∈ [φI ], of grade µ(CD)

I , in the family of the primary
φI ≡ φ(CD)

I which gives the leading contribution to the coupling between φC, φD and [φI ]. The
result (2.29) corresponds to the decomposition of G into three-point blocks as indicated in figure
(2.5). Analogously, decomposing as in picture (2.6) yields different chiral blocks F̂K and F̌J

which behave as
F̂K ∝ (1−z)−∆C−∆B+∆̃

(CB)
K for z→ 1,

F̌J ∝ (z−1)∆C−∆A+∆̃
(CA)
J for z→∞

(2.30)

with ∆̃(CB)

J and ∆̃(CA)

K defined analogously as ∆̃(CD)

I . (Thus the systems {FI}, {F̂K} and {F̌J}
have diagonal monodromy around z = 0, 1 and ∞, respectively.) As already described in
section 9, the systems {FI}, {F̂K} and {F̌J} of chiral blocks transform into each other upon
analytic continuation. On the other hand, since they correspond to distinct couplings they
must be algebraically independent; in technical terms, this amounts to the property that their
Wronskian determinant must not vanish identically. According to elementary results from the
theory of ordinary linear differential equations (see e.g. [111]) it then follows that the chiral
blocks FI constitute the M independent solutions of an Mth order differential equation. More
precisely, the blocks obey

∂MF(z) +
M−1∑

m=0

hm(z) ∂mF(z) = 0 (2.31)

with certain rational coefficient functions hm(z). As prescribed by the singular terms in the
relevant operator products, the solutions of (2.31) have branch cut singularities at the points
z = 0, 1 and ∞. It can happen that the coefficient functions hm(z) in (2.31) also possesses
additional singular points, at which all of the solutions are regular; such singular points are
known as apparent singularities.

The construction of the differential equation (2.31) is essentially equivalent to solving a
Riemann monodromy problem, i.e. determine a collection of functions with prescribed mon-
odromy. The Riemann monodromy problem always possesses a solution, provided that one
allows for the possible presence of apparent singularities, around which the monodromy is
trivial, in the differential equation. The general solution of (2.31) can be summarized in a
so-called Riemann scheme P, which specifies the positions of the singularities zi of the differ-
ential equation together with the exponents γi

I at zi, i.e. the roots of the Mth order algebraic
equation for γ(i) that one obtains in lowest order in z− zi by making the power series ansatz
F(z) = (z−zi)

γ(i)∑∞
p=0 ap(z−zi)

p (a0 6=0; for zi =∞, z−zi is to be interpreted as z−1). The
Riemann scheme P does not, in general, determine uniquely the functions FI(z). But one finds
that as long as there are no apparent singularities, all of the parameters not specified by P
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(called accessory parameters) can be fixed by imposing the polynomial equations (2.9). When
apparent singularities are present, the situation is more involved because only the positions
and exponents of the real singularities of correlation functions are dictated by the operator
products. In other words, the singularity structure of the four-point functions is fully known if
and only if both the conformal weights of the primary fields (including the integer part) and
– in the case of fusion rule coefficients larger than 1 – also the grades of the exchanged fields
which are responsible for the leading singular behavior of a chiral block, are given. Once this is
the case, the results for the blocks are unique provided that the differential equations satisfied
by the four-point blocks do not possess any apparent singularities [13]. On the other hand, the
presence of apparent singularities spoils the uniqueness of the solution.

The position of an apparent singularity is almost arbitrary. There is only a mild restriction
which results from the crossing symmetry [41]. The polynomial equations (2.9) do not impose
any further restriction, as follows from the theory of isomonodromic deformations of differential
equations. Namely, for arbitrarily chosen rational coefficient functions fn(z) the combinations
EI(z) :=

∑M−1
n=0 fn(z) ∂nFI(z) and similarly defined functions ÊK , ĚJ not only possess the same

monodromy as the blocks FI , F̂K , F̌J , but also the same fusing and braiding matrices (roughly,
duality can be regarded as the ‘square root’ of monodromy). By varying the rational functions
fn, the position (and, generically, even the number) of apparent singularities can be varied
freely. The positions of the apparent singularities of various distinct four-point functions are
related, but only by the constraints that are implied by the crossing symmetry.

Lecture 3 : Kac--Moody Algebras

This lecture is plain mathematics. In the final lecture 4 the mathematical structures studied
here will be applied to conformal field theory.

15 Cartan Matrices

Kac--Moody algebras constitute a certain class of (generically infinite-dimensional) Lie algebras.
Roughly, they are those Lie algebras which possess both a Cartan matrix (implying the existence
of a triangular decomposition) and a Killing form. They include all finite-dimensional simple Lie
algebras, and I will start by summarizing some pertinent features of those well-known algebras.
A finite-dimensional simple Lie algebra g = g(A) is characterized by its Cartan matrix A; the
basic Lie bracket relations of g can be expressed through A as 29

A [Hα, Hβ] = 0 B [H i, Hj] = 0

[Hα, Eβ] = (α∨, β)Eβ [H i, Ej
±] = ±AjiEj

±

[Eα, E−α] = Hα [Ei
+, E

j
−] = δij H

j

[Eα, Eβ] = eα,β E
α+β for α 6= − β (adEi

±
)1−Aji

Ej
± = 0

(3.1)

29 This definition is asymmetric in i and j. In the literature the Cartan matrix is sometimes defined as the
transpose of the matrix used here.
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in a so-called Cartan--Weyl basis and Chevalley--Serre basis, respectively. Let me explain some
of the notation that is used here. When g has rank r, A is an r × r-matrix, and g has a
basis {Eα} ∪ {H i | i = 1, 2, ... , r} obeying the relations (3.1A) (in addition to antisymmetry
and the Jacobi identity, the two defining properties of a Lie bracket). The r generators H i

span an abelian Lie algebra, called the Cartan subalgebra g◦ of g; the maps adHi: x 7→ [H i, x]
are diagonalizable, and to each root , i.e. vector α = (αi) of eigenvalues of these maps, there
corresponds a generator Eα of g, and one writes Hα := (α∨, H) with α∨ := 2α/(α, α). Among
the roots there is a special subset {α(i) | i=1, 2, ... , r}, called the simple roots, through which
all roots can be expressed as integral linear combinations with either only positive or only
negative coefficients; the corresponding roots are called positive and negative roots, respectively.
(Actually there are several distinct subsets of roots which can serve as systems of simple roots;

but all of them are equivalent.) Writing E±α(i)
=:Ei

±, g= g(A) is generated algebraically 30 by
3r generators {Ei

±, H
i | i=1, 2, ... , r} (called the Chevalley generators of g) modulo the relations

(3.1B). The relations in the last line of (3.1B) are called the Serre relations (the symbol (adx)
n

is a shorthand for adx ◦ adx ◦ · · · ◦ adx (n factors), e.g. (adx)
3(y) ≡ [x, [x, [x, y]]] ), and the full

set (3.1B) is known as the Chevalley--Serre relations. Cartan matrices are conveniently encoded
into Dynkin diagrams : to each possible value of the label i one associates a node or vertex, and
for i 6= j the nodes i and j are connected by AijAji lines.

Of course, not any arbitrary square matrix qualifies as a Cartan matrix. In order that g(A)
is finite-dimensional and simple, the matrix A must satisfy

Aij ∈Z , Aii = 2 , Aij ≤ 0 for i 6= j , Aij = 0 ⇔ Aji = 0 , (3.2)

as well as
detA > 0 , (3.3)

and must be indecomposable (i.e. must not be rearrangeable to block-matrix form by any
simultaneous permutation of its rows and columns; decomposable matrices obeying (3.2) and
(3.3) describe direct sums of simple Lie algebras). The analysis of these conditions leads to the
following classification of all finite-dimensional simple Lie algebras:

Ar (r≥1) , Br (r≥2) , Cr (r≥3) , Dr (r≥4) , E6 , E7 , E8 , F4 , G2 . (3.4)

Thus there are four infinite series, the classical Lie algebras Ar, ... , Dr, as well as the five
exceptional simple Lie algebras E6, ... , G2. In particular there is a unique simple Lie algebra of
rank one, namely A1

∼= sl(2), with Cartan matrix A(A1) = 2, and there are three simple Lie
algebras of rank two, namely A2

∼= sl(3), B2 ≡C2
∼= so(5) and G2, with Cartan matrices

A(A2) =
(

2 −1
−1 2

)
, A(B2) =

(
2 −2

−1 2

)
, A(G2) =

(
2 −3

−1 2

)
. (3.5)

By construction, the space spanned by the g-roots α is the space g⋆
◦ dual to the Cartan

subalgebra g◦. g⋆
◦, called the weight space of g, is an r-dimensional vector space with euclidean

scalar product (· , ·); the simple roots, and likewise the simple coroots α(i)∨ := 2α(i)/(α(i), α(i)),

30 By ‘(algebraically) generated’ – as opposed to ‘(linearly) spanned’ – one means that the elements of the
Lie algebra g are obtained as arbitrary linear combinations of arbitrary (multiple) Lie brackets of the basic
generators. Such a characterization of the Lie algebra g, not to be confused with the description of g as the
linear span of a basis, is called a presentation of g by generators modulo relations.
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form a basis of g⋆
◦. The entries of the Cartan matrix encode the non-orthonormality of these

bases; more precisely,

Aij = (α(i)∨, α(j)) ≡ 2 (α(i), α(j))/(α(j), α(j)) . (3.6)

Further properties of the root system, i.e. the collection of all roots of g, are the following. The
only multiple of a root α that is again a root is −α. Also, for any pair α, β of roots, the linear
combination α+mβ is a root for a set of consecutive integers m, but not for any other value of
m; for pairs of simple roots, this root string can be directly read off the Serre relations. For the
lengths of roots at most two different values are possible; the relative length squared of a longer
and a shorter root is given by max{|Aij| | i 6= j}. In particular, when Aij ∈ {0,−1} for i 6= j
(in which case g is said to be simply laced), then all roots have the same length. Also, when
different root lengths do occur, then this already happens among the simple roots, and each
of the two sets of simple roots of equal length corresponds to a connected sub-diagram of the
Dynkin diagram. (Also, in order that the Dynkin diagram specifies the Lie algebra g uniquely,
one supplements the multiple link which connects these two sub-diagrams by an arrow pointing
from the longer to the shorter simple roots.)

The Killing form of g associates to any two elements x and y of g the number

κ(x, y) ≡ (x|y) := tr(adx ◦ ady) . (3.7)

It is bilinear, symmetric, and satisfies κ(x, [y, z]) = κ([x, y], z). Conversely, any map with
these properties equals the Killing form up to a multiplicative constant. When restricted to
the Cartan subalgebra g◦, the Killing form induces by duality an inner product on the weight
space g⋆

◦, which, when suitably normalized, coincides with the euclidean product on g⋆
◦ that was

already used above.
Another important basis of the weight space g⋆

◦ consists of the fundamental weights Λ(i),
which are defined by the requirement that

(Λ(i), α
(j)∨) = δ j

i (3.8)

for i, j= 1, 2, ... , r. This basis plays a special rôle in the representation theory of g, or more
precisely, for its highest weight modules (the concept of highest weight modules was already
discussed in the context of chiral algebras in section 3, and will be dealt with in more detail
in section 19 below). Namely, among the irreducible highest weight modules HΛ of g, precisely
those are finite-dimensional whose highest weight Λ is dominant integral , i.e. is a non-negative
integral linear combination of the fundamental weights Λ(i). Moreover, each such module can
be obtained by forming tensor products of just a few special highest weight modules, for all of
which the highest weight is a fundamental weight.

The Weyl group W of the Lie algebra g is a finite group which is generated by the reflections
ri, i∈{1, 2, ... , r}, in the weight space g⋆

◦ of g about the hyperplanes through the origin which
are perpendicular to the simple roots α(i). On the fundamental weights Λ(j) these reflections
act as

ri : Λ(j) 7→ Λ(j) − δi,j
∑

kA
ikΛ(k) . (3.9)

Each element w ∈ W can be written (non-uniquely) as a product of the reflections ri. The
minimal number of ri that is needed to form such a Weyl word for w is called the length ℓ(w)
of w, and (−1)ℓ(w)=: sign(w) is called the sign of w.
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16 Symmetrizable Kac--Moody Algebras

A considerable portion of the description above directly generalizes to a much larger class of Lie
algebras. Recall that the finite-dimensional simple Lie algebras are obtained when imposing
indecomposability as well as the properties (3.2) and (3.3) of A; in particular the rank of A is
equal to r. One arrives at more general Lie algebras g when one stipulates again that g = g(A)
is algebraically generated by Chevalley generators Ei

±, H
i modulo the relations (3.1B), with

the matrix A still satisfying (3.2), but relaxes the condition (3.3) on the determinant of A. The
algebras obtained this way are known as Kac--Moody Lie algebras, and A as a generalized Cartan
matrix. All Kac--Moody algebras, except for the simple ones described above, are infinite-dimen-
sional (for the case of affine Kac--Moody algebras, this follows from their realization that I will
present in the next section).

Remarkably, even removing the condition (3.3) altogether does not destroy much of the
power and beauty of these Lie algebras and their representation theory. But to keep some
specific nice properties, it is necessary to restrict oneself to a (still comprehensive) subclass,
the so-called symmetrizable Kac--Moody algebras. These are characterized by the existence of
a non-degenerate diagonal matrix D such that the matrix DA is symmetric. A symmetrizable
Kac--Moody algebra is simple (that is, it does not possess any non-trivial ideal, i.e. subalgebra
h such that [h, g]⊆ h, and has dimension larger than 1), if an only if detA 6=0.

Every symmetrizable Kac--Moody algebra possesses a bilinear symmetric invariant form (· | ·)
– in the finite-dimensional case this is the Killing form (3.7). However, when g is strictly defined
as above, this bilinear form is degenerate as soon as the symmetrized Cartan matrix DA has a
zero eigenvalue. To make the form non-degenerate, one needs to enlarge the Cartan subalgebra
g◦ of g by so-called outer derivations D. More precisely, to every zero eigenvalue of A there is
associated an independent central element Ka∈g which is a suitable linear combination of the
generators H i. For each Ka one must introduce an independent derivation Da; this can be done
in such a way that (Ka|Db) = δab and (Ka|Kb) = 0 = (Da|Db), and then (· | ·) is non-degenerate.
It is usually this enlarged Lie algebra that is referred to as the Kac--Moody algebra g = g(A)
associated to A.

When (3.3) is not removed completely, but only relaxed to the requirement

detA{i} > 0 for all i = 0, 1, ... , r (3.10)

for the matrices A{i} that are obtained from A by deleting the ith row and ith column (and
when A is indecomposable), then A is called an affine Cartan matrix, and g= g(A) an affine

Lie algebra. In (3.10) I changed the labelling convention for the entries of A: they now take
values in {0, 1, ... , r}, so that A is an (r + 1)× (r + 1) -matrix; note that the validity of (3.10)
implies that the rank of A is at least r. One can also characterize an affine Cartan matrix by the
requirement that the symmetrized Cartan matrix DA is positive semidefinite, but not positive
definite. (If DA is positive definite, then g(A) is a finite-dimensional simple Lie algebra.) The
center of an affine Lie algebra is one-dimensional, and correspondingly one includes into the
definition of g an outer derivation D.

Once the classification of simple Lie algebras up to some rank is known, classifying the affine
Lie algebras with that rank is straightforward. For instance, just like for r = 1 requiring detA >
0 immediately leads to the three simple rank-two Cartan matrices (3.5), the requirement that
A has one positive and one zero eigenvalue yields two rank-one affine algebras, denoted by A(1)

1
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and A(2)

1 : 31

A(A(1)

1 ) =
(

2 −2
−2 2

)
, A(A(2)

1 ) =
(

2 −4
−1 2

)
. (3.11)

For r > 1, the crucial observation is that by deleting the ith row and ith column (i ∈ {0, 1, ... , r}
arbitrary) from an affine Cartan matrix, one must produce the Cartan matrix of a direct sum
of finite-dimensional simple Lie algebras. This leads to the following classification. There are
seven infinite series of affine Lie algebras, and in addition nine isolated cases; they are denoted
by

A(1)

r (r≥2) , B(1)

r (r≥3) , C(1)

r (r≥2) , D(1)

r (r≥4) , B(2)

r (r≥3) , C(2)

r (r≥2) , B̃(2)

r (r≥2) ,

A(1)

1 , E(1)

6 , E(1)

7 , E(1)

8 , F (1)

4 , G(1)

2 , A(2)

1 , F (2)

4 , G(3)

2 . (3.12)

The affine algebras are thus all denoted by symbols X (ℓ)
r , with Xr the symbol for one of the

simple Lie algebras (3.4) and ℓ∈{1, 2, 3}. 32 The algebras with ℓ=1 are called untwisted affine
algebras, while those with ℓ = 2, 3 are the twisted ones. For the time being, the distinction
between these two types of algebras is only a matter of nomenclature, but the reason for this
choice of terminology will become clear later on.

17 Affine Lie Algebras as Centrally Extended Loop Algebras

The description of a Kac--Moody algebra g in terms of generators {Ei
±, H

i} and relations (3.1B)
encodes the structure of g in a very compact form, 33 but it is in fact not too transparent. (For
instance it is difficult to deduce the root system, and it even requires some effort to decide
whether g is finite-dimensional.) But affine Kac--Moody algebras possess a specific realization
which for many purposes is much more convenient and which arises naturally in conformal field
theory.

Consider the space ḡloop of analytic mappings from the circle S1 to some Lie algebra ḡ. (For
future convenience I denote the Lie algebra to start with by ḡ rather than g.) Fourier analysis
shows that when S1 is regarded as the unit circle in the complex plane with coordinate z= e2πit,
then a (topological 34) basis of the function space ḡloop is given by {T a

n | a=1, 2, ... , dim ḡ; n∈Z},
where

T a
n := T̄ a ⊗ zn ≡ T̄ a ⊗ e2πint (3.13)

with z∈S1 and {T̄ a | a=1, 2, ... , dim ḡ} a basis of ḡ. Moreover, ḡloop inherits a natural bracket
operation from ḡ with respect to which it becomes a Lie algebra itself, namely

[T a
m, T

b
n] := [T̄ a, T̄ b] ⊗ (zmzn) =

dim ḡ∑

c=1

fab
c T̄

c ⊗ zm+n =

dim ḡ∑

c=1

fab
c T

c
m+n . (≃ π)

31 The value A12A21 = 4 is an exception: for every other affine Lie algebra one has AijAji ≤ 3 for all i, j.
32 For ℓ =2, 3 several different conventions are in use. The notation adopted here is taken from [42]; a rather

different one is used in [77].
33 The most elegant formulation [77] is to start with a Cartan subalgebra of sufficiently large dimension

and describe g as the Lie algebra generated modulo (3.1B), divided by its maximal ideal that intersecting
non-trivially the Cartan subalgebra.

34 A topological or analytic basis, sometimes also called Hilbert space basis, of a vector space V is characterized
by the property that the closure in the topology of V of the set of all finite linear combinations of basis vectors
is the whole space V . In contrast, an ordinary vector space basis of V has the property that every vector in V
is a finite linear combination of basis vectors.
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Accordingly, ḡloop is called the loop algebra over ḡ. The subset of the loop algebra that is
spanned by the generators T a

0 is a Lie subalgebra, called the zero mode subalgebra of ḡloop; it
is isomorphic to ḡ.

Now let ḡ=Xr be a finite-dimensional simple Lie algebra. Its loop algebra ḡloop, which is
infinite-dimensional, turns out to be closely related to the affine algebra g =X (1)

r . 35 However,
unlike affine Lie algebras, ḡloop has a trivial center (and also does not possess any interesting
representations). But starting from ḡloop one can obtain a Lie algebra which does possess a
center, by a canonical construction known as central extension. Namely, by simply adjoining
ℓ additional generators Kj, j= 1, 2, ... , ℓ, to a basis {T a} of an arbitrary Lie algebra g, one
constructs an algebra ĝ whose dimension exceeds the dimension of g by ℓ and for which the
Kj are central, as follows. One keeps the original values fab

c of those structure constants which
involve only the generators T̂ a and imposes the relations [Ki, Kj ] = 0 and [T̂ a, Kj] = 0 for
all i, j and all a. Here by T̂ a I denote the image of the generator T a of g in the extended
algebra ĝ. The general form of the brackets among these generators T̂ a reads [T̂ a, T̂ b] =∑

c f
ab

c T̂
c +

∑ℓ
i=1 f

ab
iK

i. The new additional structure constants fab
i are not arbitrary, but are

restricted by the Jacobi identity. Clearly, one should count only those extensions as genuine
central extensions for which ĝ is not just the direct sum of g and an abelian Lie algebra; such
a direct sum is certainly obtained when fab

i ≡ 0, but this is typically not the only choice for
which this happens.

It is in general a difficult cohomological question whether a given Lie algebra allows for
non-trivial central extensions or not. But it is quite straightforward to see that finite-dimen-
sional simple Lie algebras ḡ =Xr do not possess non-trivial central extensions, whereas their
loop algebras ḡloop possess indeed a unique non-trivial extension by a single central generator
K, with brackets

[K, T̂ a
n ] = 0 , [T̂ a

m, T̂
b
n] =

dim ḡ∑

c=1

fab
c T̂

c
m+n +mδm+n,0κ̄

ab K ; (3.15)

here κ̄ab = κ̄(T̄ a, T̄ b), with κ̄ the Killing form (3.7) of ḡ. Moreover, the untwisted affine Lie
algebra g = X (1)

r is obtained from this centrally extended loop algebra ̂̄gloop by including a
derivation D, i.e. a generator with Lie brackets

[D, T̂ a
m] = mT̂ a

m , [D,K] = 0 . (3.16)

(Thus D measures the mode number m and hence provides a Z-grading, which is of precisely
the same form as that of the Virasoro operator −L0 in the case of chiral algebras W , cf. equation
(1.7).) In short, the vector space structure of g is

g = ĝ ⊕ CD = C [z, z−1] ⊗
C

ḡ ⊕ CK ⊕ CD . (3.17)

Just like for loop algebras, the zero modes T̂ a
0 of g span a subalgebra which is isomorphic to

the simple Lie algebra ḡ; this is called the horizontal subalgebra of g.

35 The notation in the lists (3.4) and (3.12) is chosen in such a way that g =X (1)
r with X ∈ {A, B, C, D, E}

precisely corresponds to the simple Lie algebra ḡ =Xr.
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Upon choosing a Cartan--Weyl basis {T̄ a} = {H i | i= 1, 2, ... , r} ∪ {Eᾱ} of ḡ≡ ḡ(Ā), the
defining Lie bracket relations (3.1A) of g take the form

[H i
m, H

j
n] = m (D̄Ā)ijδm+n,0K , [H i

m, E
ᾱ
n ] = ᾱiEᾱ

m+n ,

[Eᾱ
m, E

β̄
n ] = e

ᾱ,β̄
Eᾱ+β̄

m+n for ᾱ + β̄ a ḡ-root,

[Eᾱ
n , E

−ᾱ
−n ] =

∑r
i=1 ᾱiH

i
0 + nK .

(3.18)

Here m,n∈Z, i, j∈{1, 2, ... , r}, and ᾱ, β̄ are arbitrary ḡ-roots.
So far only the untwisted affine algebras have been obtained. But along similar lines one

can realize the twisted ones as well. The only modification is to give up the single-valuedness
of the maps f from S1 to ḡ that were used in the loop construction above. More precisely, the
twisted affine Lie algebras are obtained when instead of f(e2πiz) = f(z) one imposes the twisted

boundary conditions
x ⊗ f(e2πiz) = ω(x) ⊗ f(z) (3.19)

for all x∈ ḡ, where ω is an automorphism of the horizontal subalgebra ḡ of finite order N . In
other words, f is now no longer a function on the circle S1, but rather on an N -fold covering
of S1. However, when performing this construction for two automorphisms ω and ω′ for which
ω−1ω′ is an inner automorphism of ḡ, one obtains two realizations of one and the same abstract
Lie algebra; in particular, when ω is inner, then one gets a realization of an untwisted algebra
which differs from the realization (3.18). As a consequence, the twisted affine Lie algebras
correspond in fact to equivalence classes of outer modulo inner automorphisms of ḡ; in each
such class there is a distinguished representative which is induced by a symmetry of the Dynkin
diagram of ḡ.

18 The Triangular Decomposition of Affine Lie Algebras

For any affine Lie algebra g one can determine a triangular decomposition of g that is analogous
to (1.12) for chiral algebras. One first observes that a Cartan subalgebra g◦ of g is spanned by
{K,D,H i

0 | i=1, 2, ... , r}. The roots (i.e., vectors of eigenvalues) with respect to (H0, K,D) are
given by

α = (ᾱ, 0, n) for ᾱ∈Φ , n∈Z and α = (0, 0, n) for n∈Z\{0} , (3.20)

where Φ = {ᾱ} denotes the root system of ḡ. These roots correspond to the generators Eᾱ
n with

n ∈ Z and to Hj
n with n 6= 0, respectively. While the roots (ᾱ, 0, n) are non-degenerate, i.e.

appear with multiplicity one, the roots (0, 0, n) do not depend on the label j of Hj
n and hence

have multiplicity r. The degenerate roots are all integral multiples of δ := (0, 0, 1). Also note
that the roots of the derived algebra [g, g] =: ĝ are all infinitely degenerate, because in ĝ there
is no Cartan subalgebra generator that is able to distinguish between different labels n. Thus
another rôle of the derivation D is to avoid such infinite multiplicities.

Having made a choice for distinguishing between positive and negative roots of ḡ, a sys-
tem of positive roots (α> 0) of g can be chosen to consist of those roots (ᾱ, 0, n) for which
either n> 0 and ᾱ∈Φ is an arbitrary ḡ-root or zero, or else n=0 and ᾱ is a positive ḡ-root.
The remaining roots are then the negative ones (α< 0). Together with g◦, the subalgebras
g+ := span{Eα|α> 0} and g− := span{E−α|α> 0} then provide a triangular decomposition

g = g+ ⊕ g◦ ⊕ g− (3.21)
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of g, i.e. satisfy [g±, g◦ ⊕ g±] ⊆ g± and [g+, g−] ⊆ g◦, analogous to (1.13).
The simple roots α(i) of g provide a basis of the root space such that in the expansion

α=
∑r

i=0 bi α
(i) one has, for all i=0, 1, ... , r, bi ∈Z≥0 if α> 0 and bi ∈Z≤0 if α< 0. With the

above choice of positive roots, the simple roots are

α(i) = (ᾱ(i), 0, 0)≡ ᾱ(i) for i=1, 2, ... , r and α(0) =(−θ̄, 0, 1) = δ− θ̄ , (3.22)

where ᾱ(i) are the simple roots of the horizontal subalgebra ḡ and θ̄ is the highest root of ḡ. For
each i∈{0, 1, ... , r} the generator Eα(i)

corresponding to a simple root is precisely the generator
that in the Chevalley--Serre formulation is denoted by Ei

+. The relation to the Eᾱ
n -notation is

thus
Ei

+ = Eᾱ(i)

0 for i = 1, 2, ... , r , E0
+ = E−θ̄

1 . (3.23)

19 Representation Theory

Every Kac--Moody algebra g has a triangular decomposition g = g+ ⊕ g◦⊕ g− similar to the one
described above. Correspondingly a particularly interesting class of modules (representation
spaces) V of g are those which have a basis on which the whole Cartan subalgebra g◦ acts
diagonally, and hence possess a decomposition V =

⊕
λ V(λ) into subspaces such that

R(H i) vλ = λi · vλ (3.24)

for all vλ∈V(λ). The vectors λ ≡ (λi)i are called the weights of the module V ; they are elements
of the weight space g⋆

◦, and the numbers λi are their components in the basis furnished by the
fundamental weights Λ(i).

A maximal weight Λ satisfies by definition R(Eα) vΛ = 0 for all positive roots α and all
vΛ ∈ V(Λ). A module which has exactly one weight Λ with this property is called a highest

weight module and is denoted by VΛ. All other elements of VΛ can be obtained by applying step
operators for negative roots to vΛ, i.e. every v ∈ VΛ is contained in U(g−) vΛ, where U denotes
the universal enveloping algebra.

A Kac--Moody algebra g is algebraically generated by its subalgebras g(i) that are associated
to the simple g-roots, i.e. g(i) =span{Ei

±, H
i} (together with the derivations, but these do not

concern us here). From (3.1B) one reads off that g(i)
∼= sl(2) for each i; one can therefore

reduce many issues in the representation theory of g to that of the simple Lie algebra sl(2).
A particularly important application is the following. All non-trivial g-modules are infinite-
dimensional, but in favorable circumstances the subspaces into which an irreducible highest
weight module HΛ decomposes with respect to the subalgebras g(i) are all finite-dimensional.
(Loosely speaking, such g-modules are ‘less infinite-dimensional’ than others.) This happens
precisely when the highest weight Λ =

∑
i Λ

iΛ(i) of HΛ is dominant integral , that is, a positive
integral linear combination of fundamental weights, i.e.

Λi ≡ (Λ, α(i)∨) ∈ Z≥0 for all i (3.25)

(i.e. for i= 0, 1, ... , r in the case of affine Lie algebras).
For affine g it is convenient to write g-weights (cf. equation (3.20)) as triples λ=(λ̄, k,m)

with k the eigenvalue of the central element K and m the grade, i.e. the eigenvalue of the
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derivation D. Then for untwisted g, the fundamental weights are 36

Λ(i) = (Λ̄(i),
1
2
(θ̄, θ̄)a∨

i , 0) for i = 1, 2, ... , r and Λ(0) = (0, 1
2
(θ̄, θ̄), 0) . (3.26)

Here a∨

i are the dual Coxeter labels, defined as the coefficients of θ̄∨ ≡ 2θ̄/(θ̄, θ̄) (the highest
coroot) in the basis of simple coroots of ḡ. Also, the property (3.25) means, first, that the
horizontal part Λ̄ of Λ is a dominant integral ḡ-weight, and second, that

k∨ := 2k/(θ̄, θ̄) , (3.27)

called the level of HΛ, is a non-negative integer; and third, there is the bound

0 ≤
r∑

i=1

a∨

i Λ̄
i ≡ (Λ̄, θ̄

∨

) ≤ k∨ . (3.28)

The precise structure of an irreducible highest weight module HΛ strongly depends on
whether the highest weight Λ is dominant integral or not. For generic Λ already the Verma
module VΛ, which is isomorphic to U(g−) vΛ, without any additional relations (compare equation
(1.18)), is irreducible. In contrast, for dominant integral Λ the Verma module contains null
vectors. The entire information on the null vector structure of VΛ is encoded in the weight Λ:
all null vectors can be obtained by acting with U(g−) on the so-called primitive null vectors

v(i) := (E−α(i)

)Λi+1vΛ , (3.29)

where i can take all possible values, i.e. i ∈ {0, 1, ... , r} for affine algebras. The irreducible
module HΛ is obtained from the Verma module VΛ by taking the quotient with respect to the
submodule spanned by all null vectors. For affine g, the quotienting by the null vectors v(i) with
i=1, 2, ... , r can be implemented by just restricting to irreducible modules rather than Verma
modules with respect to the horizontal subalgebra ḡ of g; also, one has v(0) = (E−α(0)

)Λ0+1vΛ =
(E θ̄

−1)
k∨−(θ̄∨, Λ̄)+1vΛ.

20 Characters

Precisely as in the case of the chiral algebras W that arise in conformal field theory (see
section10), one can encode the information contained in the weight system of a module V of a
Kac--Moody algebra g in its character

χ
V :=

∑

λ

multV (λ) eλ . (3.30)

Since the weights λ are linear functions on the Cartan subalgebra g◦ of g, the formal exponential
eλ – and hence also the character χV – can be regarded as a function on g◦, i.e. eλ: g◦→C ,
h 7→ eλ(h):= exp(λ(h)), where ‘exp’ is the ordinary exponential function. Moreover, via the
invariant bilinear form the Cartan subalgebra g◦ can be identified with its dual space, i.e. with
the weight space g⋆

◦. Correspondingly, by setting

eλ : µ 7→ eλ(µ) := exp[(λ, µ)] for all µ∈g⋆
◦ , (3.31)

36 θ̄ denotes again the highest root of ḡ. The presence of the length squared of θ̄ implements the dependence
on the normalization of the inner product on the weight space ḡ⋆

◦ of ḡ.
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where (· , ·) is the inner product in weight space, one can interpret the exponentials eλ and the
character χV also as functions from the weight space to the complex numbers.

One of the most intriguing results in the representation theory of symmetrizable Kac--Moody
algebras is the Weyl--Kac character formula which states that the character χΛ of an irreducible
g-module HΛ with highest weight Λ satisfies

χ
Λ(µ) =

∑
w∈W sign(w) exp[(w(Λ + ρ), µ)]∑

w∈W sign(w) exp[(w(ρ), µ)]
. (3.32)

Here W is the Weyl group of g which, just like in the finite-dimensional case, is the group
generated by reflections about the hyperplanes perpendicular to the simple roots, sign(w) ∈
{±1} is the sign of a Weyl group element w, and ρ =

∑
i Λ(i) is the Weyl vector of g. The

formula (3.32) is a consequence of a deep interplay between the structure of the Weyl group
and the relation between irreducible and Verma modules. The character XΛ of a Verma module
VΛ is easily obtained with the help of the Poincaré--Birkhoff--Witt theorem, which tells how to
construct bases of universal enveloping algebras; from the form of such a basis it follows that
each generator Eα associated to a positive g-root α contributes a geometric series in e−α to XΛ,
and by summing these series one finds that

XΛ = eΛ ·
∏

α>0 (1 − e−α)−mult(α) . (3.33)

Moreover, irreducible characters are invariant under the Weyl group W , χΛ(w(µ)) =χ
Λ(µ),

while Verma characters acquire a factor of sign(w). When combining these results with a
linear relation that relates irreducible and Verma characters and with basic properties of the
Weyl group W , one obtains the character formula in the form

χ
Λ =

∑
w∈W sign(w) ew(Λ+ρ)−ρ

∏
α>0(1 − e−α)mult(α)

. (3.34)

Furthermore, for Λ =0, HΛ is just the trivial one-dimensional module so that it has character
χ0 ≡ 1, and hence (3.34) implies the denominator identity

∏

α>0

(1 − e−α)mult(α) =
∑

w∈W

sign(w) ew(ρ)−ρ (3.35)

(which is the source of many most non-trivial combinatorial identities). Upon re-inserting this
result into (3.34) one arrives at the character formula in the form (3.32).

With the help of Poisson resummation, the character formula allows one to analyze the be-
havior of characters under modular transformations. One finds that the set of characters of ir-
reducible highest weight modules at fixed level of every untwisted (and of some twisted) 37 affine
Lie algebra spans a module for a unitary representation of SL2(Z) – compare the Kac--Peterson
formula (4.11) below. As observed after equation (3.16), the derivation D ∈ g◦ of an affine
Kac--Moody algebras g behaves just like −L0. Thus the restriction of the character to the
span CD of D yields precisely the Virasoro-specialized character that I already introduced in
(2.11); however, the Virasoro-specialized characters are usually not sufficient to determine the
representation matrices of SL2(Z).

37 Among the twisted affine Lie algebras, precisely those which do have nice modular transformation properties
have appeared [48] in conformal field theory.
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The character formula is valid for arbitrary symmetrizable Kac--Moody algebras. Untwisted
affine Lie algebras are nevertheless distinguished, as the formula is then often easy to evaluate.
It becomes particularly simple when g is simply laced and at level 1. In this case the Virasoro-
specialized character χΛ(τ) is, up to an over-all power of q= exp(2πiτ), just the −r th power of
Euler’s product function ϕ(q) =

∏∞
n=1(1 − qn) multiplied with a theta function for the ḡ-root

lattice shifted by the highest weight. E.g. for A(1)

N−1 at level one the formula reads (expressing
AN−1-weights in an orthogonal basis of a space of dimension r + 1 =N)

χ
Λ(j)

(τ) = (q1/24ϕ(q))−(N−1) q−j2/2N

∑
j1,j2,...,jN∈Z

j1+j2+...+jN=j

q(j2
1+j2

2+···j2
N )/2 . (3.36)

for j = 1, 2, ... , N − 1.
Let me return to the relation between Verma and irreducible modules. The maximal sub-

module Vmax that must be divided out from VΛ in order to obtain the irreducible module HΛ

is not the direct sum of the Verma modules that are ‘headed’ by the primitive null vectors.
Rather, in Vmax the latter can overlap (moreover, in general there also exist proper submodules
which are not Verma modules). However, when Λ is an integrable weight, the overlap between
two Verma submodules Vµ1

and Vµ2
of VΛ is a submodule of both Vµ1

and Vµ2
and is again ob-

tained from primitive null vectors (now in Vµ1
respectively Vµ2

). Moreover, the precise structure
is governed by the Weyl group of g. Based on this connection one can construct a semi-infinite
complex of g-modules and g-module homomorphisms, the so-called BGG resolution of HΛ, in
which each module except for the one at the right-most place, which is HΛ, is a direct sum
of Verma modules. (The structure looks rather simple, but the proof, which works even for
non-symmetrizable Kac--Moody algebras [83], is most complicated.)

Lecture 4 : WZW theories and coset theories

21 WZW Theories

The results of Lecture 3 show in particular that an untwisted affine Lie algebra g enjoys all
properties that are needed for a chiral algebra of conformal field theory, except that it does not
contain the Virasoro algebra Vir. The latter shortcoming is easily remedied by just prescribing
the bracket relations [Lm, K] = 0 = [C, T̂ a

n ] and

[Lm, T̂
a
n ] = −n T̂ a

m+n (4.1)

among the generators of g and Vir. This way one arrives at the semi-direct sum of Vir and the
centrally extended loop algebra ĝ = [g, g] and identifies the Virasoro generator L0 with minus
the derivation D of the affine algebra g.

While this observation does not automatically imply that one can associate a conformal
field theory to any untwisted affine Lie algebra g, indeed there exists a class of conformal field
theories with such a chiral algebra g⊕Vir, namely the so-called WZW (Wess--Zumino--Witten)
theories [81]. These theories are characterized by the fact that their chiral symmetry algebra
consists of the energy-momentum tensor T (z) and the current

J(z) =
∑

m∈Z

z−m−1 T̂ a
m (4.2)

42



whose modes Lm and T̂ a
n satisfy the relations (1.3), (3.15) and (4.1), together with the require-

ment that the Virasoro generators Lm are of the Sugawara form, i.e.

Lm = 1
2(k∨+g∨)

∑

n∈Z

κ̄ab :T̂ a
m+nT̂

b
−n: . (4.3)

Here the colons : : denote a normal ordering prescription (compare equation (1.30)), k∨ is the
level of the relevant g-modules, and g∨ is the dual Coxeter number of the horizontal subalgebra
ḡ of g, i.e., the (properly normalized) eigenvalue of the quadratic Casimir operator in the adjoint
representation of ḡ. The Sugawara formula (4.3) implies that WZW theories are governed by
the representation theory of g, and there is no need to study the Virasoro algebra independently
of g. Moreover, it follows from the representation theory of g that I summarized in section 19
that many quantities of interest of a WZW theory can be studied entirely in terms of the
finite-dimensional simple Lie algebra ḡ and of the level k∨. E.g., because of the relation (4.3)
the Virasoro central charge c can be expressed as

c(g, k∨) =
k∨ dim ḡ

k∨ + g∨
. (4.4)

Note that in a quantum field theory the factor (k∨+g∨)−1 makes sense only if k∨ can be regarded
as a C -number; in other words, it is necessary that all g-representations appearing in a WZW
theory have one and the same value of the level. For unitary theories, k∨ is a non-negative
integer.

WZW theories also possess a Lagrangian realization (from which they in fact received their
name) as euclidean principal sigma models [92], i.e. two-dimensional non-linear sigma models
for which the target space is a compact simple Lie group manifold G – the one whose Lie algebra
is the compact real form of ḡ – which are supplemented [110] by a Wess--Zumino [109, 90] term.
The action of such a WZW sigma model is SWZW = k∨(Sσ + SWZ) with

Sσ =

∫
d2z
16π tr(∂µγ ∂

µγ−1) , SWZ =

∫
d3y
24π ǫ

µντ tr(γ̇−1∂µγ̇ γ̇
−1∂ν γ̇ γ̇

−1∂τ γ̇) . (4.5)

Here γ takes values in G, and the integral in SWZ is over a three-dimensional ball whose surface
is to be identified with the compactified two-dimensional world sheet such that γ̇ = γ on the
surface (the WZ term is a total derivative, hence can also be written as a surface integral).

Sometimes one uses the term WZW theory also to refer to a somewhat more general class
of models, namely those where the affine algebra g is replaced by a current algebra, i.e. by a
direct sum of untwisted affine algebras and of Heisenberg algebras. (The Lie bracket relations
of the Heisenberg algebra, which generates the observables W for the theory of a free boson,
and which is often also called the û(1) current algebra, were displayed in (2.20). Note that this
Lie algebra is not a Kac--Moody algebra.) Those models for which g is just an untwisted affine
algebra, and hence ḡ is simple, are then called ‘simple’ WZW theories.

22 WZW Primaries

The primary fields of a unitary WZW theory with diagonal modular invariant are in one-to-one
correspondence with the integrable highest weights Λ of an untwisted affine Lie algebra g at
level k∨, i.e. with the dominant integral ḡ-weights Λ̄ that satisfy (3.28). Only finitely many
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weights of ḡ fulfill the condition (3.28); WZW theories are therefore rational conformal field
theories.

WZW primary fields φ=φΛ(z) can be characterized by the properties that (compare also
equation (1.27))

[T̂ a
n , φΛ(0)] = 0 for n > 0 and [T̂ a

0 , φΛ(0)] = T̄ a
(Λ̄)
φΛ(0) , (4.6)

where T̄ a
(Λ̄)

is a shorthand for the representation matrix R̄Λ̄(T̄ a). In terms of operator products,

these relations correspond to

Ja(z)φΛ(w,w̄) = (z − w)−1 T̄ a
(Λ̄)
φΛ(w,w̄) . (4.7)

The operator product of two current fields reads

Ja(z) J b(w) = (z − w)−2κ̄abK − (z − w)−1
∑

c

fab
c J

c(w) ; (4.8)

thus while Ja is a primary field of the Virasoro algebra, it is not primary with respect to g, but
rather a descendant of the identity field 1 at grade one.

The conformal dimension of a (g-) primary field with highest weight Λ is

∆Λ =
(Λ̄, Λ̄ + 2ρ̄)

2 (k∨ + g∨)
, (4.9)

with ρ̄ the Weyl vector of ḡ. Note that (Λ̄, Λ̄ + 2ρ̄) is the quadratic Casimir eigenvalue of the
irreducible ḡ-module that has highest weight Λ̄. Conjugate primary fields have highest weights
which are ‘charge-conjugate’ with respect to ḡ, and hence identical conformal dimensions, as
they should.

The Ward identity corresponding to the zero modes of the current reads

p∑

i=1

Ri(x̄) 〈ϕλ1
ϕλ2

· · ·ϕλp
〉 = 0 , (4.10)

where ϕλj
are arbitrary conformal fields of ḡ-weight λj and x̄ =

∑
a ξaT̂

a
0 is any element of ḡ. By

taking x̄ in the Cartan subalgebra of ḡ, the formula (4.10) tells us that (
∑p

j=1 λj)〈ϕλ1
· · ·ϕλp

〉
= 0. Thus a correlation function can be non-vanishing only if it is ‘ḡ-neutral’, i.e. if

∑
λj = 0. In

particular, 〈φΛ1· · ·φΛp
〉 ≡ 0 for each correlation function which only involves (non-trivial) fields

φΛ which are primary not only with respect to Vir, but also with respect to g. In order to study
non-vanishing correlation functions it is therefore necessary to deal also with correlators which
involve secondary fields. It is, however, sufficient to allow just for ‘horizontal’ g-descendants,
which are obtained from the primaries φΛ by acting only with zero mode currents T̂ a

0 and which
are still Vir-primary. (An analogous complication arises whenever the zero mode subalgebra
W0 of the chiral symmetry algebra is non-abelian.)

23 Modularity, Fusion Rules and WZW Simple Currents

As already mentioned in section20, the irreducible characters of a WZW theory span a module
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for a unitary representation of SL2(Z). The explicit form of the modular T-matrix is obtained
by inserting (4.9) into the general formula (2.16). The modular S-matrix is given by the
Kac--Peterson formula [79]

SΛ,Λ′ = N
∑

w∈W

sign(w) exp[− 2πi
k∨+g∨ (w(Λ̄ + ρ̄), Λ̄′ + ρ̄)] . (4.11)

Here the summation is over the Weyl group W of the horizontal subalgebra ḡ of g; the nor-
malization N follows from the requirement that S must be unitary. As an example, consider
g =D(1)

N at level one. Then there are four primary fields corresponding to the singlet (◦), vec-
tor (v), spinor (s), and conjugate spinor (c) representation of DN , with conformal dimensions
∆◦ = 0, ∆v = 1/2, ∆s = ∆c = N/8, and the S-matrix reads

S((D(1)

N )1) = 1
2




1 1 1 1

1 1 −1 −1

1 −1 i−N −i−N

1 −1 −i−N i−N


. (4.12)

Using these explicit formulæ, it has in particular been possible to construct a large number
of modular invariant combinations of characters (by methods such as simple current exten-
sions, conformal embeddings, automorphisms of the fusion rules, or (quasi-)Galois symmetries).
However, so far the classification of physical modular invariants has been completed only for
ḡ = sl(2), where an A-D-E pattern emerges [21], and [62] for ḡ= sl(3). In particular, despite
much progress (see e.g. [63]) it is not yet known whether already all ‘exceptional’ modular
invariants, which are similar to the E7-type invariant for sl(2), have been found.

Via the Verlinde formula (2.4), the Kac--Peterson formula can be employed to compute the
fusion rules of WZW theories. Moreover, comparison with the character formula (3.32) shows
that SΛ,Λ′ is essentially the character of an irreducible module of the horizontal subalgebra ḡ

evaluated at a specific rational element of the weight space ḡ⋆
◦. By combining these observations

with the unitarity of the modular S-matrix and with knowledge about the tensor products of
ḡ-modules in a clever manner, one finds the following Kac--Walton formula [77, 106]

n
Λ′′

ΛΛ′ =
∑

w∈W

sign(w) multΛ̄′(ŵ(Λ̄′′ + ρ̄)− ρ̄− Λ̄) (4.13)

for the fusion rule coefficients n
Λ′′

ΛΛ′ of WZW theories. Here ρ̄ is the Weyl vector of the horizontal
subalgebra ḡ, W is the Weyl group of g, ŵ denotes the (affine) action of w∈W that is induced
on the weight space of ḡ, and multΛ̄(µ̄) is the multiplicity with which the weight µ̄ arises for
the irreducible highest weight module HΛ̄ of ḡ. Since W is an infinite group, (4.13) would not
be of practical use if one really had to perform the sum over all of W , even though only a finite
number of Weyl group elements gives a non-zero contribution. Fortunately, this is not necessary,
because one can express the relevant elements of W through a finite algorithm as products of
the (finitely many) reflections which correspond to simple g-roots (see e.g. Appendix A of [46]).

All simple currents of WZW theories are known [45, 35, 40]. Except for an isolated case
appearing for E(1)

8 at level two, they are, besides the identity field, the primary fields with
highest weights k∨Λ(i), where k∨ is the level and Λ(i) is a fundamental weight for which the
Coxeter label ai – the coefficient of ᾱ(i) in the expansion of θ̄ with respect to the basis of simple
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ḡ-roots – has the value ai =1. 38 The action of such a simple current J on the highest weights of
the primary fields corresponds to a symmetry of the Dynkin diagram of g, and the monodromy
charge QJ(Λ) is proportional to the conjugacy class of Λ̄.

24 The Knizhnik--Zamolodchikov Equation

Recall that one obtains irreducible highest weight modules of W by ‘setting to zero’ the null
vectors in the corresponding Verma module. In more field theoretical terms, this means that
application of certain elements of the universal enveloping algebra U(W−) to the highest weight
vector yields a vector which is not contained in the space of physical states. Inserting such
an operator into a correlation function must therefore give zero. Identities for correlators that
are obtained this way are called null vector equations. In WZW theories, where W⊃ g, one
clearly gets null vector equations by acting with the enveloping algebra of g−, corresponding
to the null vectors (3.29). These Gepner--Witten equations are purely algebraic relations (and
are thus quite different from the null vector differential equations that arise for W =Vir when
c< 1) and will not be treated here.

But in WZW theories the Sugawara relation (4.3) provides an additional source for null
vectors. The associated null vector equations are known as Knizhnik--Zamolodchikov equations

[81]. I will formulate them for the four-point functions

G(z,z̄) = 〈φΛ1(∞,∞)φΛ2(1,1)φΛ3(z,z̄)φΛ4(0,0)〉 . (4.14)

As already observed, due to the Ward identity (4.10) such correlators vanish identically when
the fields φΛ are primary with respect to g, and to get non-trivial correlators one must also allow
for (Vir-primary) horizontal descendants which arise from the g-primaries φΛ by application of
the zero modes T̂ a

0 of the current; I will denote such descendants of φΛ by φλ
Λ. By ḡ-symmetry,

one can then expand (4.14) as

GΛ1Λ2Λ3Λ4
(z,z̄) ≡ G λ1λ2λ3λ4

Λ1Λ2Λ3Λ4
(z,z̄) =

M̃∑

i=1

GΛ1Λ2Λ3Λ4;i(z,z̄) · (Ti)
λ̄1λ̄2λ̄3λ̄4 , (4.15)

where {Ti | i=1, 2, ... , M̃} is a basis of invariant ḡ-tensors Ti for the tensor product representa-
tion R̄Λ̄1

⊗R̄Λ̄2
⊗R̄Λ̄3

⊗R̄Λ̄4
of ḡ. In this description, the specific choice of horizontal descendants

is encoded in the corresponding components (Ti)
λ̄1λ̄2λ̄3λ̄4 of the invariant tensors, while the ‘re-

duced’ functions GΛ1Λ2Λ3Λ4;i(z,z̄) only depend on the primary fields. Also, the number M̃ of inde-
pendent invariant tensors is the ḡ-analogue of the numberM =

∑
I
n

I

AB
n

ICD
(cf. equation (2.28))

of chiral blocks appearing in equation (1.42), i.e. one has M̃ =
∑

µ̄ n̄
µ̄

Λ̄1Λ̄2
n̄

Λ̄4

µ̄Λ̄3
, where n̄

Λ̄′′

Λ̄Λ̄′ are the

tensor product coefficients which appear in the decomposition R̄Λ̄⊗R̄Λ̄′ =
⊕

Λ̄′′n̄
Λ̄′′

Λ̄Λ̄′ R̄Λ̄′′ of ten-
sor products of ḡ-representations into irreducible subrepresentations. (For any value of the level,
the fusion rule coefficients n

Λ′′

ΛΛ′ =n
Λ′′

ΛΛ′ (k∨) are majorized by the n̄
Λ̄′′

Λ̄Λ̄′ , and n
Λ′′

ΛΛ′ (k∨) = n̄
Λ̄′′

Λ̄Λ̄′ for
k∨ large enough. Hence one has M̃ ≥M(k∨) for all k∨, and limk∨→∞M(k∨) = M̃ .)

38 Numbering the fundamental weights as in [77], these are the following. For ḡ= Ar, all fundamental weights
qualify; their fusion rules are isomorphic to Zr+1. For B and C type algebras, there is a single non-trivial simple
current, with i = 1 for Br and i = r for Cr. For D type algebras, there are three non-trivial simple currents,
corresponding to i = 1, r, r− 1; their fusion products are isomorphic to the multiplication of the vector, spinor,
and conjugate spinor conjugacy classes of Dr. For E6 there is a simple current of order three, with i =1, and
its conjugate with i =5, and for E7 there is a simple current of order 2, with i = 6.
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With the expansion (4.15), the Knizhnik--Zamolodchikov equation constitutes an ordinary
first order matrix differential equation, reading

− 1
2
(k∨ + g∨) ∂GΛ1Λ2Λ3Λ4;i(z,z̄) =

M̃∑

j=1

(
Pij

z
+

Qij

z−1

)
GΛ1Λ2Λ3Λ4;j(z,z̄) , (4.16)

where the matrices P and Q are given by P =
∑dim ḡ

a,b=1 κ̄abR̄Λ̄3
(T̄ a)⊗R̄Λ̄4

(T̄ b) and Q=
∑dim ḡ

a,b=1 κ̄ab

R̄Λ̄3
(T̄ a)⊗R̄Λ̄2

(T̄ b). When the basis of invariant tensors is chosen in such a way that they corre-
spond precisely to the various irreducible sub-representations in the tensor product R̄Λ̄3

⊗R̄Λ̄4
,

then the matrix P is diagonal.
Decoupling of the system (4.16) leads to linear differential equations of order M̃ for the

components GΛ1Λ2Λ3Λ4;i. The solutions to these equations can be given in terms of contour
integrals which generalize the contour integral formula for hypergeometric functions. This is in
principle straightforward, but in practice it is rather tedious, and accordingly it has been fully
worked out only for the case of ḡ = sl(2) and for some specific isolated four-point functions for
which the order M̃ of the differential equation is small.

25 Coset Conformal Field Theories

The well-established representation theory of affine Lie algebras makes WZW theories amenable
to detailed study. The coset construction exploits the representation theory of affine algebras
to investigate also more complicated models. The basic idea [68] is to consider embeddings
h →֒ g, where both Lie algebras are current algebras at some level(s) k∨, and to analyze the
difference of the two Virasoro algebras Virg and Virh (which are obtained via the Sugawara
formula (4.3) for g and h, respectively), i.e. the Lie algebra with generators

Lg/h
m := Lg

m − Lh
m . (4.17)

When the embedding of h into g is induced by an embedding h̄ →֒ ḡ of the respective horizon-
tal subalgebras, then these combinations commute with every generator Ja

n of h, [L
g/h
m , T̂ a

n ] = 0,

implying that [L
g/h
m , L

g/h
n ] = [Lg

m, L
g
n] − [Lh

m, L
h
n]. As a consequence the generators L

g/h
n span

a Virasoro algebra with central element Cg/h = Cg − Ch, called the coset Virasoro algebra. It
is, however, still an open problem whether for any embedding h̄ →֒ ḡ this prescription of a
Virasoro algebra can be complemented in such a way that one arrives at a consistent conformal
field theory – called the coset theory and briefly denoted by ‘ (g/h)k∨ ’ – and if so, whether that
theory is unique. To decide these questions, one must in particular construct the (maximally
extended) chiral algebra Wg/h of (g/h)k∨, as well as the spectrum of the theory, i.e. tell which
modules – of the coset chiral algebra Wg/h, or at least of the coset Virasoro algebra Virg/h –
appear.

As it turns out, to obtain the spectrum of the coset theory is a somewhat delicate issue.
While by construction the generators of the coset Virasoro algebra act on the chiral state space
of the WZW theory based on g, i.e. on the direct sum Hg =

⊕
Λ HΛ of all inequivalent irreducible

highest weight modules HΛ of g at level k∨, Hg is not the state space Hg/h of the coset theory.
The crucial observation is that due to [h,Virg/h] = 0, retaining the full state space Hg would
imply that the coset theory would possess (infinitely many) primary fields of zero conformal
dimension other than the identity field, namely all the currents Ja(z) of the subalgebra h and
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all their h-descendants. In a field theoretic language this means that – in the full theory, not
just accidentally in some approximation to it – the vacuum is not unique. 39 This disaster is
avoided by requiring that these fields act trivially on Hg/h, i.e. by imposing the gauge principle
that Hg-vectors which differ only by the action of U(h) merely provide different descriptions of
the same physical situation and hence represent one and the same vector in Hg/h. In short, the
elements of Hg/h are U(h)-orbits of vectors in Hg rather than individual vectors of Hg.

Concretely, the restriction to U(h)-orbits is implemented by decomposing the g-modules HΛ

into h-modules HΛ′ as 40

HΛ =
⊕

Λ′ H(Λ;Λ′) ⊗HΛ′ , (4.18)

and the branching spaces H(Λ;Λ′) appearing here are natural candidates for the irreducible
modules of the coset theory. In terms of characters, this corresponds to regarding the branching

functions b(Λ;Λ′) which appear in the decomposition

χg
Λ(τ) =

∑
Λ′ b(Λ;Λ′)(τ)χ

h

Λ′(τ) (4.19)

of the characters χg
Λ of g with respect to the characters χh

Λ′ of h as the characters of the coset
theory.

It follows immediately from (4.19) that branching functions have a definite behavior under
modular transformations, namely the same as the irreducible characters of the tensor product
g ⊕ h∗ of the WZW theory based on g and a putative conformal field theory (called the com-

plement of the h theory [100]) which behaves just like the WZW theory based on the affine
Lie algebra h except that, as indicated by the notation ‘ * ’, it carries the complex conjugate
representation of SL2(Z). (Note that if S and T generate a unitary representation of SL2(Z),
then so do S∗ and T ∗.)

26 Field Identification

As it turns out, even after fixing the gauge symmetry h there still remain severe problems; they
can be attributed to the fact that in general the redundancy symmetry of the coset theory is
larger than the obvious gauge symmetry h. It is instructive to observe this in the example of the
critical Ising model, which can be realized with h =A(1)

1 at level 2 embedded into g =A(1)

1 ⊕A(1)

1

at levels 1. This model is a rational theory with c= 1
2

(more generally, by taking levels m+2, 1
and m+1, respectively, one obtains the whole minimal series (1.21) of Vir); hence its spectrum
follows already from the representation theory of the Virasoro algebra. Namely, there are
three primary fields, and comparing their conformal dimensions ∆ = ∆̄ with those of the WZW
primaries one finds that each of them can be realized by two distinct pairs (Λ;Λ′) of weights:

Field ∆ (Λ;Λ′)

identity field 1 0 (0, 0; 0) , (1, 1; 2)

order parameter σ 1/16 (0, 1; 1) , (1, 0; 1)

energy operator ψ 1/2 (1, 1; 0) , (0, 0; 2)

(4.20)

39 Note that at the level of the fusion ring, the vacuum gives the unital element, which must be unique.
40 Here and below I denote quantities referring to the subalgebra h by the same symbol as the corresponding

quantities for g, but with a prime added. In particular Λ and Λ′ stand for integrable highest weights of g and
h, respectively.
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Thus each field expected from the representation theory of Vir seems to appear twice. On the
other hand, half of the possible pairs (Λ;Λ′), namely those with Λ1 + Λ2 + Λ′ ∈ 2Z+1, do not
correspond to any field of the theory at all; inspection shows that these pairs possess vanishing
branching functions.

This situation generalizes for arbitrary coset theories. First, typically there are selection
rules, i.e. the branching functions for certain pairs (Λ;Λ′) vanish. This observation is in itself
not too disturbing, as one just has to make sure to find all selection rules. 41 However, along
with each selection rule there also comes a redundancy, i.e. non-vanishing branching functions
for distinct pairs (Λ;Λ′) turn out to be identical. In particular the putative vacuum sector seems
to occur several times. By the same argument which forced us to divide out the action of the
subalgebra h, one learns that this degeneracy cannot be interpreted as the multiple appearance
of a corresponding primary field in the spectrum (in particular, it would then not be possible
to obtain the required modular transformation properties). Rather, the correct interpretation
is that a primary field of the coset theory is not associated to an individual pair (Λ;Λ′), but
rather to an appropriate equivalence class [(Λ;Λ′)] of such pairs. This prescription has been
termed field identification (which is a bit of a misnomer, since it is pairs of labels rather than
conformal fields that get identified).

Both selection rules and field identification can be described conveniently via the concept of
the identification group Gid [100]. The elements (J;J′) of Gid are simple currents of the tensor
product theory g⊕h∗ of zero conformal dimension ∆J −∆J′ ; they act on pairs (Λ;Λ′) via the
fusion product. The selection rules are equivalent to the vanishing of the monodromy charges

Q(J;J′)((Λ;Λ′)) :=QJ(Λ) −QJ′(Λ
′) (4.21)

of any allowed branching function with respect to all (J;J′)∈Gid; here QJ(Λ) is the combination
QJ(Λ) = ∆Λ +∆J−∆J⋆Λ (see equation (2.25)) of conformal weights. Moreover, the equivalence
classes in the field identification are precisely the orbits

[(Λ; Λ′)] := { (Υ; Υ′) | Υ =JΛ, Υ′ = J′Λ′ for some (J;J′)∈Gid } (4.22)

of Gid. Provided that all Gid-orbits have a common length, taking one branching function out
of each Gid-orbit and combining them diagonally yields a modular invariant spectrum. In this
case the modular S-matrix is given by

S
g/h

[(Λ;Λ′)],[(Υ;Υ′)] = SΛ,Υ (S ′
Λ′,Υ′)∗ , (4.23)

where (Λ;Λ′) and (Υ;Υ′) are arbitrary representatives of the orbits [(Λ;Λ′)] and [(Υ;Υ′)], re-
spectively, i.e. is obtained by restricting the S-matrix S⊗(S ′)∗ of g⊕h∗ to orbits.

27 Fixed Points

The next degree of generality, and difficulty, is reached when Gid-orbits with different sizes

41 But still, while empirically for most coset theories all selection rules come from conjugacy class selection
rules for the embedding h̄ →֒ ḡ, so far no prescription for enumerating all selection rules for every coset theory
is known. Another possible reason for the vanishing of branching functions is the occurrence of additional null
states in the Verma modules. This indeed happens for conformal embeddings, for which by definition [5, 98] the
coset central charge vanishes, and presumably also for the closely related maverick [26] cosets. For all conformal
embeddings, the level of g is k∨ = 1, while k∨ =2 for all known maverick cosets.
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appear. (Of course, all sizes are divisors of the size of the orbit through (0;0), on which Gid

acts freely, i.e. of the order N = |Gid| of Gid.) Orbits of non-maximal size are referred to as
fixed points. As soon as fixed points are present, taking precisely one representative out of each
orbit [(Λ;Λ′)] does not give a modular invariant spectrum. On the other hand, the sesquilinear
combination

Z =
∑

[Λ;Λ′] : Q=0

|G(Λ;Λ′)| · |
∑

(J;J′)∈Gid/G(Λ;Λ′)

b(J;J′)⋆(Λ;Λ′) |2 (4.24)

of (non-zero) branching functions is modular invariant. Here G(Λ;Λ′) denotes the stabilizer

subgroup G(Λ;Λ′) ⊆ Gid which consists of those elements of Gid that leave (Λ;Λ′) invariant. Now
because of G(0;0) = {(0;0)}, |Gid|2 copies of the identity orbit [(0;0)] appear in (4.24), so that
one would like to divide (4.24) by this factor. Regarding the branching functions b(Λ;Λ′) that
contribute to (4.24) as irreducible (g/h)k∨-characters would then lead to the conclusion that
fractional multiplicities occur in Z, which does not allow for any sensible interpretation of Z
as a partition function.

The difficulty in interpreting Z (4.24) constitutes the fixed point problem of coset theories.
This is indeed a severe problem, as it seems to prevent one from gaining control over the coset
theory (g/h)k∨ by completely understanding it in terms of the underlying WZW theories based
on g and h. The solution to this problem (see [48] or, for a condensed exposition, [50]; earlier
work is summarized in [100]) shows, however, that (g/h)k∨ is in fact still fully controlled by the
affine algebras g and h, provided that one implements additional novel structures associated
to Kac--Moody algebras, the so-called twining characters and orbit Lie algebras. The basic
observation is that the coset modules H(Λ;Λ′) for fixed points are not irreducible and hence a
fixed point resolution into irreducible subspaces must be performed. (For the full two-dimensi-
onal theory obtained by combining its two chiral halves, this means that less states are present
than one would naively expect.) These submodules turn out to be the simultaneous eigenspaces
of certain finite order automorphism of H(Λ;Λ′) that are associated to every (J;J′)∈G(Λ;Λ′) and
hence are labelled by the group-characters Ψ of G(Λ;Λ′); their characters can be related to the
branching functions for a coset construction of orbit Lie algebras via Fourier transformation
with respect to the abelian group of G(Λ;Λ′)-characters. This results in particular in a formula
which expresses the S-matrix of (g/h)k∨ as

S
g/h

([(Λ;Λ′)],Ψ),([(Υ;Υ′)],Ψ̃)
=

|Gid|
|G(Λ;Λ′)|·|G(Υ;Υ′)|

∑

(J;J′)∈
G(Λ;Λ′)∩G(Υ;Υ′)

Ψ((J;J′))S
[J;J′]
(Λ;Λ′),(Υ;Υ′)Ψ̃((J;J′))

(4.25)

in terms of the group characters Ψ of stabilizer subgroups of Gid and of certain modular trans-
formation matrices S [J;J′] which are products of S-matrices of the relevant orbit Lie algebras.

In closing this last regular section, I would like to reiterate the remark made earlier that while
in principle it is desirable to work with observable quantities only, the use of non-observable
objects often proves to be convenient. The situation at hand provides an outstanding example
for such an approach, in that extremely non-trivial effects can be detected without even knowing
precisely what the observables Wg/h (except for the subalgebra Virg/h) look like.

Addenda
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28 Omissions

Lack of time forced me to omit a number of topics which should definitely occur in a decent
introduction to conformal field theory and to Kac--Moody algebras. To partially compensate
this shortcoming, I give a brief list of some of these issues and point out a few relevant references.
Concerning citations, I decided to sacrifice historical accuracy for up-to-dateness, so I usually
refer either to reviews or to the most recent publications I am aware of, which can serve as
a guide to further literature. (This remark applies likewise to most of the references that I
already mentioned in the main text.)

Lecture 1:

more on the representation theory of the Virasoro algebra [61, 102, 97];

classification and properties of chiral algebras [19, 108];

vertex operator algebras [66, 78];

more on chiral blocks and chiral vertex operators [2, 88, 23];

conformal field theory and higher genus Riemann surfaces [88, 8, 31];

the C∗-algebraic approach to conformal field theory [36, 58, 107, 15];

‘logarithmic’ conformal theories [60, 34].

Lecture 2:

more on duality, crossing symmetry, and polynomial equations [2, 88];

the representation theory and the classification of fusion rings [38, 43, 27];

the rôle of quantum groups, or more general, quantum symmetries [2, 101, 44, 94];

classification of modular invariants [82, 64, 47, 65];

free fermion [69, 42] and orbifold [6, 80, 18] conformal field theories;

Galois symmetry [20, 47, 51];

more on the classification of c = 1 and related conformal field theories [56, 33] and on
the Coulomb gas description of c< 1 theories [57, 97].

Lecture 3:

more on Lie algebras with triangular decomposition [77, 54, 86, 52];

realizations of affine Lie algebra representations via free fermions or via vertex
operators [69, 77, 25, 67], and through more complicated free field constructions [24];

character formulæ and combinatorial identities [77, 16];

generalized Kac--Moody algebras and their rôle in string theory [66, 73].

Lecture 4:

the affine-Virasoro construction which generalizes the Sugawara formula [71, 72];

Lagrangian formulations of WZW and coset theories [74, 96, 103];

Knizhnik--Zamolodchikov--Bernard equations [31, 28, 76];

WZW theories which have fractional level [85, 55, 91] or are based on non-reductive
Lie algebras [32, 3];

Hamiltonian reduction of WZW theories [30, 61, 17];

the relevance of Knizhnik--Zamolodchikov equations to moduli spaces of flat connections,
to quasi-Hopf algebras and to integrable systems [76, 1].
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29 Outlook

It is often claimed (implicitly or explicitly) that in conformal field theory all interesting problems
are already solved. This statement is not entirely correct (as is e.g. indicated by the large
number of recent publications quoted above); some examples of open questions are the following.

A complete understanding of the rôle of modular invariance, in particular in view of the
presence of similar structures in arbitrary rational two-dimensional quantum field theories (cf.
e.g. [95, 8, 89]);

a mathematically rigorous proof of the Verlinde formula for general conformal field theories,
not just for (diagonal) WZW theories;

structural information on fusion rules of non-quasirational two-dimensional field theories (e.g.
existence of vector space bases rather than only topological bases), and the possible description
of such theories as deformations or limits of quasirational theories;

the quantum field-theoretic interpretation of non-unitary, and in particular of logarithmic
conformal field theories (from a quantum field theoretic perspective it is puzzling that non-
unitary theories can be treated in much the same setting as unitary ones; e.g. H is often fully
reducible, even though positivity of an inner product can no longer be invoked);

the classification of modular invariants for all WZW theories – as well as deeper insight into
its guiding principles (note that even the A-D-E pattern that arises for ḡ= sl(2) essentially
emerges in a technical rather than a conceptual manner);

the rôle of ‘apparent singularities’ that appear in the differential equations for chiral blocks
[41] as possible parameters in the classification of rational conformal field theories;

simple current and Galois symmetries of braiding and fusing matrices, and a complete analysis
of the behavior of fusing matrices under ‘tetrahedral’ transformations in the presence of fusion
rule coefficients larger than one;

a more substantial classification of modular fusion rings;

an efficient algorithm for solving the polynomial equations for prescribed fusion rules;

a description of conformal field theory on surfaces with boundaries [22, 93] at the same level
of sophistication as for theories on closed surfaces;

a complete description of the space of physical states for arbitrary coset theories, in particular
a characterization and enumeration of all maverick cosets.
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30 Glossary

In the following list of keywords the quoted numbers refer to the section(s) in which the term is
introduced or plays a rôle.

affine Lie algebra 16
annihilation operator 3
anti-holomorphic chiral algebra 2
apparent singularity 14
A-type modular invariant 11
BGG resolution 20
bootstrap 5, 6
braiding matrix 9
C∗-algebraic approach 1
Cartan matrix 15
Cartan subalgebra 15
center of a conformal field theory 13
central element 2, 16
central extension 17
channel 9
character 10, 20
chiral algebra 2
chiral block 7, 9, 14
chiral half 2
chiral vertex operator 7
conformal anomaly 2, 4
conformal dimension 3
conformal embedding 26
conformal field 5
conformal spin 11
conformal weight 3
conjugate field 7
contour integral 5, 6
contraction 6
coroot 15
correlation function 7
coset construction 25
coset theory 25
creation operator 3
critical points 1
crossing symmetry 9
cross-ratio 7
current 22
current algebra 21
denominator identity 20
derivation 16
descendant 5
diagonal modular invariant 11
dual Coxeter number 21
Dynkin diagram 15

energy-momentum tensor 5
energy operator 3
family 5
field 5
field identification 26
fixed point resolution 13, 27
formal variable 5
Fourier--Laurent coefficient 5
four-point function 9, 14
free boson 12
fundamental weight 15
fusing matrix 9
fusion algebra 8
fusion ring 8, 13
fusion rule coefficient 8
fusion rules 8
generalized Cartan matrix 15
generating function 5
grade 3, 5
Heisenberg algebra 12
hexagon equation 9
highest weight module 3, 19
highest weight vector 3
holomorphic chiral algebra 2
identification group 26
identity field 5
insertion point 7
irreducible highest weight module 3
Kac--Moody algebra 15, 16
Kac--Peterson formula 23
Kac--Walton formula 23
Knizhnik--Zamolodchikov equation 24
Laurent coefficient 5
Lie algebra 2
locally nilpotent 2
loop algebra 17
Lüscher--Mack theorem 2
maverick coset 26
maximal weight 19
minimal model 4, 12
Möbius transformation 4
mode 5
modular group 11
modular S-matrix 11
modular T-matrix 11
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modular transformation 11
module 3
monodromy charge 13
naturality 4
normal ordering 5, 6
null vector 3, 19
observable 2
operator product algebra 6
operator product coefficient 6
operator product expansion 6
orbifold 12
order of a simple current 13
particle contents 1
partition function 10, 11
pentagon equation 9
perturbation theory 1
physical state 3
polynomial equations 9
primary field 5
projective transformation 4
projective Ward identity 7
quantum field theory 1
quasi-primary field 5
quasi-primary vector 4
quasi-rational conformal field theory 8
radial ordering 6
rational conformal field theory 4, 8
Riemann monodromy problem 14
Riemann scheme 14
root 15
secondary field 5
sector 4
simple current 13
simple current extension 13
simple root 15

S-matrix 11
spectrum 4
spectrum condition 3
stabilizer subgroup 27
state-field correspondence 5
state space 3
string theory 1, 4
Sugawara form 21
superselection sector 4
symmetrizable Kac--Moody algebra 15
T-matrix 11
triangular decomposition 3, 18
twisted affine Lie algebra 16, 17
twisted boundary conditions 17
unitary representation 3
untwisted affine Lie algebra 16, 17
vacuum expectation value 5, 6
vacuum sector 4
vacuum state 4
Verma module 3, 19
vertex operator algebra 5, 6
Virasoro algebra 2
Virasoro-specialized character 10
Ward identity 7
weight 3, 19
weight space 15
weight system 10
Weyl group 15
Weyl--Kac character formula 20
Weyl vector 20
Wightman field theory 1, 2
Witt algebra 2
WZW theory 21
zero mode subalgebra 3
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