Quantum Field Theory for Condensed Matter - 2017
 Exercise Set 2 (14 points)
 Due date: monday, may 8th

1. (1 p) The Grassmann numbers ξ_{1}, ξ_{2} and ξ_{3} satisfy the usual anti-commutation relations, i.e. $\left\{\xi_{i}, \xi_{j}\right\}=0$. Evaluate the following integrals

$$
\int d \xi_{1} d \xi_{2} \sin \left(\xi_{1}+\xi_{2}\right) e^{\xi_{2}}, \quad \int d \xi_{1} \cos \left(\xi_{1}+\xi_{2}\right) \cos \left(\xi_{1}+\xi_{3}\right)
$$

2. The two-point correlation function in imaginary-time is defined as follows,

$$
\mathcal{C}_{A B}\left(\tau, \tau^{\prime}\right) \equiv-\left\langle\mathcal{T}_{\tau}\left[A(\tau) B\left(\tau^{\prime}\right)\right]\right\rangle,
$$

where

$$
\mathcal{T}_{\tau}\left[A(\tau) B\left(\tau^{\prime}\right)\right]=\theta\left(\tau-\tau^{\prime}\right) A(\tau) B\left(\tau^{\prime}\right)+\zeta \theta\left(\tau^{\prime}-\tau\right) B\left(\tau^{\prime}\right) A(\tau)
$$

with $\zeta=+1$ for bosonic operators, and $\zeta=-1$ for fermionic operators. To ensure convergence of $\mathcal{C}_{A B}\left(\tau, \tau^{\prime}\right)$, we should have

$$
-\beta<\tau-\tau^{\prime}<\beta
$$

a) (1p) Show that

$$
\mathcal{C}_{A B}\left(\tau, \tau^{\prime}\right)=\mathcal{C}_{A B}\left(\tau-\tau^{\prime}, 0\right) .
$$

This means that the correlation function only depends on the time difference so one can assume that $\tau^{\prime}=0$.
b) (1 p) Defining

$$
\mathcal{C}_{A B}(\tau) \equiv \mathcal{C}_{A B}(\tau, 0)
$$

show that

$$
\begin{align*}
\mathcal{C}_{A B}(\tau-\beta) & =\zeta \mathcal{C}_{A B}(\tau), & & \tau>0 \tag{1}\\
\mathcal{C}_{A B}(\tau+\beta) & =\zeta \mathcal{C}_{A B}(\tau), & & \tau<0 . \tag{2}
\end{align*}
$$

Hint: prove one of these relations, and show that the other follows.
3. (1 p) Consider the following Hamiltonian,

$$
H=\epsilon f^{\dagger} f
$$

where ϵ is a constant and f is a fermionic operator. The partition function is,

$$
\begin{aligned}
\mathcal{Z} & =\operatorname{Tr}\left[e^{-\beta(H-\mu N)}\right] \\
& =\sum_{n}\langle n| e^{-\beta(H-\mu N)}|n\rangle,
\end{aligned}
$$

where β is the inverse temperature and μ is the chemical potential. What are the possible values for N or equivalently, the possible states $|n\rangle$? Sum over all possible values and find the partition function for single state.
4. Consider the general quartic Hamiltonian,

$$
H\left(a^{\dagger}, a\right)=\sum_{i j} h_{i j} a_{i}^{\dagger} a_{j}+\sum_{i j k l} V_{i j k l} a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l},
$$

where the operators are either bosonic or fermionic. The partition function is,

$$
\begin{aligned}
\mathcal{Z} & =\operatorname{Tr}\left[e^{-\beta(H-\mu N)}\right] \\
& =\int d(\bar{\psi}, \psi) e^{-\sum_{i} \bar{\psi}_{i} \psi_{i}}\langle\zeta \psi| e^{-\beta(H-\mu N)}|\psi\rangle .
\end{aligned}
$$

a) (1p) Divide β to into \mathcal{N} pieces, insert identities in between these and send $\mathcal{N} \rightarrow \infty$ to obtain path integral in the continuum limit,

$$
\begin{equation*}
\mathcal{Z}=\int D(\bar{\psi}, \psi) e^{-S[\bar{\psi}, \psi]}, \quad S[\bar{\psi}, \psi]=\int_{0}^{\beta} d \tau\left[\bar{\psi} \partial_{\tau} \psi+H(\bar{\psi}, \psi)-\mu N(\bar{\psi}, \psi)\right] \tag{3}
\end{equation*}
$$

Mention the boundary conditions.
b) (1 p) Note that $\bar{\psi}$ and ψ are dimensionless and we know the Grassmann algebra for dimensionless numbers. To keep this feature, perform the Fourier transform as follows,

$$
\begin{equation*}
\psi_{i}(\tau)=\sum_{\omega_{n}} \psi_{i, n} e^{-i \omega_{n} \tau}, \quad \psi_{i, n}=\frac{1}{\beta} \int_{0}^{\beta} d \tau \psi_{i}(\tau) e^{i \omega_{n} \tau} \tag{4}
\end{equation*}
$$

and write the action, S, in terms of $\bar{\psi}_{i, n}$ and $\psi_{i, n}$.
c) $(1 \mathrm{p})$ From now on set all quartic terms to zero, i.e. $V_{i j k l}=0$. Furthermore assume that the matrix $h_{i j}$ has eigenvalues ϵ_{a} (a labels the eigenvalues). Do the the functional integral, and find the free energy as a sum over a and the Matsubara frequencies.
d) (1 p) Using the imaginary plane trick, perform the Matsubara sum.
e) $(0.5 \mathrm{p})$ From your result of Ex. 3), can you argue for your result in part d)?
5. Consider a fermi gas with Coulomb interaction, $V(\mathbf{r})=\frac{e^{2}}{|\mathbf{r}|}$, in a 3D box of size L at temperature T.
a) (1 p) Justify the Random Phase Approximation (RPA) and mention when it is applicable. Write the free energy $F_{R P A}$ as a function of $V(\mathbf{q})$ and the polarization operator, $\Pi(q)$,

$$
\Pi(q) \equiv \frac{2 T}{L^{3}} \sum_{p} G_{p} G_{p+q}
$$

Note that $p=\left(p^{0}, \mathbf{p}\right)$ and $q=\left(q^{0}, \mathbf{q}\right)$. You can start your calculation from Eq.5.26 of Altland and Simons, but explain its meaning and structure.
b) (1 p) Do the sum over Matsubara frequencies p^{0} and show that,

$$
\Pi(q)=\frac{2}{L^{3}} \sum_{\mathbf{p}} \frac{n_{F}\left(\xi_{\mathbf{p}+\mathbf{q}}\right)-n_{F}\left(\xi_{\mathbf{p}}\right)}{-i q^{0}+\xi_{\mathbf{p}+\mathbf{q}}-\xi_{\mathbf{p}}}
$$

where $n_{F}(\epsilon)$ is Fermi-Dirac distribution.
c) $(1.5 \mathrm{p})$ At $T=0$, approximate all the expressions up to first order in $\frac{|\mathbf{q}|}{q^{0}}$, go to continuum limit and finally rotate back to real time, i.e. replace $i q^{0} \rightarrow \omega+i 0^{+}$to show that

$$
\begin{equation*}
\Pi(\omega, \vec{q}) \simeq 2 \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}}\left(\frac{1}{\omega}+\frac{\mathbf{p} \cdot \mathbf{q}}{m \omega^{2}}\right) \frac{\mathbf{q} \cdot \mathbf{p}}{\left|\mathbf{p}_{F}\right|} \delta\left(|\mathbf{p}|-p_{F}\right) \tag{5}
\end{equation*}
$$

Here we dropped $i 0^{+}$.
d) (1.5 p) Do the integral of part c), and express $\Pi(\omega, \mathbf{q})$ as a function of ω, \mathbf{q}, m (the electron mass) and n (the density of electrons).
e) (0.5 p) One can show that an effective potential for electrons with these approximations is,

$$
V_{e f f}(\omega, \mathbf{q})=\frac{V(\mathbf{q})}{1-V(\mathbf{q}) \Pi(\omega, \mathbf{q})}
$$

The denominator has a pole at $\omega=\omega_{p}$ (known as the plasma frequency) which is a signature of an instability. Determine ω_{p}.

