Exercises CFT-course fall 2013, set 8.

Due on december 6th, 2013.

1. In this exercise, we will derive an ordinary differential equation for the four point function of $\phi_{2,1}$ of the minimal models:

$$
G\left(\left\{w_{i}\right\}\right)=\left\langle\phi_{2,1}\left(w_{1}\right) \phi_{2,1}\left(w_{2}\right) \phi_{2,1}\left(w_{3}\right) \phi_{2,1}\left(w_{4}\right)\right\rangle=\left(w_{1}-w_{2}\right)^{-2 h}\left(w_{3}-w_{4}\right)^{-2 h} F(x),
$$

where $x=\frac{\left(w_{1}-w_{2}\right)\left(w_{3}-w_{4}\right)}{\left(w_{1}-w_{4}\right)\left(w_{3}-w_{2}\right)}$, and h is the conformal dimension of $\phi_{2,1}$.
The level-2 null-vector condition translates into the following partial differential equations:

$$
\left(\frac{3}{2(2 h+1)} \partial_{w_{i}}^{2}-\sum_{j \neq i}\left(\frac{\partial_{w_{j}}}{\left(w_{i}-w_{j}\right)}+\frac{h}{\left(w_{i}-w_{j}\right)^{2}}\right)\right) G\left(\left\{w_{i}\right\}\right)=0 .
$$

a. Show, by considering the special values $w_{1}=0, w_{2}=x, w_{3}=\infty, w_{4}=1$, that $F(x)$ satisfies

$$
\left(x(1-x) \partial_{x}^{2}+\left(\frac{2(1-4 h)}{3}+\frac{4(h-1)}{3} x\right) \partial_{x}-\frac{2 h(2 h+1)}{3} \frac{x}{1-x}\right) F(x)=0
$$

b. Show that the differential equation obtained in a. can be brought into the form of the hypergeometric differential equation, by defining a function $H(x)=f(x) F(x)$, such that $H(x)$ satisfies

$$
\begin{equation*}
\left(x(1-x) \partial_{x}^{2}+\left(\frac{2(1-4 h)}{3}+\frac{4(4 h-1)}{3} x\right) \partial_{x}+\frac{4 h(1-4 h)}{3}\right) H(x)=0 \tag{1}
\end{equation*}
$$

2. Show that in the case of the Ising model, two independent solutions of the differential equation (1) (with $h=\frac{1}{16}$) take the form

$$
H^{ \pm}(x)=\sqrt{\frac{1 \pm \sqrt{1-x}}{2}},
$$

by making a suitable (trigonometric) transformation.
Thus, the (chiral) four-point σ-correlator of the Ising model takes the form

$$
\left\langle\sigma\left(w_{1}\right) \sigma\left(w_{2}\right) \sigma\left(w_{3}\right) \sigma\left(w_{4}\right)\right\rangle^{ \pm}=\left(w_{1}-w_{2}\right)^{-1 / 8}\left(w_{3}-w_{4}\right)^{-1 / 8}(1-x)^{-1 / 8} \sqrt{\frac{1 \pm \sqrt{1-x}}{2}}
$$

3. Majorana fermions with periodic and anti-periodic boundary conditions.

The mode expansion for free (Majorana) fermions reads $\psi(z)=\sum_{n} \psi_{n} z^{-n-1 / 2}$, or $\psi_{n}=$ $\oint \frac{d z}{2 \pi i} z^{n-1 / 2} \psi(z)$.
a. Show that the modes obey $\left\{\psi_{n}, \psi_{m}\right\}=\delta_{n+m, 0}$.

We will now consider periodic and anti-periodic boundary conditions for the fermion $\psi(z)$ when z is moved around the origin: $\psi\left(e^{2 \pi i} z\right)= \pm \psi(z)$. The modes n are half integer $n \in \mathbb{Z}+\frac{1}{2}$ in the periodic (P) case, and integer $n \in \mathbb{Z}$ in the anti-periodic (A) case.
b. Use the explicit mode expansions to show that

$$
\begin{aligned}
\langle\psi(z) \psi(w)\rangle_{\mathrm{P}} & =\frac{1}{z-w} \\
\langle\psi(z) \psi(w)\rangle_{\mathrm{A}} & =\frac{1}{2} \frac{\sqrt{\frac{z}{w}}+\sqrt{\frac{w}{z}}}{z-w}
\end{aligned}
$$

It is given that

$$
\left\langle\sigma\left(w_{1}\right) \psi\left(z_{1}\right) \psi\left(z_{2}\right) \sigma\left(w_{2}\right)\right\rangle=\frac{1}{2}\left(w_{1}-w_{2}\right)^{-1 / 8} \frac{\left(\frac{\left(z_{1}-w_{1}\right)\left(z_{2}-w_{2}\right)}{\left(z_{1}-w_{2}\right)\left(z_{2}-w_{1}\right)}\right)^{1 / 2}+\left(\frac{\left(z_{1}-w_{2}\right)\left(z_{2}-w_{1}\right)}{\left(z_{1}-w_{1}\right)\left(z_{2}-w_{2}\right)}\right)^{1 / 2}}{\left(z_{1}-z_{2}\right)}
$$

c. Consider $\langle\sigma(\infty)| \psi\left(z_{1}\right) \psi\left(z_{2}\right)|\sigma(0)\rangle$, where $\langle\sigma(\infty)|=\lim _{w \rightarrow \infty}\langle 0| \sigma(w) w^{2 h}$, and argue that σ 'changes the boundary conditions on ψ '.

