Exercises CFT-course fall 2013, set 1.

Due on Friday, september 20th.

The transverse-field Ising model.
The hamiltonian of the transverse-field Ising model in one dimension reads, in terms of the Pauli matrices σ,

$$
H=-J \sum_{i}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+h \sigma_{i}^{z}\right) .
$$

This model can be solved by means of a Jordan-Wigner transformation, which transforms the spin operators into fermionic ones. For simplicity, we will set $J=1$ throughout the exercise. To transform the spin degrees of freedom into (spin-less) fermions, we let a spin-up at site i correspond to an empty site. Conversely, a spin-down corresponds to a site occupied by a fermion. If we consider a single site i, the spin raising operator σ_{i}^{+}corresponds to the fermionic annihilation operator c_{i}. Conversely, $\sigma_{i}^{-}=c_{i}^{\dagger}$. These operators indeed satisfy the fermionic anti-commutation relations (with $i=j$)

$$
\left\{c_{i}, c_{j}^{\dagger}\right\}=\delta_{i, j} \quad\left\{c_{i}, c_{j}\right\}=\left\{c_{i}^{\dagger}, c_{j}^{\dagger}\right\}=0
$$

However, the spin operators on different sites commute, so the construction above does not work for $i \neq j$.

Jordan and Wigner solved this problem, by introducing

$$
\sigma_{i}^{z}=1-2 c_{i}^{\dagger} c_{i} \quad \sigma_{i}^{+}=\left(\prod_{j<i}\left(1-2 c_{j}^{\dagger} c_{j}\right)\right) c_{i} \quad \sigma_{i}^{-}=\left(\prod_{j<i}\left(1-2 c_{j}^{\dagger} c_{j}\right)\right) c_{i}^{\dagger} .
$$

The inverse is

$$
c_{i}=\left(\prod_{j<i} \sigma_{j}^{z}\right) \sigma_{i}^{+} \quad c_{i}^{\dagger}=\left(\prod_{j<i} \sigma_{j}^{z}\right) \sigma_{i}^{-}
$$

a. Show that the σ operators defined above satisfy the correct commutation relations, by using the fermion anti-commutation relations given above.
b. We will assume that the chain contains L sites, and is closed, so that the sites $i=L$ and $i=0$ are identified (i.e., we assume $\sigma_{i+L}^{\alpha}=\sigma_{i}^{\alpha}$). Show that after the Jordan-Wigner transformation, the hamiltonian reads

$$
\begin{aligned}
H= & \sum_{i=0}^{L-1} g\left(2 c_{i}^{\dagger} c_{i}-1\right)+\sum_{i=0}^{L-2}\left(c_{i} c_{i+1}+c_{i} c_{i+1}^{\dagger}+c_{i+1} c_{i}^{\dagger}+c_{i+1}^{\dagger} c_{i}^{\dagger}\right) \\
& -(-1)^{F}\left(c_{L-1} c_{0}+c_{L-1} c_{0}^{\dagger}+c_{0} c_{L-1}^{\dagger}+c_{0}^{\dagger} c_{L-1}^{\dagger}\right),
\end{aligned}
$$

where F is the number of fermions, which is conserved modulo two.

The boundary term can be taken into account by imposing periodic boundary conditions $c_{L}=c_{0}$ when F is odd, and anti-periodic boundary conditions $c_{L}=-c_{0}$ when F is even. With these boundary conditions, the hamiltonian is translationally invariant, namely

$$
H=\sum_{i=0}^{L-1} g\left(2 c_{i}^{\dagger} c_{i}-1\right)+\sum_{i=0}^{L-1}\left(c_{i} c_{i+1}+c_{i} c_{i+1}^{\dagger}+c_{i+1} c_{i}^{\dagger}+c_{i+1}^{\dagger} c_{i}^{\dagger}\right)
$$

c. To diagonalize the hamiltonian, we first have to go to momentum space, via $c_{j}=$ $\frac{1}{\sqrt{L}} \sum_{k} c_{k} e^{i a k j}$, with $a=\frac{2 \pi}{L}$. Show that the hamiltonian takes the following form:

$$
H=\sum_{k} 2(g-\cos (a k)) c_{k}^{\dagger} c_{k}+i \sin (a k)\left(c_{-k} c_{k}+c_{-k}^{\dagger} c_{k}^{\dagger}\right)-g
$$

To bring the hamiltonian in diagonal form, one performs a Bogoliubov transformation to a different set of fermions:

$$
\gamma_{k}=u_{k} c_{k}-i v_{k} c_{-k}^{\dagger} \quad \gamma_{k}^{\dagger}=u_{k} c_{k}^{\dagger}+i v_{k} c_{-k}
$$

where u_{k} and v_{k} are real, and satisfy $u_{k}^{2}+v_{k}^{2}=1, u_{-k}=u_{k}$ and $v_{-k}=-v_{k}$, ensuring that the γ_{k} satisfy fermion anti-commutation relations.
d. Choose the parametrization $u_{k}=\cos \theta_{k} / 2$ and $v_{k}=\sin \theta_{k} / 2$, and find the condition on $\tan \theta_{k}$, such that terms which do not conserve the number of γ fermions (like $\gamma \gamma$) are absent in the hamiltonian, expressed in terms of the γ 's.
e. Finally, show that the hamiltonian takes the diagonal form

$$
H=\sum_{k} \varepsilon_{k}\left(\gamma_{k}^{\dagger} \gamma_{k}-\frac{1}{2}\right) \quad \quad \varepsilon_{k}=2\left(1+g^{2}-2 g \cos (a k)\right)^{\frac{1}{2}}
$$

Note that for F odd, the momenta take the values $k=0,1, \ldots, L-1$, while or F even, the allowed momenta are $k=1 / 2,3 / 2, \ldots, L-1 / 2$, because of the boundary conditions.

