
Quantum Field Theory for Condensed Matter - 2017
Exercise Set 2 (14 points)

Due date: monday, may 8th

1. (1 p) The Grassmann numbers ξ1, ξ2 and ξ3 satisfy the usual anti-commutation relations, i.e. {ξi, ξj} = 0.
Evaluate the following integrals∫

dξ1dξ2 sin(ξ1 + ξ2)eξ2 ,

∫
dξ1 cos(ξ1 + ξ2) cos(ξ1 + ξ3).

2. The two-point correlation function in imaginary-time is defined as follows,

CAB(τ, τ ′) ≡ −〈Tτ [A(τ)B(τ ′)]〉,

where

Tτ [A(τ)B(τ ′)] = θ(τ − τ ′)A(τ)B(τ ′) + ζ θ(τ ′ − τ)B(τ ′)A(τ),

with ζ = +1 for bosonic operators, and ζ = −1 for fermionic operators. To ensure convergence of CAB(τ, τ ′),
we should have

−β < τ − τ ′ < β.

a) (1 p) Show that

CAB(τ, τ ′) = CAB(τ − τ ′, 0).

This means that the correlation function only depends on the time difference so one can assume that τ ′ = 0.

b) (1 p) Defining

CAB(τ) ≡ CAB(τ, 0),

show that

CAB(τ − β) = ζCAB(τ), τ > 0, (1)

CAB(τ + β) = ζCAB(τ), τ < 0. (2)

Hint: prove one of these relations, and show that the other follows.

3. (1 p) Consider the following Hamiltonian,

H = εf†f,

where ε is a constant and f is a fermionic operator. The partition function is,

Z = Tr[e−β(H−µN)]

=
∑
n

〈n|e−β(H−µN)|n〉,

where β is the inverse temperature and µ is the chemical potential. What are the possible values for N or
equivalently, the possible states |n〉? Sum over all possible values and find the partition function for single state.

4. Consider the general quartic Hamiltonian,

H(a†, a) =
∑
ij

hija
†
iaj +

∑
ijkl

Vijkla
†
ia
†
jakal,

where the operators are either bosonic or fermionic. The partition function is,

Z = Tr[e−β(H−µN)]

=

∫
d(ψ̄, ψ)e−

∑
i ψ̄iψi〈ζψ|e−β(H−µN)|ψ〉.



a) (1 p) Divide β to into N pieces, insert identities in between these and send N →∞ to obtain path integral
in the continuum limit,

Z =

∫
D(ψ̄, ψ)e−S[ψ̄,ψ], S[ψ̄, ψ] =

∫ β

0

dτ [ψ̄∂τψ +H(ψ̄, ψ)− µN(ψ̄, ψ)]. (3)

Mention the boundary conditions.

b) (1 p) Note that ψ̄ and ψ are dimensionless and we know the Grassmann algebra for dimensionless numbers.
To keep this feature, perform the Fourier transform as follows,

ψi(τ) =
∑
ωn

ψi,ne
−iωnτ , ψi,n =

1

β

∫ β

0

dτψi(τ)eiωnτ , (4)

and write the action, S, in terms of ψ̄i,n and ψi,n.

c) (1 p) From now on set all quartic terms to zero, i.e. Vijkl = 0. Furthermore assume that the matrix hij
has eigenvalues εa (a labels the eigenvalues). Do the the functional integral, and find the free energy as a
sum over a and the Matsubara frequencies.

d) (1 p) Using the imaginary plane trick, perform the Matsubara sum.

e) (0.5 p) From your result of Ex. 3), can you argue for your result in part d)?

5. Consider a fermi gas with Coulomb interaction, V (r) = e2

|r| , in a 3D box of size L at temperature T .

a) (1 p) Justify the Random Phase Approximation (RPA) and mention when it is applicable. Write the free
energy FRPA as a function of V (q) and the polarization operator, Π(q),

Π(q) ≡ 2T

L3

∑
p

GpGp+q.

Note that p = (p0,p) and q = (q0,q). You can start your calculation from Eq.5.26 of Altland and Simons,
but explain its meaning and structure.

b) (1 p) Do the sum over Matsubara frequencies p0 and show that,

Π(q) =
2

L3

∑
p

nF (ξp+q)− nF (ξp)

−iq0 + ξp+q − ξp,

where nF (ε) is Fermi-Dirac distribution.

c) (1.5 p)At T = 0, approximate all the expressions up to first order in
|q|
q0

, go to continuum limit and finally

rotate back to real time, i.e. replace iq0 → ω + i0+ to show that

Π(ω, ~q) ' 2

∫
d3p

(2π)3

(
1

ω
+

p · q
mω2

)
q · p
|pF |

δ(|p| − pF ). (5)

Here we dropped i0+.

d) (1.5 p) Do the integral of part c), and express Π(ω,q) as a function of ω, q, m (the electron mass) and n
(the density of electrons).

e) (0.5 p) One can show that an effective potential for electrons with these approximations is,

Veff (ω,q) =
V (q)

1− V (q)Π(ω,q)
.

The denominator has a pole at ω = ωp (known as the plasma frequency) which is a signature of an
instability. Determine ωp.
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