Quantum Field Theory for Condensed Matter - 2017
 Exercise Set 3 (14 points)
 Due date: friday, may 26st

1. For a system of electrons and phonons, the phonon part of the Hamiltonian is given by

$$
H_{p h}=\sum_{\mathbf{q}, j} \omega_{\mathbf{q}} a_{\mathbf{q}, j}^{\dagger} a_{\mathbf{q}, j}+\text { const. }
$$

in which $a_{\mathbf{q}, j}^{\dagger}$ is a bosonic creation operator for a phonon with momentum \mathbf{q} and polarization along the j-axis and $\omega_{\mathbf{q}}$ is the energy of the phonon, which only depends on $|\mathbf{q}|$.
The electron-phonon interaction is given by the Hamiltonian

$$
H_{e l-p h}=\gamma \sum_{\mathbf{q} j} \frac{i \mathbf{q} \cdot \hat{e}_{j}}{\sqrt{2 m \omega_{q}}} n_{\mathbf{q}}\left(a_{\mathbf{q}, j}+a_{-\mathbf{q}, j}^{\dagger}\right)
$$

Here m is the ion mass, γ is a coupling constant, \hat{e}_{j} is the unit vector along the j-axis and $n_{\mathbf{q}} \equiv \sum_{\mathbf{k}} c_{\mathbf{k}+\mathbf{q}}^{\dagger} c_{\mathbf{k}}$ where c is the electron annihilation operator (for simplicity we ignore the spin of the electron.)
a) (1 p) By setting the chemical potential for the phonons to zero and performing a Fourier transform to go to the frequency domain, formulate the coherent state action of the electron-phonon system. Take $S_{e l}$ as an electron action which you do not need to write out explicitly. Note that not only phonons are bosons, but $n_{\mathbf{q}}$ is a bosonic operator as well. Use the notation $n_{q}[\bar{\psi}, \psi]=\rho_{q}$ where $q=\left(\omega_{n}, \mathbf{q}\right)$.
b) (2 p) Integrate out the phonon fields, and show that the effective action for the electrons is given by

$$
S_{e f f}[\bar{\psi}, \psi]=S_{e l}[\bar{\psi}, \psi]-\frac{\gamma^{2}}{2 m} \sum_{q} \frac{|\mathbf{q}|^{2}}{\omega_{n}^{2}+\omega_{\mathbf{q}}^{2}} \rho_{q} \rho_{-q}
$$

2. In this exercise we calculate some features of the BCS gap equation,

$$
\frac{1}{g \nu}=\int_{0}^{\omega_{D}} d \xi \frac{\tanh \left[\sqrt{\xi^{2}+\Delta^{2}} / 2 T\right]}{\sqrt{\xi^{2}+\Delta^{2}}}
$$

in which g is the interaction strength, ν is the density of states at Fermi energy, ω_{D} is the Debye frequency, Δ is the gap and T is the temperature. Note that we set $k_{B}=1$.
a) $(1 \mathrm{p})$ At $T=0$, find the gap, Δ. Furthermore, for $g \nu \ll 1$, simplify your result.
b) $(1 \mathrm{p})$ At $T=T_{c}$ which is the critical temperature, the gap closes, i.e. $\Delta=0$. Find the critical temperature. Hint: use the integration by parts and assume that $T_{c} \ll \omega_{D}$. You can use,

$$
\int_{0}^{\infty} \frac{\log x}{\cosh ^{2} x} d x=\log \frac{\pi}{4}-\gamma
$$

where $\gamma \simeq 0.577$ is Euler's constant.
c) (2 p) For $T=T_{c}(1-t)$ where $0<t \ll 1$, the gap is small in comparison with the other energy scales. Expand the gap equation around T_{c}, and keep the lowest orders in t and Δ. Assume that $T_{c} \ll \omega_{D}$, and show that

$$
\Delta=\kappa \sqrt{T_{c}^{2} t}=\kappa \sqrt{T_{c}\left(T_{c}-T\right)}
$$

Find the numerical value for κ as well.
3. In this exercise spin polarized $p_{x}+i p_{y}$ superconductor in $2 D$ will be studied. The interaction term in this case reads,

$$
\begin{equation*}
V[\bar{\psi}, \psi]=\frac{g}{4} \int d^{2} r \bar{\psi}(\boldsymbol{\nabla} \bar{\psi}) \cdot \psi(\boldsymbol{\nabla} \psi) \tag{1}
\end{equation*}
$$

in which $\bar{\psi}(x, y)$ and $\psi(x, y)$ are Grassmann fields defined on the $2 D$ plane and $\boldsymbol{\nabla}=\left(\partial_{x}, \partial_{y}\right)$.
a) (1 p) Use the identity,

$$
\int D[\overline{\boldsymbol{\Delta}}, \boldsymbol{\Delta}] \exp \left[-\frac{1}{g} \int d \tau d^{2} r\left(\overline{\boldsymbol{\Delta}}-\frac{g}{2} \bar{\psi}(\boldsymbol{\nabla} \bar{\psi})\right) \cdot\left(\boldsymbol{\Delta}+\frac{g}{2} \psi(\boldsymbol{\nabla} \psi)\right)\right] \sim 1
$$

to replace the interaction term with an integral over the vector fields $\boldsymbol{\Delta}$ and $\overline{\boldsymbol{\Delta}}$ in the path integral. We assume that there is no external electromagnetic field, the chemical potential is μ and there is no spin index for the Grassmann fields. Write down the action, i.e. $S[\bar{\psi}, \psi, \overline{\boldsymbol{\Delta}}, \boldsymbol{\Delta}]$.
b) (1 p) Write the action in the following form,

$$
S=\frac{1}{g} \int d \tau d^{2} r \overline{\boldsymbol{\Delta}} \cdot \boldsymbol{\Delta}+\frac{1}{2} \int d \tau d^{2} r(\bar{\psi} \psi)\left(\begin{array}{ll}
M_{11} & M_{12} \tag{2}\\
M_{21} & M_{22}
\end{array}\right)\binom{\psi}{\bar{\psi}}
$$

and determine the matrix M. It's elements contain derivatives.
c) (1 p) To find the saddle-point solution, assume that $\overline{\boldsymbol{\Delta}}$ and $\boldsymbol{\Delta}$ are constant vector fields on the plane. Perform the Fourier transformation as follows,

$$
\begin{equation*}
\psi(\mathbf{r}, \tau)=\sum_{q} \psi(q) e^{i\left(\mathbf{q} \cdot \mathbf{r}-\omega_{n} \tau\right)}, \quad \psi(q)=\frac{1}{\beta A} \int d \tau d^{2} r \psi(\mathbf{r}, \tau) e^{-i\left(\mathbf{q} \cdot \mathbf{r}-\omega_{n} \tau\right)} \tag{3}
\end{equation*}
$$

where A is the area of the plane, $q=\left(\omega_{n}, \mathbf{q}\right)$ and note that $\bar{\psi}$ transforms like "complex conjugate" of ψ. The action has the following form,

$$
S=\frac{1}{g} A \beta \overline{\boldsymbol{\Delta}} \cdot \boldsymbol{\Delta}+\frac{1}{2} A \beta \sum_{q}(\bar{\psi}(q) \quad \psi(-q))\left(\begin{array}{cc}
\tilde{M}_{11}(q) & \tilde{M}_{12}(q) \tag{4}\\
\tilde{M}_{21}(q) & \tilde{M}_{22}(q)
\end{array}\right)\binom{\psi(q)}{\bar{\psi}(-q)} .
$$

Determine the matrix $\tilde{M}(q)$.
d) (1p) Do the functional integral over $\bar{\psi}$ and ψ and show that the effective action for $\overline{\boldsymbol{\Delta}}$ and $\boldsymbol{\Delta}$ is,

$$
S_{e f f}=\frac{1}{g} A \beta \overline{\boldsymbol{\Delta}} \cdot \boldsymbol{\Delta}-\sum_{q} \log \left[\omega_{n}^{2}+\xi_{\mathbf{q}}^{2}+|\boldsymbol{\Delta} \cdot \mathbf{q}|^{2}\right]
$$

in which $\xi_{\mathbf{q}}=\frac{\mathbf{q}^{2}}{2 m}-\mu$.
e) $(1.5 \mathrm{p})$ Due to the symmetry of the model, one can always write $\boldsymbol{\Delta}=\left(\Delta_{x}, \Delta_{y} e^{i \theta}\right)$, in which Δ_{x}, Δ_{y} and θ are real numbers. Write the saddle point equations for $\boldsymbol{\Delta}$ and argue that in order to have consistent equations, there are only two possible cases, $\theta= \pm \frac{\pi}{2}$, or equivalently $\boldsymbol{\Delta}=\Delta(1, \pm i)$.
f) $(1 \mathrm{p})$ At $T=0$, use $\boldsymbol{\Delta}=\Delta(1, \pm i)$ to find Δ as a function of g, ω_{D}, p_{F} (the Fermi momentum) and $\nu(0)$ (the density of states at Fermi energy).
Hint: First do the Matsubara sum. To perform the integral over \mathbf{q}, assume that $\omega_{D} \ll \mu$.
g) (0.5 p) Based on the poles that appeared in the Matsubara sum, can you write the dispersion relation for the excitations, namely the Bogoliubov quasiparticles?

