
Quantum Field Theory for Condensed Matter - 2017
Exercise Set 3 (14 points)
Due date: friday, may 26st

1. For a system of electrons and phonons, the phonon part of the Hamiltonian is given by

Hph =
∑
q,j

ωqa
†
q,jaq,j + const.

in which a†q,j is a bosonic creation operator for a phonon with momentum q and polarization along the j-axis

and ωq is the energy of the phonon, which only depends on |q|.
The electron-phonon interaction is given by the Hamiltonian

Hel−ph = γ
∑
qj

iq.êj√
2mωq

nq

(
aq,j + a†−q,j

)
Here m is the ion mass, γ is a coupling constant, êj is the unit vector along the j-axis and nq ≡

∑
k c
†
k+qck

where c is the electron annihilation operator (for simplicity we ignore the spin of the electron.)

a) (1 p) By setting the chemical potential for the phonons to zero and performing a Fourier transform to go
to the frequency domain, formulate the coherent state action of the electron-phonon system. Take Sel as
an electron action which you do not need to write out explicitly. Note that not only phonons are bosons,
but nq is a bosonic operator as well. Use the notation nq[ψ̄, ψ] = ρq where q = (ωn,q).

b) (2 p) Integrate out the phonon fields, and show that the effective action for the electrons is given by

Seff [ψ̄, ψ] = Sel[ψ̄, ψ]− γ2

2m

∑
q

|q|2

ω2
n + ω2

q

ρqρ−q

2. In this exercise we calculate some features of the BCS gap equation,

1

gν
=

∫ ωD

0

dξ
tanh[

√
ξ2 + ∆2/2T ]√
ξ2 + ∆2

,

in which g is the interaction strength, ν is the density of states at Fermi energy, ωD is the Debye frequency, ∆
is the gap and T is the temperature. Note that we set kB = 1.

a) (1 p) At T = 0, find the gap, ∆. Furthermore, for gν � 1, simplify your result.

b) (1 p) At T = Tc which is the critical temperature, the gap closes, i.e. ∆ = 0. Find the critical temperature.

Hint: use the integration by parts and assume that Tc � ωD. You can use,∫ ∞
0

log x

cosh2 x
dx = log

π

4
− γ,

where γ ' 0.577 is Euler’s constant.

c) (2 p) For T = Tc(1 − t) where 0 < t � 1, the gap is small in comparison with the other energy scales.
Expand the gap equation around Tc, and keep the lowest orders in t and ∆. Assume that Tc � ωD, and
show that

∆ = κ
√
T 2
c t = κ

√
Tc(Tc − T ).

Find the numerical value for κ as well.

3. In this exercise spin polarized px + ipy superconductor in 2D will be studied. The interaction term in this case
reads,

V [ψ̄, ψ] =
g

4

∫
d2rψ̄(∇ψ̄).ψ(∇ψ), (1)

in which ψ̄(x, y) and ψ(x, y) are Grassmann fields defined on the 2D plane and ∇ = (∂x, ∂y).



a) (1 p) Use the identity,∫
D[∆̄,∆] exp

[
− 1

g

∫
dτd2r

(
∆̄− g

2
ψ̄(∇ψ̄)

)
.
(
∆ +

g

2
ψ(∇ψ)

)]
∼ 1,

to replace the interaction term with an integral over the vector fields ∆ and ∆̄ in the path integral. We
assume that there is no external electromagnetic field, the chemical potential is µ and there is no spin
index for the Grassmann fields. Write down the action, i.e. S[ψ̄, ψ, ∆̄,∆].

b) (1 p) Write the action in the following form,

S =
1

g

∫
dτd2r∆̄.∆ +

1

2

∫
dτd2r

(
ψ̄ ψ

)(M11 M12

M21 M22

)(
ψ
ψ̄

)
, (2)

and determine the matrix M . It’s elements contain derivatives.

c) (1 p) To find the saddle-point solution, assume that ∆̄ and ∆ are constant vector fields on the plane.
Perform the Fourier transformation as follows,

ψ(r, τ) =
∑
q

ψ(q)ei(q.r−ωnτ), ψ(q) =
1

βA

∫
dτd2rψ(r, τ)e−i(q.r−ωnτ), (3)

where A is the area of the plane, q = (ωn,q) and note that ψ̄ transforms like the ”complex conjugate” of
ψ. The action has the following form,

S =
1

g
Aβ∆̄.∆ +

1

2
Aβ
∑
q

(
ψ̄(q) ψ(−q)

)(M̃11(q) M̃12(q)

M̃21(q) M̃22(q)

)(
ψ(q)
ψ̄(−q)

)
. (4)

Determine the matrix M̃(q).

d) (1 p) Do the functional integral over ψ̄ and ψ and show that the effective action for ∆̄ and ∆ is,

Seff =
1

g
Aβ∆̄.∆−

∑
q

log
[
ω2
n + ξ2q + |∆.q|2

]
,

in which ξq = q2

2m − µ.

e) (1.5 p) Due to the symmetry of the model, one can always write ∆ = (∆x,∆ye
iθ), in which ∆x, ∆y and

θ are real numbers. Write the saddle point equations for ∆ and argue that in order to have consistent
equations, there are only two possible cases, θ = ±π2 , or equivalently ∆ = ∆(1,±i).

f) (1 p) At T = 0, use ∆ = ∆(1,±i) to find ∆ as a function of g, ωD, pF (the Fermi momentum) and ν(0)
(the density of states at Fermi energy).

Hint: First do the Matsubara sum. To perform the integral over q, assume that ωD � µ.

g) (0.5 p) Based on the poles that appeared in the Matsubara sum, can you write the dispersion relation for
the excitations, namely the Bogoliubov quasiparticles?
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