
Mathematical Methods for Physicists, FK7048, fall 2018
Exercise sheet 7, Submit exercise 7 and exercise 8 before 25th October

Total amount of points: 13 p + 3 bp.

1 Integration of Bessel functions

Let us define the following sequence for n ∈ N:

In =

∫ +∞

0

Jn(x)dx (1)

where the Jn(x) are Bessel functions of the first kind.

(a) (0.5p) Give the asymptotic expression of Jn(x) at x = 0 and at infinity. You don’t need to derive
them, simply refer to a formula of the book.

(b) (1p) Using a recurrence relation (don’t prove it, simply give the reference) and the result of the
previous question, to show that:

I1 = −
[
J0(x)

]+∞
0

= 1 (2)

(c) (0.5p) Thanks to a recursion relation (don’t prove it, simply give the reference), show that ∀n ∈
N?, In−1 = In+1.

(d) (1.5p) Compute I0 and conclude.

Hint: Use the complex integral representation of J0 and a proper integral form of the Dirac
distribution. If you use a particular theorem in your calculation, you should state this explicitly.

2 Plateau-Rayleigh instability

Figure 1: Perturbation of a cylindrical column of fluid

The principle of an instability is simple: one has an equilibrium state, one perturbs it and wants to study
the evolution of this perturbation. Assuming the perturbation is small, one can linearise the equations
describing the dynamics and look for solutions proportional to ei(kx−ωt) where k ∈ R is the wave number
and ω ∈ C is the angular frequency. The result of the analysis is a function ω(k) called dispersion
relation. If ω is real, one has a travelling mode. If ω is imaginary, one has a growing or decaying mode.
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Consider an infinitely long cylindrical column of fluid of density ρ at equilibrium with radius R0. We
neglect gravity so according to hydrostatics equation (cf. sheet 1, ex 1), the pressure is constant in the
fluid. Let us denote it p0 and assume that the atmospheric pressure is zero. Then the Young-Laplace
law yields p0 = σ

R0
where σ is the surface tension. One perturbs the surface of the cylinder which now

has a radius:
R(z, t) = R0 + ε ei(kz−ωt) with ε� R0 . (3)

The pressure in the fluid is now given by p(r, z, t) = p0 + p̃(r, z, t) and there is a velocity field ũ(r, z, t)
describing the velocity of the perturbation.

The cylindrical symmetry is preserved so that these fields do not depend on the azimuth θ. The linearised
Euler and continuity equations in cylindrical coordinates are:

∂ũr
∂t

= −1

ρ

∂p̃

∂r
(4)

∂ũz
∂t

= −1

ρ

∂p̃

∂z
(5)

∂ũr
∂r

+
ũr
r

+
∂ũz
∂z

= 0 (6)

We are interested in the stability of a Fourier mode k.

(a) (0.5p) Look for solutions of the form:

ũr(r, z, t) = R(r) ei(kz−ωt) (7)

ũz(r, z, t) = Z(r) ei(kz−ωt) (8)

p̃(r, z, t) = P (r) ei(kz−ωt) (9)

and rewrite the equations in terms of R(r), Z(r), and P (r).

(b) (1p) Eliminate Z(r) and P (r) in order to obtain the following 2nd order linear ODE for R(r):

r2
d2R

dr2
+ r

dR

dr
−
(
1 + k2r2

)
R(r) = 0 (10)

(c) (1p) Equation 10 has got striking similarity with the bessel differential equation and is knows as
modified bessel equatoin. It differs from the original bessel equation only in the sign of k2r2,
but this small change is sufficient to alter the nature of the solution. The solution of this equation
is not oscilatory but exponential in nature.
Further, it can also be noticed that we can get solution to this equation by substituting k → ik,
which shows that if P (kr) is a solution to the bessel ODE, then P (ikr) must be a solution of the
modified bessel equation. So in general, we can define two linearly independent solution as Iν(ikr)
and Kν(ikr) for the equation given below:

r2
d2R

dr2
+ r

dR

dr
−
(
ν + k2r2

)
R(r) = 0 (11)

Where Iν(x) = i−νJν(ix) is the solution of first kind. The prefactor of i−ν should be noticed to
make the solution real for x ∈ R. Though the second solution Kν(x) can be described as shown
below for a non-integer ν:

Kν(x) =
π

2
iν+1[Jν(ix) + iYν(ix)] (12)

If ν is integer the equation 12 is not defined, but then the second solution can be defined as
Kν(x) = limα→ν Kα(x).

Given the information above and for an integer ν = n, first write down the series expression of
In(x) and also show that

Kn(x) = lim
ν→n

π

2

I−ν(x)− Iν(x)

sin(νπ)
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(d) (1p) Now let’s try to get the recurrence relation for the problem. For bessel functions we already
have

Jν−1(x) + Jν+1(x) =
2ν

x
Jν(x) (13)

Jν−1(x)− Jν+1(x) = 2J ′ν(x) (14)

Get the similar relation for Iν(x) also.

(e) (1.5p) With the expression stated above, write down the general solution of equation 10. Show that
one of the two linearly independent solutions diverges at r = 0; remove it so that your solution has
the form R(r) = C f(r), where the constant C ∈ C will be determined below. Using the property
of the special function f , infer P (r). (Hint: Use L’Hospital’s rule to calculate the limtis if you need
to.)

We now the apply boundary conditions.

(f) (1p) The kinematic condition at the fluid/air interface is ∂R
∂t = ũr(R0, z, t), ∀(z, t) ∈ R× R+. Use

it to infer the constant C.

(g) Ultra bonus question: (2p) The dynamic condition is given by the general form of Young-Laplace
law: p(R, z, t) = σ

(
1
R1

+ 1
R2

)
where R1 and R2 are the principal radii of curvature of the deformed

cylinder. Justify that:

p(R0, z, t) =
σ

R0
− εσ

R2
0

(
1− k2R2

0

)
ei(kz−ωt) for ε� R0 (15)

(h) (1p) Combining (15) with your result of question (d), find the dispersion relation:

ω2 =
kσ

ρR2
0

g(kR0)
(
k2R2

0 − 1
)

where g is a ratio of special functions. (16)

(i) (1p) Bonus question: Discuss the stability of Fourier modes. When do you observe waves? When
and how does the perturbation grow? Plot the growth rate |=(ω)| as a function of k. Note that
strictly speaking, we chose the sign of the imaginary part of ω when we took the square root, so
we assumed that the amplitude of the mode does not decay, but grows.

3 Playing with Legendre polynomials

Let Pn be the Legendre polynomials for n ∈ N.

(a) (1p) We define Q(x) = 10x3 − 3x2 − 6x+ 1 and the sequence:

∀n ∈ N, In =

∫ 1

−1
Q(x)Pn(x)dx (17)

Show that In = 0, ∀n ∈ N\{2, 3} and calculate I2 and I3.

(b) (1.5p) Show the following relation :∫ 1

−1
xnPn(x)dx =

2n!

(2n+ 1)!!
(18)

Hint: Integrate Rodrigues’ formula by parts until you recognize a beta function.
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