
Tutorial on ODEs

September 6, 2019

1 Motion of a particle in a constant electromagnetic �eld

Consider a particle of mass m, charge q, initial position r0 “ 0 and initial velocity v0. Gravity will be neglected
in this problem.
a) Determine the trajectory of the particle in a constant electric �eld E “ E ex assuming no friction. If possible,
write down the equation of this trajectory.
b) Add a friction force f “ ´m

τ v and solve the di�erential equation for vptqwith the initial condition vptq “ v0.
What is the speed limit ? Give a physical interpretation of the time τ .
c) Determine the trajectory of the particle in a constant magnetic �eld B “ B ez assuming no friction.
Method 1 : Take v0 “ v0 cospθq ez`v0 sinpθq ey and solve the system of di�erential equations forxptq, yptq, zptq.
Method 2 (optional) : Show that ||vptq|| and {pv,Bq are invariant of motion. Then decompose the velocity as
v “ vK ` v‖ with vK the component orthogonal to B and v‖ the component parallel to B, and show that the
orthogonal motion is necessarily circular.

2 Linear ODEs with constant coe�cients

Find the general solution of the following ODEs :
a)

y3 ´ 2y2 ` y1 ´ 2y “ 0 (1)

b)

@n P N‹,
dny

dxn
´ ypxq “ 0 (2)

c)
yp4q ` 4y3 ` 6y2 ` 4y1 ` y “ 0 (3)

3 High speed motion of a sphere in a gas

At small velocities, the friction force exerted on a sphere in a gas is given by the Stokes’ law which depends on
viscosity and is linear in speed. However at high velocities, the resistance to the motion is mainly due to the
inertia of the gas as it is pushed apart by the sphere and viscous e�ects are negligible. Then, one can show by
dimensional analysis that the drag should be proportional the squared speed.
Write down the equation of motion of a sphere at high speed in a gas (1D, neglecting gravity) and solve it for
the initial condition vpt “ 0q “ v0.
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4 Thickness distribution of sea ice

The steady distribution of sea ice thickness satis�es the following 2nd order linear ODE (cf. Assignment 1) :

g2phq `

ˆ

1

H
´
q

h

˙

g1phq `
q

h2
gphq “ 0 with pq,Hq P R2 (4)

Integrate it twice and impose the normalization condition
ş`8

0
gphqdh “ 1.

5 An isobaric equation

dy

dx
“
y ´ x

y ` x
(5)

a) Show that this �rst order ODE is isobaric, then solve it thanks to a transformation that makes it separable.
b) The solution actually corresponds to an ubiquitous curve in nature. To identify it, write (5) in polar coordinates
and solve it.

6 Exact but non-separable 1st order ODEs

Check that the following di�erential equations are exact and �nd the general solution ϕpx, yq “ cst.
a)

“

6ypx2 ` y2 ´ 1q2 ` 54yx2
‰dy

dx
` 6xpx2 ` y2 ´ 1q2 ` 54xy2 “ 0 (6)

If cst “ 0, the solution is an astroid : the curve one gets by rolling a circle of radius 1
4 inside a circle of radius 1.

How many cusps has this curve ? It is very di�cult to answer this elementary question unless one is aware of
the following parametrization :

#

xptq “ cos3ptq

yptq “ sin3ptq
(7)

b)
“

4y3 ` 4ypx2 ` a2q
‰dy

dx
` 4xpx2 ´ a2q ` 4xy2 “ 0, a P R (8)

Show that the solution can be put on the form
“

px´ aq2 ` y2
‰“

px` aq2 ` y2
‰

“ b4 (9)

which is the Cartesian equation of a Cassini oval when b P R. How to caracterize the set of points P “ px, yq
with a geometric property? It is helpful to consider the �xed points P1 “ pa, 0q and P2 “ p´a, 0q.

7 Linear equidimensional equations

An equation is said to be equidimensional in x if the scale x Ñ ax leaves it unchanged. One can transform it
into an autonomous equation thanks to the change of variable x “ et. Linear equidimensional equations are of
the form :

n
ÿ

i“0

aix
i d
iy

dxi
“ 0 with a0, a1, . . . , an P R (10)

a) Show that such an equation is transformed to a linear ODE with constant coe�cients and that, as a counterpart,
one can directly look for solutions of the form xr .
b) Find the general solution of the following ODEs :
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i)
x2y2pxq ´ 4xy1pxq ` 6ypxq “ 0 (11)

ii)
x3y3pxq ` xy1pxq ´ ypxq “ 0 (12)

8 Three methods for a simple looking equation

Consider the following apparently simple ODE :

px´ yq
dy

dx
“ 1 (13)

Three methods are suggested to solve it, classi�ed by order of subtlety.
a) Is it isobaric ? Is it exact ? If not, look for an integrating factor. Method advocated in the course book.

b) Note that (13) is of the form dy
dx “ F pvqwith v a linear combination of x and y. A special case to be recognized.

c) Look at x as the dependent variable ; use a geometric property to plot the solution ypxq. A very speci�c trick.

9 Laudau amplitude equation

The transition to turbulence is a famous problem in the theory of hydrodynamic instability. A �ow is said to
be linearly stable when a small perturbation vanishes exponentially in time and it is linearly unstable when it
grows exponentially in time. However, non-linear e�ects can have a huge in�uence on the stability of a �ow.
Let’s consider a �ow that becomes linearly unstable when the control parameter R reaches a critical value Rc.
Laudau proposed to describe the evolution of the amplitude A of a perturbation by :

dA

dt
“ σA´

l

2
A3 (14)

where σ 9R´Rc is the growth (or decay) rate of the perturbation and l the Landau coe�cient. The non-linear
term is stabilizing when l ą 0 but destabilizing when l ă 0.
a) What kind of non-linear ODE is it? Make a change variable vpAq to get a linear inhomogenous ODE. Solve
the latter for the initial condition Ap0q “ A0 and infer the time evolution of A2.
b) Study the limit ofA2ptqwhen t goes to in�nity depending on the signs of σ and l. Try to identify a supercritical
and a subcritical bifurcation with the corresponding diagrams A8 versus R.

10 A Clairaut equation

Let’s denote p “ dy
dx . Find the general solution of the following so-called Clairaut equation :

y “ px` lnppq (15)

11 Generation of waves by the wind

For centuries, scientists and sailors have been vexed by how the wind and the sea conspire to create the waves
upon the oceans. In 1957, Phillips and Miles independently proposed mechanisms for wind waves genera-
tion. Complementary rather than competitive, their theories can be combined in a single formalism from which
emerges a forced harmonic oscillator with a negative damping :

d2η

dt2
´ 2γ

dη

dt
` ω2ηptq “ paptq (16)
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Figure 1: Force balance on a portion of a catenary

The variable η corresponds to one mode of the water surface oscillating with the frequency ω in the absence
of wind. The function paptq models the random pressure �uctuations of the turbulent wind in the Phillips
mechanism. γ ą 0 is the growth rate of the waves due to the components of air pressure in phase quadrature
with η in the Miles mechanism.
a) Assuming γ ! ω, �nd for an arbitrary function pa the solution of (16) for the initial conditions ηp0q “ 0 and
dη
dt

ˇ

ˇ

t“0
“ 0.

b) Set γ “ 0 and paptq “ cospωtq. What happens to the solution ? What general phenomenon is the Phillips
mechanism based on ?
c) How do the waves grow when γ ‰ 0 ? Can the Miles mechanism occur if paptq “ 0 ?

12 The catenary

A catenary is the curve that an idealized hanging chain assumes under its own weight when supported only at
its ends. The chain is modeled by a 1D curve ypxq with a mass per unit lenght λ. We assume it is inextensible
and so �exible that any force of tension is tangent to it. Consider a portion of the chain of length s between its
minimum point C (where the slope dy

dx vanishes) and a point r to its right ; s is the curvilinear abscissa. At static
equilibrium, the weight and the tensions at each extremity balances ; see �gure 1.
a) Thanks to the force balance, show that dydx “

s
a with a fl T0

λg , g being the gravitational acceleration.

b) Set dydx ” p and derive the following �rst order non-linear ODE :

dp

dx
“

a

1` p2

a
(17)

c) Solve (17) and infer the equation of the catenary y “ ypxq.

13 The brachistochrone curve

The word “brachistochrone” comes from the Greek terms brakhistos, “the shortest”, and chronos, “time”, so the
brachistochrone curve is the curve of fastest descent. A bead slides without friction from a point A down to a
point B under the action of gravity g. Which path ypxq should it follow to arrive in the shortest time ?
a) Let s be the curvilinear abscissa ; see �gure 2. Justify that the velocity is ds

dt “
?
2gy, then show that one has

to minimize the functional

F rys “

ż xb

xa

Lpy, y1q dx where prime stands for derivation w.r.t. x and Lpy, y1q “

d

1` y1pxq2

2gypxq
(18)
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Figure 2: Brachistochrone curve

b) As the Lagrangian L does not depend explicitly on x, derive the Beltrami identity from the Euler-Lagrange
equations of variational calculus :

L´ y1 BL
By1

“ cst (19)

c) Infer a �rst order di�erential equation of degree 2 setting cst “ D ; what is the physical interpretation of
D? One can get a nice parametric solution

`

xpθq, ypθq
˘

thanks to the change of variable y1 “ cot
`

θ
2

˘

. Finding
ypθq is straightforward from the ODE then integrate the chain rule dx

dθ “
dx
dy

dy
dθ to obtain xpθq. After some

trigonometric manipulations, one should recognize the parametrization of a cycloid.

14 Singularities of the hypergeometric equation

Numerous special functions can be expressed in terms of solutions of the hypergeometric equation. Study the
nature of all its singularities :

xp1´ xq y2pxq ` rc´ pa` b` 1qxs y1pxq ´ ab ypxq “ 0, pa, b, cq P R3 (20)

15 Frobenius method 1

P3, exam 2013-11-09. Consider the following di�erential equation:

y2pxq ´ 2x y1pxq ` pE ´ 1q ypxq “ 0, E P R (21)

derived from the quantum mechanical harmonic oscillator.
a) Use Frobenius method to �nd the odd and even solutions for this equation.
b) Determine the values of the energy E for which the series terminate, resulting in polynomials of �nite order.
c) Write down explicitly the polynomials corresponding to the three lowest energies as obtained from your
expansion and give their energies. (The units are arbitrary here.)

16 Frobenius method 2

Inspired by P3, exam 2011-01-05. Consider the following di�erential equation:

xpx` 1q y2pxq ` p1´ xq y1pxq ` ypxq “ 0 (22)

a) Recall Fuchs theorem and �nd one solution in a simple closed form via the Frobenius method.
b) Use the solution found in the previous question to infer a second solution in a series form.
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