
Exercises CFT-course fall 2013, set 1.
Due on Friday, september 20th.

The transverse-field Ising model.

The hamiltonian of the transverse-field Ising model in one dimension reads, in terms of the
Pauli matrices σ,

H = −J
∑
i

(
σxi σ

x
i+1 + hσzi

)
.

This model can be solved by means of a Jordan-Wigner transformation, which transforms the
spin operators into fermionic ones. For simplicity, we will set J = 1 throughout the exercise.
To transform the spin degrees of freedom into (spin-less) fermions, we let a spin-up at site
i correspond to an empty site. Conversely, a spin-down corresponds to a site occupied by
a fermion. If we consider a single site i, the spin raising operator σ+

i corresponds to the
fermionic annihilation operator ci. Conversely, σ−i = c†i . These operators indeed satisfy the
fermionic anti-commutation relations (with i = j)

{ci, c†j} = δi,j {ci, cj} = {c†i , c
†
j} = 0 .

However, the spin operators on different sites commute, so the construction above does not
work for i 6= j.

Jordan and Wigner solved this problem, by introducing

σzi = 1− 2c†ici σ+
i =

(∏
j<i

(1− 2c†jcj)
)
ci σ−i =

(∏
j<i

(1− 2c†jcj)
)
c†i .

The inverse is

ci =
(∏
j<i

σzj

)
σ+
i c†i =

(∏
j<i

σzj

)
σ−i .

a. Show that the σ operators defined above satisfy the correct commutation relations, by
using the fermion anti-commutation relations given above.

b. We will assume that the chain contains L sites, and is closed, so that the sites i = L and
i = 0 are identified (i.e., we assume σαi+L = σαi ). Show that after the Jordan-Wigner
transformation, the hamiltonian reads

H =
L−1∑
i=0

g(2c†ici − 1) +
L−2∑
i=0

(
cici+1 + cic

†
i+1 + ci+1c

†
i + c†i+1c

†
i

)
− (−1)F

(
cL−1c0 + cL−1c

†
0 + c0c

†
L−1 + c†0c

†
L−1

)
,

where F is the number of fermions, which is conserved modulo two.
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The boundary term can be taken into account by imposing periodic boundary conditions
cL = c0 when F is odd, and anti-periodic boundary conditions cL = −c0 when F is even.
With these boundary conditions, the hamiltonian is translationally invariant, namely

H =
L−1∑
i=0

g(2c†ici − 1) +
L−1∑
i=0

(
cici+1 + cic

†
i+1 + ci+1c

†
i + c†i+1c

†
i

)
.

c. To diagonalize the hamiltonian, we first have to go to momentum space, via cj =
1√
L

∑
k cke

iakj, with a = 2π
L

. Show that the hamiltonian takes the following form:

H =
∑
k

2(g − cos(ak))c†kck + i sin(ak)(c−kck + c†−kc
†
k)− g .

To bring the hamiltonian in diagonal form, one performs a Bogoliubov transformation to a
different set of fermions:

γk = ukck − ivkc†−k γ†k = ukc
†
k + ivkc−k ,

where uk and vk are real, and satisfy u2k + v2k = 1, u−k = uk and v−k = −vk, ensuring that the
γk satisfy fermion anti-commutation relations.

d. Choose the parametrization uk = cos θk/2 and vk = sin θk/2, and find the condition on
tan θk, such that terms which do not conserve the number of γ fermions (like γγ) are
absent in the hamiltonian, expressed in terms of the γ’s.

e. Finally, show that the hamiltonian takes the diagonal form

H =
∑
k

εk
(
γ†kγk −

1

2

)
εk = 2(1 + g2 − 2g cos(ak))

1
2

Note that for F odd, the momenta take the values k = 0, 1, . . . , L − 1, while or F even, the
allowed momenta are k = 1/2, 3/2, . . . , L− 1/2, because of the boundary conditions.
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