Exercises CFT-course fall 2008, set 4 & 5.

Due on november 11, 2011.

1. Mode expansion of primary fields.

In analogy to the stress-energy tensor, we define a mode expansion of (holomorphic) primary fields $\phi(z)$ as

$$\phi(z) = \sum_{n \in \mathbb{Z}-h} \phi_n z^{-n-h} \qquad \phi_n = \oint \frac{dz}{2\pi i} z^{h+n-1} \phi(z) ,$$

where ϕ_{-n} has weight n.

- a. Show that regularity requires $\phi_n |0\rangle = 0$ for $n \ge -h + 1$.
- b. Calculate the commutator $[L_n, \phi_m]$ by first calculating $[L_n, \phi(w)]$. Show that $L_0\phi_{-h}|0\rangle = h|h\rangle$, as expected.
- 2. The OPE of descendent fields.

Show that the OPE of T(z) with $\phi^{(-1)}(w) = \partial \phi(w)$, where $\phi(w)$ is a primary field of dimension h, takes the form

$$T(z)\partial\phi(w) = \frac{2h\phi(w)}{(z-w)^3} + \frac{(h+1)\partial\phi(w)}{(z-w)^2} + \frac{\partial^2\phi(w)}{z-w} + \operatorname{reg}$$

3. Highest weight condition.

Show that the highest weight condition, namely $L_n|\chi\rangle = 0$ for all n > 0, is implied by the conditions $L_1|\chi\rangle = L_2|\chi\rangle = 0$.

4. Null vector at level 3.

Find the explicit expression for the null vector at level 3. Answer:

$$|\chi_{1,3}\rangle = \left(L_{-3} - \frac{2}{h}L_{-2}L_{-1} + \frac{1}{h(h+1)}(L_{-1})^3\right)|h\rangle$$

Determine the corresponding central charge c as a function of h.

5. A little on partitions.

Let $p_d(n)$ be the number of partitions of $n \ge 0$ into distinct parts. Thus, f.i. $p_d(5) = 3$, namely 5 = 1 + 4, 5 = 2 + 3, 5 = 5.

Let $p_o(n)$ be the number of partitions of $n \ge 0$ into *odd* parts. Thus, f.i. $p_o(5) = 3$, namely 5 = 1 + 1 + 1 + 1 + 1, 5 = 1 + 1 + 3, 5 = 5.

Show that $p_d(n) = p_o(n)$ by obtaining their generating functions, and showing that they are equal.

6. Unitarity of SU(2) representations.

Consider the SU(2) algebra

$$[J_+, J_-] = 2J_0 \qquad [J_0, J_\pm] = \pm J_\pm$$

and let $|j\rangle$ be a highest weight, $J_+|j\rangle = 0$, with J_0 eigenvalue j. Show that one can only construct unitary highest weight representations for j either a non-negative integer of a positive half-integer.