Exercises CFT-course fall 2023, set 3.

- 1. The conformal ward identity.
- a. Carefully derive the conformal ward identity

$$\delta\langle\Phi_1(z_1)\cdots\Phi_n(z_n)\rangle = \frac{1}{2\pi i} \oint_C dz \varepsilon(z)\langle T(z)\Phi_1(z_1)\cdots\Phi_n(z_n)\rangle + c.c. .$$

b. Show that for primary fields, this gives rise to the equation

$$\langle T(z)\Phi_1(z_1)\cdots\Phi_n(z_n)\rangle = \sum_i \left(\frac{h_i}{(z-z_i)^2} + \frac{\partial_{z_i}}{(z-z_i)}\right)\langle \Phi_1(z_1)\cdots\Phi_n(z_n)\rangle.$$

2. Show that the n point functions of quasi-primary fields satisfy

$$\sum_{i} \partial_{z_{i}} \langle \phi_{1}(z_{1}) \cdots \phi_{n}(z_{n}) \rangle = 0$$

$$\sum_{i} (z_{i} \partial_{z_{i}} + h_{i}) \langle \phi_{1}(z_{1}) \cdots \phi_{n}(z_{n}) \rangle = 0$$

$$\sum_{i} (z_{i}^{2} \partial_{z_{i}} + 2h_{i}z_{i}) \langle \phi_{1}(z_{1}) \cdots \phi_{n}(z_{n}) \rangle = 0 ,$$

by considering the infinitesimal form of the global conformal transformations.

- 3. The Schwartzian derivative.
- a. Show that the Schwartzian derivative

$$\{w; z\} = \frac{w'''}{w'} - \frac{3}{2} \left(\frac{w''}{w'}\right)^2,$$

(with $w' = \frac{dw}{dz}$ etc), is zero if and only if $w(z) = \frac{az+b}{cz+d}$. Start by solving the first order differential equation for (w''/w'), and proceed by solving for v = w'.

b. Show that for successive transformations $z \to w \to u$, one has the following composition rule

$${u;z} = {w;z} + (\frac{dw}{dz})^2 {u;w}$$