Exercises CFT-course fall 2011, set 3.

Due on friday, october 14, 2011.

- 1. The two point function on the cylinder.
- a. Calculate the two point function of a primary operator $\phi(z, \bar{z})$ with scaling dimensions (h, \bar{h}) on the cylinder, by using the conformal map $w = \frac{L \log z}{2\pi}$. Result:

$$\langle \phi(w_1, \bar{w}_1) \phi(w_2, \bar{w}_2) \rangle = \left(\frac{2\pi}{L}\right)^{2h+2\bar{h}} (2\sinh\left(\pi(w_1 - w_2)/L\right))^{-2h} (2\sinh\left(\pi(\bar{w}_1 - \bar{w}_2)/L\right))^{-2\bar{h}}$$

- b. Let w = t + iu. Analyze the result of a. in the limits $t_1 t_2 \ll L$ and $t_1 t_2 \gg L$. For simplicity, you may assume that $h = \bar{h}$.
- 2. The massless free boson ϕ has the action

$$S = \frac{g}{2} \int dx^2 \partial_\mu \phi \partial^\mu \phi \; .$$

a. Determine the propagator of the free massless boson theory:

$$\langle \phi(z,\bar{z})\phi(w,\bar{w})\rangle = \frac{-1}{4\pi g} \left(\ln(z-w) + \ln(\bar{z}-\bar{w}) + \text{const.}\right)$$

- b. Determine the form of the stress-energy tensor, namely $T(z) = -2\pi g : \partial \phi(z) \partial \phi(z) :$.
- c. Calculate the OPE T(z)T(w).
- d. Show that the vertex operator $V =: e^{i\alpha\phi}: (z)$ is a primary field of dimension $h_{\alpha} = \frac{\alpha^2}{8\pi g}$.
- 3. The massless free fermion.

The action of the massless free fermion can be written as

$$S = g \int dx^2 (\overline{\psi} \partial \overline{\psi} + \psi \overline{\partial} \psi) \;,$$

where ψ and $\overline{\psi}$ are the two components of the spinor Ψ . It is given that the equations of motion are $\partial \overline{\psi} = \overline{\partial} \psi = 0$, while the propagator takes the form $\langle \psi(z, \overline{z})\psi(w, \overline{w})\rangle = \frac{1}{2\pi g} \frac{1}{z-w}$. The stress-energy tensor can be written as $T(z) = -\pi g : \psi(z)\partial\psi(z) :$.

- a. Show that $\psi(z)$ is a primary field.
- b. Calculate the OPE T(z)T(w).
- 4. The Virasoro algebra.

Show that the Virasoro algebra has the following form

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}n(n^2 - 1)\delta_{n+m,0} ,$$

where $L_n = \oint \frac{dz}{2\pi i} z^{n+1} T(z)$.