Exercises CFT-course fall 2011, set 9.

Due on friday, december 16th.

1. CFT description of the transverse-field Ising model.

In exercise 1. of the first set of exercises, we considered the transverse-field Ising model in one dimension. The hamiltonian in terms of the Pauli matrices σ was given by

$$
H_{I}=-J \sum_{i}\left(g \sigma_{i}^{x}+\sigma_{i}^{z} \sigma_{i+1}^{z}\right) .
$$

You showed that the hamiltonian can be diagonalized, with as the final result

$$
H_{I}=\sum_{k} \varepsilon_{k}\left(\gamma_{k}^{\dagger} \gamma_{k}-\frac{1}{2}\right) \quad \quad \varepsilon_{k}=2\left(1+g^{2}-2 g \cos (a k)\right)^{\frac{1}{2}}
$$

Here, the $\gamma_{k}^{(\dagger)}$,s are fermion creation and annihilation operators with momentum k. For F odd, the momenta take the values $k=0,1, \ldots, L-1$, while or F even, the allowed momenta are $k=1 / 2,3 / 2, \ldots, L-1 / 2$, because of the periodic boundary conditions we imposed.
In this exercise, we will consider the critical behaviour at $g=1$, for $J=1$. Although the model has been solved exactly, it is not so easy to extract the critical behaviour analytically, because of the sum over k, which one has to evaluate to obtain the energies. Therefor, the use of some computer program to evaluate the energies for finite system size.
a. Evaluate the the ground state energy (at $g=J=1$) numerically for finite system sizes L, (up to $L=500$ should not be a problem) and fit the results to the (general) finite size scaling formula

$$
E_{i}=E_{0} L+\frac{2 \pi v}{L}\left(-\frac{c}{12}+h_{l}+h_{r}\right)
$$

where E_{0} is a constant energy per spin, v a velocity, c the central charge, and h_{l} and h_{r} the left and right scaling dimensions of scaling fields.
b. Show numerically that the system is critical, by obtaining the finite size gap between the ground and first excited states.
c. Obtain the other constants in the scaling formula and dimensions of the primary fields by considering various low-lying states in the spectrum.
d. (optional) Obtain the full spectrum for a small system (say $L=10$), and plot the states as a function of momentum.
2. Entanglement entropy from conformal field theory.

Study the paper 'Entanglement entropy and conformal field theory' by P. Calabrese and J. Cardy (J.Phys. A42, 504005 (2009); arXiv:0905.4013) up to (at least) section 3.2.

Briefly describe the structure of the calculation, and fill in the details which were skipped during the lecture, in particular the calculation of $\langle T(w)\rangle_{\mathcal{R}_{n}}$ and the correlator $\left\langle\Phi_{n}(u, 0) \Phi_{-n}(v, 0)\right\rangle_{\mathcal{L}^{(n)}, \mathbf{C}}$.

