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CHAPTER 19

FOURIER SERIES

Periodic phenomena involving waves, rotating machines (harmonic motion), or other
repetitive driving forces are described by periodic functions. Fourier series are a basic
tool for solving ordinary differential equations (ODEs) and partial differential equations
(PDEs) with periodic boundary conditions. Fourier integrals for nonperiodic phenomena
are developed in Chapter 20. The common name for the field is Fourier analysis.

19.1 GENERAL PROPERTIES

A Fourier series is defined as an expansion of a function or representation of a function in
a series of sines and cosines, such as

f (x) = a

0

2

+
1X

n=1

a

n

cos nx +
1X

n=1

b

n

sin nx . (19.1)

The coefficients a

0

,a

n

, and b

n

are related to f (x) by definite integrals:

a

n

= 1

⇡

2⇡Z

0

f (s) cos ns ds, n = 0,1,2, . . . , (19.2)

b

n

= 1

⇡

2⇡Z

0

f (s) sin ns ds, n = 1,2, . . . , (19.3)

which are subject to the requirement that the integrals exist. Note that a

0

is singled out for
special treatment by the inclusion of the factor 1

2

. This is done so that Eq. (19.2) will apply
to all a

n

, n = 0 as well as n > 0.
The conditions imposed on f (x) to make Eq. (19.1) valid are that f (x) have only a

finite number of finite discontinuities and only a finite number of extreme values (max-
ima and minima) in the interval [0,2⇡ ].1 Functions satisfying these conditions may be

1These conditions are sufficient but not necessary.
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936 Chapter 19 Fourier Series

called piecewise regular. The conditions themselves are known as the Dirichlet condi-
tions. Although there are some functions that do not obey these conditions, they can be
considered pathological for purposes of Fourier expansions. In the vast majority of physi-
cal problems involving a Fourier series, the Dirichlet conditions will be satisfied.

Expressing cos nx and sin nx in exponential form, we may rewrite Eq. (19.1) as

f (x) =
1X

n=�1
c

n

e

inx , (19.4)

in which

c

n

= 1

2

(a
n

� ib

n

), c�n

= 1

2
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n

+ ib

n

), n > 0, (19.5)

and

c

0

= 1

2

a

0

. (19.6)

Sturm-Liouville Theory

The ODE

�y

00(x) = �y(x)

on the interval [0,2⇡ ] with boundary conditions y(0) = y(2⇡), y

0(0) = y

0(2⇡) is a
Sturm-Liouville problem, and these boundary conditions make it Hermitian. Therefore
its eigenfunctions, either cos nx (n = 0, 1, . . .) and sin nx (n = 1, 2, . . .), or exp(inx)

(n = . . . ,�1, 0, 1, . . .), form a complete set, with eigenfunctions of different eigenval-
ues orthogonal. Since the eigenfunctions have respective values n

2, those of different |n|
will automatically be orthogonal, while those of the same |n| can be orthogonalized if
necessary. Defining the scalar product for this problem as

h f |gi =
2⇡Z

0

f

⇤(x)g(x)dx,

it is easy to check that h e

inx | e

�inx i = 0 for n 6= 0, and if we write cos nx and sin nx

as complex exponentials, it is also easy to see that h sin nx | cos nxi = 0. To make the
eigenfunctions normalized, a simple approach is to note that the average value of sin

2

nx

or cos

2

nx over an integer number of oscillations is 1/2 (again for n 6= 0), so
2⇡Z

0

sin

2

nx dx =
2⇡Z

0

cos

2

nx dx = ⇡ (n 6= 0),

and h e

inx | e

inx i = 2⇡ .
The relationships identified above indicate that the eigenfunctions '

n

= e

inx/
p

2⇡ , (n =
. . . ,�1, 0, 1, . . .) form an orthonormal set, as do

'
0

= 1p
2⇡

, '
n

= cos nxp
⇡

, '�n

= sin nxp
⇡

, (n = 1, 2, . . .),
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so expansions in these functions have the forms given in Eqs. (19.1) to (19.3) or Eqs. (19.4)
to (19.6). Since we know that the eigenfunctions of a Sturm-Liouville operator form a
complete set, we know that our Fourier-series expansions of L

2 functions will at least
converge in the mean.

Discontinuous Functions

There are significant differences between the behavior of Fourier- and power-series
expansions. A power series is essentially an expansion about a point, using only infor-
mation from that point about the function to be expanded (including, of course, the values
of its derivatives). We already know that such expansions only converge within a radius of
convergence defined by the position of the nearest singularity. However, a Fourier series
(or any expansion in orthogonal functions) uses information from the entire expansion
interval, and therefore can describe functions that have “nonpathological” singularities
within that interval. However, we also know that the representation of a function by an
orthogonal expansion is only guaranteed to converge in the mean. This feature comes into
play for the expansion of functions with discontinuities, where there is no unique value to
which the expansion must converge. However, for Fourier series, it can be shown that if a
function f (x) satisfying the Dirichlet conditions is discontinuous at a point x

0

, its Fourier
series evaluated at that point will be the arithmetic average of the limits of the left and right
approaches:

fFourier series(x

0

) = lim

"!0


f (x

0

+ ") + f (x

0

� ")

2

�
. (19.7)

For proof of Eq. (19.7), see Jeffreys and Jeffreys or Carslaw (Additional Readings). It
can also be shown that if the function to be expanded is continuous but has a finite dis-
continuity in its first derivative, its Fourier series will then exhibit uniform convergence
(see Churchill, Additional Readings). These features make Fourier expansions useful for
functions with a variety of types of discontinuities.

Example 19.1.1 SAWTOOTH WAVE

An idea of the convergence of a Fourier series and the error in using only a finite number
of terms in the series may be obtained by considering the expansion of

f (x) =
(

x, 0  x < ⇡,

x � 2⇡, ⇡ < x  2⇡.
(19.8)

This is a sawtooth wave form, as shown in Fig. 19.1. Using Eqs. (19.2) and (19.3), we find
the expansion to be

f (x) = 2


sin x � sin 2x

2

+ sin 3x

3

� · · · + (�1)n+1

sin nx

n

+ · · ·
�
. (19.9)

Figure 19.2 shows f (x) for 0  x < 2⇡ for the sum of 4, 6, and 10 terms of the series.
Three features deserve comment.
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FIGURE 19.1 Sawtooth wave form.
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FIGURE 19.2 Expansion of sawtooth wave form, range [0,2⇡ ].

1. There is a steady increase in the accuracy of the representation as the number of terms
included is increased.

2. At x = ⇡ , where f (x) changes discontinuously from +⇡ to �⇡ , all the curves pass
through the average of these two values, namely f (⇡) = 0.

3. In the vicinity of the discontinuity at x = ⇡ , there is an overshoot that persists and
shows no sign of diminishing.

As a matter of incidental interest, setting x = ⇡/2 in Eq. (19.9) leads to

f

⇣⇡

2

⌘
= ⇡

2

= 2


1 � 0 � 1

3

� 0 + 1

5

� 0 � 1

7

+ · · ·
�
,
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thereby yielding an alternate derivation of Leibniz’s formula for ⇡/4, which was obtained
by another method in Exercise 1.3.2. ⌅

Periodic Functions

Fourier series are used extensively to represent periodic functions, especially wave forms
for signal processing. The form of the series is inherently periodic; the expansions in
Eqs. (19.1) and (19.4) are periodic with period 2⇡ , with sin nx , cos nx , and exp(inx),
each completing n cycles of oscillation in that interval. Thus, while the coefficients in a
Fourier expansion are determined from an interval of length 2⇡ , the expansion itself (if
the function involved is actually periodic) applies for an indefinite range of x . The period-
icity also means that the interval used for determining the coefficients need not be [0,2⇡ ]
but may be any other interval of that length. Often one encounters situations in which the
formulas in Eqs. (19.2) and (19.3) are changed so that their integrations run between �⇡

and ⇡ . In fact, it would have been natural to have restated Example 19.1.1 as dealing with
f (x) = x , for �⇡ < x < ⇡ . This of course does not remove the discontinuity or change
the form of the Fourier series. The discontinuity has simply been moved to the ends of the
interval in x .

In actual situations, the natural interval for a Fourier expansion will be the wavelength
of our wave form, so it may make sense to redefine our Fourier series so that Eq. (19.1)
becomes

f (x) = a

0

2

+
1X

n=1

a

n

cos

n⇡x

L

+
1X

n=1

b

n

sin

n⇡x

L

, (19.10)

with

a

n

= 1

L

LZ

�L

f (s) cos

n⇡s

L

ds, n = 0,1,2, . . . , (19.11)

b

n

= 1

L

LZ

�L

f (s) sin

n⇡s

L

ds, n = 1,2, . . . . (19.12)

In many problems the x dependence of a Fourier expansion describes the spatial depen-
dence of a wave distribution that is moving (say, toward +x) with phase velocity v. This
means that in place of x we need to write x � vt , and this substitution carries the implicit
assumption that the wave form retains the same shape as it moves forward.2 The individual
terms of the Fourier expansion can now be given an interesting interpretation. Taking as
an example the term

cos

h
n⇡

L

(x � vt)
i
,

2For waves in physical media, this assumption is by no means always true, as it depends on the time-dependent response
properties of the medium.
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we note that it describes a contribution of wavelength 2L/n (when x increases this much
at constant t , the argument of the cosine function increases by 2⇡ ). We also note that
the period of the oscillation (the change in t at constant x for one cycle of the cosine
function) is T = 2L/nv, corresponding to the oscillation frequency ⌫ = nv/2L . If we call
the frequency for n = 1 the fundamental frequency and denote it ⌫

0

= v/2L , we identify
the terms for each n > 1 in the Fourier series as describing overtones, or harmonics of the
fundamental frequency, with individual frequencies n⌫

0

.
A typical problem for which Fourier analysis is suitable is one in which a particle under-

going oscillatory motion is subject to a periodic driving force. If the problem is described
by a linear ODE, we may make a Fourier expansion of the driving force and solve for each
harmonic individually. This makes the Fourier expansion a practical tool as well as a nice
analytical device. We stress, however, that its utility depends crucially on the linearity of
our problem; in nonlinear problems an overall solution is not a superposition of component
solutions.

As suggested earlier, we have proceeded on the assumption that v, the phase velocity, is
the same for all terms of the Fourier series. We now see that this assumption corresponds to
the notion that the medium supporting the wave motion can respond equally well to forces
at all frequencies. If, for example, the medium consists of particles too massive to respond
quickly at high frequency, those components of the wave form will become attenuated and
damped out of a propagating wave. Conversely, if the system contains components that
resonate at certain frequencies, the response at those frequencies will be enhanced. Fourier
expansions give physicists (and engineers) a powerful tool for analyzing wave forms and
for designing media (e.g., circuits) that yield desired behaviors.

One question that is sometimes raised is: “Were the harmonics there all along, or were
they created by our Fourier analysis?” One answer compares the functional resolution into
harmonics with the resolution of a vector into rectangular components. The components
may have been present, in the sense that they may be isolated and observed, but the reso-
lution is certainly not unique. Hence many authors prefer to say that the harmonics were
created by our choice of expansion. Other expansions in other sets of orthogonal functions
would produce a different decomposition. For further discussion, we refer to a series of
notes and letters in the American Journal of Physics.3

What if a function is not periodic? We can still obtain its Fourier expansion, but (a) the
results will of course depend on how the expansion interval is chosen (both as to posi-
tion and length), and (b) because no information outside the expansion interval was used
in obtaining the expansion, we can have no realistic expectation that the expansion will
produce there a reasonable approximation to our function.

Symmetry

Suppose we have a function f (x) that is either an even or an odd function of x . If it is
even, then its Fourier expansion cannot contain any odd terms (since all terms are linearly
independent, no odd term can be removed by retaining others). Our expansion, developed

3B. L. Robinson, Concerning frequencies resulting from distortion. Am. J. Phys. 21: 391 (1953); F. W. Van Name, Jr., Concern-
ing frequencies resulting from distortion. Am J. Phys. 22: 94 (1954).
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for the interval [�⇡,⇡ ], then must take the form

f (x) = a

0

2

+
1X

n=1

a

n

cos nx, f (x) even. (19.13)

On the other hand, if f (x) is odd, we must have

f (x) =
1X

n=1

b

n

sin nx, f (x) odd. (19.14)

In both cases, when determining the coefficients we only need consider the interval [0,⇡],
referring to Eqs. (19.2) and (19.3), as the adjoining interval of length ⇡ will make a con-
tribution identical to that considered. The series in Eqs. (19.13) and (19.14) are sometimes
called Fourier cosine and Fourier sine series.

If we have a function defined on the interval [0,⇡ ], we can represent it either as a Fourier
sine series or as a Fourier cosine series (or, if it has no interfering singularities, as a power
series), with similar results on the interval of definition. However, the results outside that
interval may differ markedly because these expansions carry different assumptions as to
symmetry and periodicity.

Example 19.1.2 DIFFERENT EXPANSIONS OF f (x) = x

We consider three possible ways to expand f (x) = x based on its values on the range
[0,⇡]:

• Its power-series expansion will (obviously) have the power-series expansion f (x) = x .

• Comparing with Example 19.1.1, its Fourier sine series will have the form given in
Eq. (19.9).

• Its Fourier cosine series will have coefficients determined from

a

n

= 2

⇡

⇡Z

0

x cos nx dx =

8
>>><

>>>:

⇡, n = 0,

� 4

n

2⇡
, n = 1, 3, 5, . . . ,

0, n = 2, 4, 6, . . . ,

corresponding to the expansion

f (x) = ⇡

2

�
1X

n=0

4

⇡

cos(2n + 1)x

(2n + 1)2

.

All three of these expansions represent f (x) well in the range of definition, [0,⇡], but their
behavior becomes strikingly different outside that range. We compare the three expansions
for a range larger than [0,⇡] in Fig. 19.3. ⌅
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FIGURE 19.3 Expansions of f (x) = x on [0,⇡]: (a) power series, (b) Fourier sine series,
(c) Fourier cosine series.

Operations on Fourier Series

Term-by-term integration of the series

f (x) = a

0

2

+
1X

n=1

a

n

cos nx +
1X

n=1

b

n

sin nx (19.15)

yields
xZ

x

0

f (x) dx = a

0

x

2

����
x

x

0

+
1X

n=1

a

n

n

sin nx

����
x

x

0

�
1X

n=1

b

n

n

cos nx

����
x

x

0

. (19.16)

Clearly, the effect of integration is to place an additional power of n in the denomina-
tor of each coefficient. This results in more rapid convergence than before. Consequently,
a convergent Fourier series may always be integrated term by term, the resulting series
converging uniformly to the integral of the original function. Indeed, term-by-term inte-
gration may be valid even if the original series, Eq. (19.15), is not itself convergent. The
function f (x) need only be integrable. A discussion will be found in Jeffreys and Jeffreys
(Additional Readings).

Strictly speaking, Eq. (19.16) may not be a Fourier series; that is, if a

0

6= 0, there will
be a term 1

2

a

0

x . However,
xZ

x

0

f (x)dx � 1

2

a

0

x (19.17)

will still be a Fourier series.
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The situation regarding differentiation is quite different from that of integration. Here
the word is caution. Consider the series for

f (x) = x, �⇡ < x < ⇡. (19.18)

We readily found (in Example 19.1.1) that the Fourier series is

x = 2

1X

n=1

(�1)n+1

sin nx

n

, �⇡ < x < ⇡. (19.19)

Differentiating term by term, we obtain

1 = 2

1X

n=1

(�1)n+1

cos nx, (19.20)

which is not convergent. Warning: Check your derivative for convergence.
For the triangular wave shown in Fig. 19.4 (and treated in Exercise 19.2.9), the Fourier

expansion is

f (x) = ⇡

2

� 4

⇡

1X

n=1,odd

cos nx

n

2

, (19.21)

which converges more rapidly than the expansion of Eq. (19.19); in fact, it exhibits uniform
convergence. Differentiating term by term we get

f

0(x) = 4

⇡

1X

n=1,odd

sin nx

n

, (19.22)

which is the Fourier expansion of a square wave,

f

0(x) =
(

1, 0 < x < ⇡,

�1, �⇡ < x < 0.
(19.23)

Inspection of Fig. 19.3 verifies that this is indeed the derivative of our triangular wave.

f (x)

x
π 2π 3π 4π

π

− 4π −3π −2π −π

FIGURE 19.4 Triangular wave.
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• As the inverse of integration, the operation of differentiation has placed an additional
factor n in the numerator of each term. This reduces the rate of convergence and may,
as in the first case mentioned, render the differentiated series divergent.

• In general, term-by-term differentiation is permissible if the series to be differentiated
is uniformly convergent.

Summing Fourier Series

Often the most efficient way to identify the function represented by a Fourier series is
simply to identify the expansion in a table. But if it is our desire to sum the series ourselves,
a useful approach is to replace the trigonometric functions by their complex exponential
forms, and then identifying the Fourier series as one or more power series in e

±i x .

Example 19.1.3 SUMMATION OF A FOURIER SERIES

Consider the series
P1

n=1

(1/n) cos nx, x 2 (0,2⇡). Since this series is only conditionally
convergent (and diverges at x = 0), we take

1X

n=1

cos nx

n

= lim

r!1

1X

n=1

r

n

cos nx

n

,

absolutely convergent for |r | < 1. Our procedure is to try forming power series by trans-
forming the trigonometric functions into exponential form:

1X

n=1

r

n

cos nx

n

= 1

2

1X

n=1

r

n

e

inx

n

+ 1

2

1X

n=1

r

n

e

�inx

n

.

Now, these power series may be identified as Maclaurin expansions of � ln(1 � z), with
z = re

ix or re

�i x . From Eq. (1.97),
1X

n=1

r

n

cos nx

n

= �1

2

[ln(1 � re

ix ) + ln(1 � re

�i x )]

= � ln[(1 + r

2) � 2r cos x]1/2.

Setting r = 1, we see that
1X

n=1

cos nx

n

= � ln(2 � 2 cos x)1/2

= � ln

⇣
2 sin

x

2

⌘
, (0 < x < 2⇡). (19.24)

Both sides of this expression diverge as x ! 0 and as x ! 2⇡ .4 ⌅

4Note that the range of validity of Eq. (19.24) may be shifted to [�⇡,⇡ ] (excluding x = 0) if we replace x by |x | on the
right-hand side.
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