Total amount of points: 6 p .

1 The Basel problem

The purpose of this exercise is to calculate the sum of the following (converging) series by different methods:

$$
\begin{equation*}
S=\sum_{n=1}^{+\infty} \frac{1}{n^{2}} \tag{1}
\end{equation*}
$$

(a) (1p) As seen in class, apply the residue theorem toan appropriate function with an appropriate contour.

You can construct a 2π-periodic function f over \mathbb{R} by defining it on a period, for instance the interval $]-\pi, \pi]$. Then you are allowed to expand f in Fourier series.
(b) (1p) Take $f(x)=x$ on $]-\pi, \pi]$ and apply Parseval's theorem to find S.
(c) (1p) Take $f(x)=x^{2}$ on] $\left.-\pi, \pi\right]$ and apply Dirichlet's theorem in a particular point to get S.

2 Retarded potentials

Let $\square=\frac{1}{c^{2}} \partial_{t}^{2}-\Delta$ be the D'Alembertian in 3D, $V(\boldsymbol{r}, t)$ the electric potential, $\boldsymbol{A}(\boldsymbol{r}, t)$ the magnetic vector potential, $\rho(\boldsymbol{r}, t)$ the charge density and $\boldsymbol{j}(\boldsymbol{r}, t)$ the electric current density. One can show that Maxwell's equations in the Loreny gauge are equivalent to wave equations with source terms:

$$
\begin{align*}
& \frac{1}{c^{2}} \frac{\partial V}{\partial t}+\nabla \cdot \boldsymbol{A}=0 \tag{2}\\
& \square \boldsymbol{A}=\mu_{0} \boldsymbol{j} \tag{3}\\
& \square V=\frac{\rho}{\epsilon_{0}} \tag{4}
\end{align*}
$$

(a) (2p) Calculate the retarded Green's function $G\left(\boldsymbol{r}, t ; \boldsymbol{r}^{\prime}, t^{\prime}\right)$ of the D'Alembertian using a space-time Fourier transform defined as follows for functions $f \in L^{2}\left(\mathbb{R}^{4}\right)$:

$$
\begin{align*}
& \widehat{f}(\boldsymbol{k}, \omega)=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{4}} f(\boldsymbol{r}, t) e^{-i(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)} d^{3} r d t \tag{5}\\
& f(\boldsymbol{r}, t)=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{4}} \widehat{f}(\boldsymbol{k}, \omega) e^{i(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)} d^{3} k d \omega \tag{6}
\end{align*}
$$

Hints:- Actually $G\left(\boldsymbol{r}, t ; \boldsymbol{r}^{\prime}, t^{\prime}\right)=G\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}, t-t^{\prime}\right)$, moreover one can take $\boldsymbol{r}^{\prime}=\mathbf{0}$ and $t^{\prime}=0$ during the calculation. Justify this.

- When inverting the Fourier transform in time, choose your contour so that $G(\boldsymbol{r}, t)=0$ for $t \leq 0$. Justify this choice.

[^0](b) (1p) Infer the so-called retarded potentials:
\[

$$
\begin{align*}
& V(\boldsymbol{r}, t)=\frac{1}{4 \pi \epsilon_{0}} \int_{\mathbb{R}^{3}} \frac{\rho\left(\boldsymbol{r}^{\prime}, t-\frac{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}{c}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} d^{3} r^{\prime} \tag{7}\\
& \boldsymbol{A}(\boldsymbol{r}, t)=\frac{\mu_{0}}{4 \pi} \int_{\mathbb{R}^{3}} \frac{\boldsymbol{j}\left(\boldsymbol{r}^{\prime}, t-\frac{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}{c}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} d^{3} r^{\prime} \tag{8}
\end{align*}
$$
\]

[^0]: ${ }^{1}$ Note that the name is spelled correctly, this gauge is due to Lorenz, the transformations are due to Lorentz.
 ${ }^{2}$ Fourier transformation is an isomorphism only on Schwartz spaces and by a subtle extension to L^{2} spaces, however the Fourier inversion formula also holds if the function and its Fourier transform both belong to an L^{1} space. In a nutshell, be always careful when inverting a Fourier transform!

