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1 For quasi-linear �rst order PDEs

1.1 General theory

Let upx, yq be a function of two independent variables solution of the following :

apx, y, uq
Bu

Bx
` bpx, y, uq

Bu

By
“ cpx, y, uq (1)

with the curve γptq in the space px, y, uq as initial condition.
Note : this initial condition is equivalent to specify the function u and its normal derivative Bu

Bn along a curve Γ
in the plane px, yq.
The solution of equation (1) is a surface S with cartesian equation upx, yq ´ u “ 0 in the space px, y, uq. It is
well-known that a surface Spx, y, uq “ 0 has a normal vector �eld ÝÑ∇ S. Hence

`

Bu
Bx ,

Bu
By ,´1

˘t is normal to S at
every point. Furthermore, we notice :

¨

˝

Bu
Bx
Bu
By

´1

˛

‚¨

¨

˝

apx, y, uq
bpx, y, uq
cpx, y, uq

˛

‚“ 0 (2)

We have just made sure that the vector �eld
`

a, b, c
˘t is tangent to S at every point. Field lines of this vector

�eld will be called characteristic curves. They are determined by :
¨

˝

dx
dy
du

˛

‚ˆ

¨

˝

apx, y, uq
bpx, y, uq
cpx, y, uq

˛

‚“ ~0 ô
dx

a
“
dy

b
“
du

c
(3)

We introduce a parametrization of characteristic curves so that the system (3) becomes :
$

’

&

’

%

dx
ds “ apx, y, uq
dy
ds “ bpx, y, uq
du
ds “ cpx, y, uq

(4)

We still need to distinguish the di�erent characterics within the familly determined by this autonomous closed
system of ODEs. To do it, we use the initial condition γptq. Indeed, when solving the system (4) one gets
integration constants and we �x them such that every characteristics crosses the curve γptq at “time” s “ 0. In
the end, we obtain a complete parametrization of the family of characterics by parameters s and t :

$

’

&

’

%

xps, tq

yps, tq

ups, tq

(5)

Then, provided that it is possible1 to express s and t as functions of x and y, we �nally get upx, yq.
1The jacobian Bpx,yq

Bps,tq
does not vanish.
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Characteristics are completely determined by the vector �eld
`

a, b, c
˘t. The existence of solution upx, yq depends

on the initial condition γptq. It is straightforward to see that there is no solution whenever γptq is along a
characteristics or crosses a characteristics more than one time.
After the initial condition u

`

xptq, yptq
˘

” γptq,

du

dt
“
dx

dt

Bu

Bx
`
dy

dt

Bu

By
(6)

Note that
`

xptq, yptq
˘

is a parametrization of the curve Γ in the plane px, yq.
Moreover, equation (1) holds along this curve by hypothesis. Then partial derivatives of u satis�es the following
linear system :

#

apx, y, uq Bu
Bx ` bpx, y, uq

Bu
By “ cpx, y, uq

dx
dt

Bu
Bx `

dy
dt

Bu
By “

du
dt

(7)

It is solvable if, and only if, the determinant∣∣∣∣apx, y, uq bpx, y, uq
dx
dt

dy
dt

∣∣∣∣ “ apx, y, uq
dy

dt
´ bpx, y, uq

dx

dt
(8)

is non-zero. There are some curves in the plane px, yq such that this determinant vanishes along them :

apx, y, uqdy ´ bpx, y, uqdx “ 0 ô
dx

a
“
dy

b
(9)

We �nd back a part of the system (3). In Sommerfeld’s book, those curves in the plane px, yq are the characteris-
tics. They don’t lie in the same space than the one de�ned above and parametrized by (5). If the initial condition
Γ is one of these curves, then the system (7) is not solvable and there is no solution to the equation (1) as we
have ever predicted. We can actually relate this issue to the question of invertibility of xps, tq and yps, tq. Indeed,
plugging the two �rst equations of (4) in (8) yields :∣∣∣∣dxds dy

ds
dx
dt

dy
dt

∣∣∣∣ ” Bpx, yq

Bps, tq
(10)

which is exactly the jacobian of the transformation.
Very often, equation (9) can be expressed as the di�erential of a function ψ. Then, the cartesian equation of
charactetistics curves in Sommerfeld’s sense is ψpx, yq “ cst.
Roughly speaking when everything goes well, every “initial point” of the curve γptq generates a characteristics
and the collection of these curves gives the surface S that we are looking for.

1.2 Particular cases

Let us consider the case when apx, y, uq and bpx, y, uq only depend on u and cpx, y, uq “ 0, i.e.

apuq
Bu

Bx
` bpuq

Bu

By
“ 0 (11)

Inspired by Arfken (for whom characteristics have the same sense as Sommerfeld), we perform the change of
variables :

#

s “ apuq x` bpuq y

t “ bpuq x´ apuq y
(12)

Keeping in mind that a and b do not depend on x and y, equation (11) becomes :

apuq

ˆ

apuq
Bu

Bs
` bpuq

Bu

Bt

˙

` bpuq

ˆ

bpuq
Bu

Bs
´ apuq

Bu

Bt

˙

“

´

a2puq ` b2puq
¯

Bu

Bs
“ 0 (13)

whose general solution is obviously upx, yq “ fptq “ f
`

bpuq x´ apuq y
˘

, which is an implicit equation.
In this particular case, equation (9) is simple so that we readily �nd the above-mentionned function ψ :

bpuq dx´ apuq dy “ d
`

bpuq x´ apuq y
˘

“ 0 ô bpuq x´ apuq y “ t “ cst (14)
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Thus, the characteristics in Sommerfeld’s sense are the straight lines t “ cst viz. the solution upx, yq is constant
along its characteristics.
There is actually a more general case in which the solution upx, yq is constant along its characteristics : it is
su�cient to require cpx, y, uq “ 0 in equation (1). Indeed, equation of characteristics in the plane px, yq is :

dy

dx
“
bpx, y, uq

apx, y, uq
(15)

Then, divide equation (1) by apx, y, uq to identify this term and eventually obtain :

Bu

Bx
`
dy

dx

Bu

By
”
du

`

x, ypxq
˘

dx
“ 0 (16)

We end this section with two classical examples from physics. First one is the simplest linear wave equation :

c
Bu

Bx
`
Bu

Bt
“ 0 (17)

From our study, we immediately infer the general solution : upx, tq “ fpx ´ ctq where the function f is given
by initial condition upx, 0q “ fpxq. Moreover, the perturbation u propagates with velocity c and without
deformation along parallel straight lines x´ ct “ cst as any wave should do.
Second example is a non-accelerating �uid. The velocity �eld u

`

xptq, t
˘

obeys the following equation :

du

dt
“
Bu

Bt
`
dx

dt

Bu

Bx
“ 0 (18)

However, due to the link between Eulerian and Lagrangian points of vue we identi�e dx
dt ” u

`

xptq, t
˘

. In the
end, we get a quasi-linear equation :

u
Bu

Bx
`
Bu

Bt
“ 0 (19)

The general solution is clearly given by the implicit equation upx, tq “ fpx´ utq where the function f is given
by initial condition upx, 0q “ fpxq. Characteristics are straight lines but their slope now depends on u so that
they are no more parallel : x ´ ut “ cst. It means that a �uid particle with velocity u moves all along a given
characteristic at this velocity u. Subsequently, after a while the fast-moving �uid particles catch the slow-moving
; that occurs at the crossing point of their characteristics. It entails a serious issue of interpretation since the
velocity �eld gets multivalued. In the real world, it leads to the wave breaking. This issue is mathematically
solved by introducing dispersive (Korteveg-De Vries equation) or dissipative (Burgers equation) terms.

2 For hyperbolic PDEs

In this section, we generalize the method of characteristics to a special class of second order PDEs : hyperbolic
equations. Their general form is :

Apx, yq
B2u

Bx2
` 2Bpx, yq

B2u

BxBy
` Cpx, yq

B2u

By2
“ φ

ˆ

u,
Bu

Bx
,
Bu

By
, x, y

˙

with B2 ´AC ą 0 (20)

We follow Sommerfeld’s approach and denote p fl Bu
Bx and q fl Bu

By . Then,
#

dp “ B
2u

Bx2 dx`
B
2u

BxBy dy

dq “ B
2u

BxBy dx`
B
2u

By2 dy
(21)

Equations (20) and (21) provide a linear system for second order derivatives of u. Its determinant is :

∆ fl

∣∣∣∣∣∣
Apx, yq 2Bpx, yq Cpx, yq
dx dy 0
0 dx dy

∣∣∣∣∣∣ “ Apx, yq dy2 ´ 2Bpx, yq dxdy ` Cpx, yq dx2 (22)
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We remind that the initial condition can be seen as a curve Γ in the plane px, yq along which the function u
and its normal derivative Bu

Bn are speci�ed. Hence, the �rst order partial derivatives p and q are known along Γ.
Beside, we can infer second order derivatives along Γ by solving the above-mentionned linear system and that
is possible provided that ∆ ‰ 0.
It is interesting to notice that we can pursue the procedure and establish another linear system for the third
order derivatives of u and so on. Amazingly, all these linear systems have the same determinant ∆. And if it
does not vanish, one can compute all partial derivatives of u at any order along Γ. Then Sommerfeld proposed
an unusual approach of solving a PDE. The solution of equation (20) is obtained in the neighbourhood of Γ by
a Taylor expansion of u using partial derivatives that we have just got.
At this stage, Sommerfeld de�nes characteristics as the curves of the plane px, yq along which ∆ “ 0. It yields
the equation of special conic :

Apx, yq dy2 ´ 2Bpx, yq dxdy ` Cpx, yq dx2 “ 0 with B2 ´AC ą 0 (23)

In analytic geometry, one can show that there is a frame where equation (23) has the following form :
ˆ

dX

αpX,Y q

˙2

´

ˆ

dY

βpX,Y q

˙2

“ 0 ð

#

dX
αpX,Y q

´ dY
βpX,Y q

“ 0
dX

αpX,Y q
` dY

βpX,Y q
“ 0

(24)

In the end, we have not one but two families of characteristic curves. As previously, very often their cartesian
equations can be put on the form ϕpx, yq “ cst and ψpx, yq “ cst.
We generalize the geometric condition of solvability of the �rst-order case. Equation (20) has a solution if we
are able to calculate all partial derivatives of u at any order along Γ so as to perform the Taylor expansion, that
is if ∆ ‰ 0, that is if the initial condition Γ is not along a characteristics.
In Sommerfeld’s book, it is shown that thanks to the smart change of variables

#

ξ “ ϕpx, yq ` ψpx, yq

η “ ϕpx, yq ´ ψpx, yq
(25)

equation (20) has the normal form :

B2u

Bξ2
´
B2u

Bη2
“

ˆ

B

Bξ
´
B

Bη

˙ˆ

B

Bξ
`
B

Bη

˙

upx, yq “ φ̃

ˆ

u,
Bu

Bξ
,
Bu

Bη
, ξ, η

˙

(26)

This form justi�es why equation (20) is called hyperbolic. We notice that it is equivalent to the following system
of �rst order quasi-linear PDEs :

#

`

B
Bξ `

B
Bη

˘

upx, yq “ vpx, yq
`

B
Bξ ´

B
Bη

˘

vpx, yq “ φ̃
`

u, Bu
Bξ ,

Bu
Bη , ξ, η

˘ (27)

It explains why there are two families of characteristics.
We �nally apply this method to D’Alembert wave equation :

c2
B2u

Bx2
´
B2u

Bt2
“ 0 ô

#

`

c B
Bx `

B
Bt

˘

upx, tq “ vpx, tq
`

c B
Bx ´

B
Bt

˘

vpx, tq “ 0
(28)

First, it is clear that vpx, tq “ hpx` ctq so that we have to solve

c
Bu

Bx
`
Bu

Bt
“ hpx` ctq (29)

When this equation is homogeneous, we have already seen that the solution is of the form fpx ´ ctq. But the
inhomogenous part is a function with argument x ` ct, so we have to keep the homogenous solution and add
another function with argument x` ct. It is D’Alembert solution :

upx, tq “ fpx´ ctq ` gpx` ctq (30)

The function g is the particular solution of equation (??) which inhomogenous and subsequently it is complelety
determined by h. However, since h is an arbitrary function g is in the end also an arbitrary function.
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