## Exercises CFT-course fall 2011, set 10.

Due on friday, december 23 rd (well...).

1. Integral expressions for the hypergeometric function.

Recall the results of exercise 3 , set 6 .
a. Consider the differential operator $D=z(1-z) \partial_{z}^{2}+(c-(a+b+1) z) \partial_{z}-a b$. Show that the action of D on the monomial $t^{b-1}(1-t)^{c-b-1}(1-t z)^{-a}$ is a total derivative with respect to $t$.
b. Argue that the expression

$$
\int_{\mathcal{C}} d t t^{b-1}(1-t)^{c-b-1}(1-t z)^{-a}
$$

is a solution of the hypergeometric differential equation. What types of curves $\mathcal{C}$ can one take?
c. Show that the hypergeometric function $F(a, b ; c ; z)$ can be expressed as

$$
F(a, b ; c ; z)=\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1} d t t^{b-1}(1-t)^{c-b-1}(1-t z)^{-a}
$$

by performing an appropriate expansion and using an integral expression for the beta function $B(x, y)$ (assume that $\Re(c)>\Re(b)>0$ and $|z|<1)$.
d. Let $\gamma$ be the following curve in the complex plane


Show that
$F(a, b ; c ; z)=\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \frac{1}{\left(1-e^{2 \pi i b}\right)\left(1-e^{2 \pi i(c-b)}\right)} \int_{\gamma} d t t^{b-1}(1-t)^{c-b-1}(1-t z)^{-a}$ for $b, c-b \notin \mathbf{Z}$.
2. An Ising model correlation function from the Coulomb gas formalism.
a. Write the two conformal blocks $I_{1}(z), I_{2}(z)$ for the field $\psi=\phi_{1,2}$ in the Ising model, with $\left(p, p^{\prime}\right)=(3,4)$, and find the values of $a, b, c$.
b. The fusion rule $\psi \times \psi=1$ indicates that there should only be one conformal block. To reconcile the results, consider the full correlation function, which takes the form (you don't have to show this)

$$
G(z, \bar{z}) \propto \frac{\sin (b \pi) \sin ((a+b+c) \pi)}{\sin ((a+c) \pi)}\left|I_{1}(z)\right|+\frac{\sin (a \pi) \sin (c \pi)}{\sin ((a+c) \pi)}\left|I_{2}(z)\right|
$$

