Exercises CFT-course fall 2018, set 7.

Due on december 21, 2018.

1. Consequences of null-vectors in the minimal models.
a. Show that a necessary condition for the (chiral) correlator of primaries

$$
\left\langle\phi_{2,1}\left(z_{1}\right) \phi_{r, s}\left(z_{2}\right) \phi\left(z_{3}\right)\right\rangle
$$

to be non-zero is that the scaling dimension h of $\phi\left(z_{3}\right)$ is equal to $h=h_{r \pm 1, s}$, by making use of the level 2 null vector condition. Recall:

$$
h_{r, s}=\frac{\left(r p-s p^{\prime}\right)^{2}-\left(p-p^{\prime}\right)^{2}}{4 p p^{\prime}},
$$

where p and p^{\prime} are relative prime and $0<r<p^{\prime}$ and $0<s<p$.
Note that this condition $h=h_{r \pm 1, s}$ is not sufficient in general, as the three point function might still vanish. The necessary and sufficient condition is expressed in terms of the 'fusion rules', which for $\phi_{r, 1}$ read

$$
\phi_{r, 1} \times \phi_{r^{\prime}, s}=\sum_{\substack{k=\left|r-r^{\prime}\right|+1 \\ k+r+r^{\prime}=1 \bmod 2}}^{k_{\max }} \phi_{k, s}
$$

where $k_{\max }=\min \left(r+r^{\prime}-1,2 p^{\prime}-r-r^{\prime}-1\right)$. These fusion rules express which three point functions are non-zero.
b. Ignoring the truncation in the upper limit $k_{\max }$, interpret the fusion rules for $\phi_{r, 1}$ in terms of tensor products of $S U(2)$.
2. Non-unitarity of Virasoro representations with $0<c<1$.

The vanishing curves of the 'Kac determinant' are (for instance) given by

$$
h_{r, s}(c)=\frac{1-c}{96}\left[\left((r+s) \pm(r-s) \sqrt{\frac{25-c}{1-c}}\right)^{2}-4\right] .
$$

Given that the Kac determinant only has positive eigenvalues when $c>1$ and $h>0$, argue that unitary representations are excluded in the region $0<c<1$ and $h>0$, except for possibly those points on the vanishing curves (hint: expand around $c=1$).
3. The hypergeometric differential equation reads

$$
\left(z(1-z) \partial_{z}^{2}+(c-(a+b+1) z) \partial_{z}-a b\right) f(z)=0
$$

a. Find a solution around $z=0$ by substituting $f(z)=\sum_{n \geq 0} f_{n} z^{n}$, and express the result in terms of $(a)_{n},(b)_{n}$ and $(c)_{n}$, where $(x)_{0}=1$ and $(x)_{n}=x(x+1) \cdots(x+n-1)$, i.e. $(x)_{n}=\frac{\Gamma(x+n)}{\Gamma(x)}$.
Answer: $f(z)=F(a, b, c ; z)=\sum_{n \geq 0} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} z^{n}$. Note: the other solution around $z=0$ reads $z^{1-c} F(a-c+1, b-c+1,2-c ; z)$.
b. When are polynomial solutions of the hypergeometric differential equation possible?

