Exercises CFT-course fall 2018, set 2.

1. The infinitesimal form of the special conformal transformations.

Write the most general from of the quadratic part of ε_{μ}, namely $\varepsilon_{\mu}=c_{\mu \nu \rho} x^{\nu} x^{\rho}$, to derive the infinitesimal transformation

$$
x^{\mu}=x^{\mu}+b^{\mu} x^{2}-2 x^{\mu}(b \cdot x),
$$

and give the explicit form of b^{μ} in terms of the tensor c.
2. The (finite) special conformal transformations (in d dimensions) have the form

$$
\mathbf{x}^{\prime}=\frac{\mathbf{x}+\mathbf{b} x^{2}}{1+2 \mathbf{b} \cdot \mathbf{x}+b^{2} x^{2}}
$$

a. Derive the scale factor $\Omega(\mathbf{x})$ for this transformation: $\Omega(\mathbf{x})=\left(1+2 \mathbf{b} \cdot \mathbf{x}+b^{2} x^{2}\right)^{2}$
b. Show that $\left|\mathbf{x}_{1}^{\prime}-\mathbf{x}_{2}^{\prime}\right|^{2}=\frac{\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right|^{2}}{\gamma_{1} \gamma_{2}}$, where $\gamma_{i}=\left(1+2 \mathbf{b} \cdot \mathbf{x}_{i}+b^{2} x_{i}^{2}\right)$
3. 'Quasi-primary' fields transform under (passive) global conformal transformations in d dimensions as follows

$$
\phi_{i}(\mathbf{x}) \rightarrow\left|\frac{\partial \mathbf{x}^{\prime}}{\partial \mathbf{x}}\right|^{\frac{h_{i}}{d}} \phi_{i}\left(\mathbf{x}^{\prime}\right),
$$

where the h_{i} are the scaling dimensions of the fields ϕ_{i}.
Show that the three point functions of quasi-primary fields have the following form

$$
\left\langle\phi_{1}\left(\mathbf{x}_{1}\right) \phi_{2}\left(\mathbf{x}_{2}\right) \phi_{3}\left(\mathbf{x}_{3}\right)\right\rangle=\frac{C_{123}}{x_{12}^{h_{1}+h_{2}-h_{3}} x_{23}^{h_{2}+h_{3}-h_{1}} x_{13}^{h_{1}+h_{3}-h_{2}}},
$$

where we introduced the notation $x_{i j}=\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|$.

