Exercises CFT-course fall 2018, set 1.

The transverse-field Ising model.

The hamiltonian of the transverse-field Ising model in one dimension reads, in terms of the Pauli matrices σ,

$$
H=\sum_{i}\left(-J \sigma_{i}^{x} \sigma_{i+1}^{x}-h \sigma_{i}^{z}\right) .
$$

This model can be solved by means of a Jordan-Wigner transformation, which transforms the spin operators into fermionic ones.
To transform the spin degrees of freedom into (spin-less) fermions, we let a spin-up at site i correspond to an empty site. Conversely, a spin-down corresponds to a site occupied by a fermion. If we consider a single site i, the spin raising operator σ_{i}^{+}corresponds to the fermionic annihilation operator c_{i}. Conversely, $\sigma_{i}^{-}=c_{i}^{\dagger}$. These operators indeed satisfy the fermionic anti-commutation relations (with $i=j$)

$$
\left\{c_{i}, c_{j}^{\dagger}\right\}=\delta_{i, j} \quad\left\{c_{i}, c_{j}\right\}=\left\{c_{i}^{\dagger}, c_{j}^{\dagger}\right\}=0
$$

However, the spin operators on different sites commute, so the construction above does not work for $i \neq j$.

Jordan and Wigner solved this problem, by introducing

$$
\sigma_{i}^{z}=1-2 c_{i}^{\dagger} c_{i} \quad \sigma_{i}^{+}=\left(\prod_{j<i}\left(1-2 c_{j}^{\dagger} c_{j}\right)\right) c_{i} \quad \sigma_{i}^{-}=\left(\prod_{j<i}\left(1-2 c_{j}^{\dagger} c_{j}\right)\right) c_{i}^{\dagger} .
$$

The inverse is

$$
c_{i}=\left(\prod_{j<i} \sigma_{j}^{z}\right) \sigma_{i}^{+} \quad c_{i}^{\dagger}=\left(\prod_{j<i} \sigma_{j}^{z}\right) \sigma_{i}^{-}
$$

(a) Show that the σ operators defined above satisfy the correct commutation relations, by using the fermion anti-commutation relations given above.
(b) We will assume that the chain contains L sites, and is closed, so that the sites i and $i+L$ are identified (i.e., we assume that $\sigma_{i+L}^{\alpha}=\sigma_{i}^{\alpha}$). Show that after the Jordan-Wigner transformation, the hamiltonian reads

$$
\begin{aligned}
H= & h \sum_{i=0}^{L-1}\left(2 c_{i}^{\dagger} c_{i}-1\right)-J \sum_{i=0}^{L-2}\left(-c_{i} c_{i+1}-c_{i} c_{i+1}^{\dagger}+c_{i}^{\dagger} c_{i+1}+c_{i}^{\dagger} c_{i+1}^{\dagger}\right) \\
& +(-1)^{F} J\left(-c_{L-1} c_{0}-c_{L-1} c_{0}^{\dagger}+c_{L-1}^{\dagger} c_{0}+c_{L-1}^{\dagger} c_{0}^{\dagger}\right),
\end{aligned}
$$

where F is the number of fermions (that is, $F=\sum_{i=0}^{L-1} c_{i}^{\dagger} c_{i}$), which is conserved modulo two.

The boundary term can be taken into account by imposing periodic boundary conditions $c_{L}=c_{0}$ when F is odd, and anti-periodic boundary conditions $c_{L}=-c_{0}$ when F is even. With these boundary conditions, the hamiltonian is translation invariant, namely

$$
H=h \sum_{i=0}^{L-1}\left(2 c_{i}^{\dagger} c_{i}-1\right)-J \sum_{i=0}^{L-1}\left(-c_{i} c_{i+1}-c_{i} c_{i+1}^{\dagger}+c_{i}^{\dagger} c_{i+1}+c_{i}^{\dagger} c_{i+1}^{\dagger}\right) .
$$

(c) To diagonalize the hamiltonian, first transform it to momentum space, via $c_{j}=$ $\frac{1}{\sqrt{L}} \sum_{k} c_{k} e^{i a k j}$, with $a=\frac{2 \pi}{L}$. Show that the hamiltonian takes the following form:

$$
H=\sum_{k} \Psi_{k}^{\dagger}\left[\begin{array}{cc}
h-J \cos (2 \pi k / L) & i J \sin (2 \pi k / L) \\
-i J \sin (2 \pi k / L) & -h+J \cos (2 \pi k / L)
\end{array}\right] \Psi_{k},
$$

where $\Psi_{k}^{\dagger}=\left(c_{k}^{\dagger}, c_{-k}\right)$.
(d) Diagonalize the Hamiltonian, that is, write it in the form

$$
H=\sum_{k} \epsilon_{k}\left(2 \gamma_{k}^{\dagger} \gamma_{k}-1\right)
$$

Determine ϵ_{k}, and specify which values k takes, depending on the parity of the number of fermions. Pay special attention to the cases for which $k=-k$, that is $k=0$ and $k=L / 2$, and specify when these occur.
(e) Plot the spectrum (that is, the 2^{L} eigenvalues) of the Hamiltonian (for a reasonable system size, say $L=10$ or so), as a function of the momenta K of the states, which is given by $K=\left(\sum_{k} k \gamma_{k}^{\dagger} \gamma_{k}\right) \bmod L$. Use a different colour for the even and odd fermion sectors. Pick three characteristic values of (J, h), such as $(1, .5),(1,1),(1,2)$.

