
Exercises CFT-course fall 2023, set 1.

The transverse-field Ising model.

The hamiltonian of the transverse-field Ising model in one dimension reads, in terms of the
Pauli matrices σ,

H =
∑
i

(
−Jσxi σxi+1 − hσzi

)
.

This model can be solved by means of a Jordan-Wigner transformation, which transforms
the spin operators into fermionic ones.
To transform the spin degrees of freedom into (spin-less) fermions, we let a spin-up at site
i correspond to an empty site. Conversely, a spin-down corresponds to a site occupied by
a fermion. If we consider a single site i, the spin raising operator σ+

i corresponds to the
fermionic annihilation operator ci. Conversely, σ−i = c†i . These operators indeed satisfy
the fermionic anti-commutation relations (with i = j)

{ci, c†j} = δi,j {ci, cj} = {c†i , c
†
j} = 0 .

However, the spin operators on different sites commute, so the construction above does not
work for i 6= j.

Jordan and Wigner solved this problem, by introducing

σzi = 1− 2c†ici σ+
i =

(∏
j<i

(1− 2c†jcj)
)
ci σ−i =

(∏
j<i

(1− 2c†jcj)
)
c†i .

The inverse is

ci =
(∏
j<i

σzj

)
σ+
i c†i =

(∏
j<i

σzj

)
σ−i .

(a) Show that the σ operators defined above satisfy the correct commutation relations, by
using the fermion anti-commutation relations given above.

(b) We will assume that the chain contains L sites, and is closed, so that the sites i and i+L
are identified (i.e., we assume that σαi+L = σαi ). Show that after the Jordan-Wigner
transformation, the hamiltonian reads

H =h
L−1∑
i=0

(2c†ici − 1)− J
L−2∑
i=0

(
−cici+1 − cic†i+1 + c†ici+1 + c†ic

†
i+1

)
+ (−1)FJ

(
−cL−1c0 − cL−1c†0 + c†L−1c0 + c†L−1c

†
0

)
,

where F is the number of fermions (that is, F =
∑L−1

i=0 c
†
ici), which is conserved modulo

two.
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The boundary term can be taken into account by imposing periodic boundary conditions
cL = c0 when F is odd, and anti-periodic boundary conditions cL = −c0 when F is even.
With these boundary conditions, the hamiltonian is translation invariant, namely

H = h
L−1∑
i=0

(2c†ici − 1)− J
L−1∑
i=0

(
−cici+1 − cic†i+1 + c†ici+1 + c†ic

†
i+1

)
.

(c) To diagonalize the hamiltonian, first transform it to momentum space, via cj =
1√
L

∑
k cke

iakj, with a = 2π
L

. Show that the hamiltonian takes the following form:

H =
∑
k

Ψ†k

[
h− J cos(2πk/L) iJ sin(2πk/L)
−iJ sin(2πk/L) −h+ J cos(2πk/L)

]
Ψk ,

where Ψ†k = (c†k, c−k).

(d) Diagonalize the Hamiltonian, that is, write it in the form

H =
∑
k

εk(2γ
†
kγk − 1) .

Determine εk, and specify which values k takes, depending on the parity of the number
of fermions. Pay special attention to the cases for which k = −k, that is k = 0 and
k = L/2, and specify when these occur.

(e) Plot the spectrum (that is, the 2L eigenvalues) of the Hamiltonian (for a reasonable
system size, say L = 10 or so), as a function of the momenta K of the states, which is
given by K =

(∑
k kγ

†
kγk
)

mod L. Use a different colour for the even and odd fermion
sectors. Pick three characteristic values of (J, h), such as (1, .5), (1, 1), (1, 2).
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