Total amount of points: 13 p , and 1 bonus points (1 bp).

1 Reduction of order

(2p) For a linear ODE of any order, if you know one solution y_{1} then you can reduce the order of the ODE by performing the substitution $y=y_{1} u$. Do this for a general 2nd order ODE:

$$
\begin{equation*}
y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x)=0 \tag{1}
\end{equation*}
$$

Solve the equation that you get for u. You should eventually find back the integral expression seen in class of the second solution generated from the first.

2 A scale invariant equation

An ODE is said to be scale invariant if there exists a $p \in \mathbb{R}$ such that the transformation $(x \rightarrow a x ; y \rightarrow$ $a^{p} y$) leaves the ODE unchanged. This is a generalization of isobaric equations (which are 1st order ODEs). For a scale invariant ODE, one can perform the transformation $y(x)=x^{p} u(x)$ to obtain an ODE for $u(x)$ which is, by construction, equidimensional in x. That is, an equation that is invariant under the transformation $x \rightarrow a x$. It is known that an equidimensional equation can be transformed into an autonomous equation for $u(t)$ thanks to the change of variable $x=e^{t}$. We remind that, by definition, an autonomous ODE does not depend explicitly on the independent variable (here t). This means that it is possible to reduce its order by setting $w(u)=u^{\prime}(t)$. This yields a simpler ODE for $w(u)$, that does not explicitly depend on t.
(a) (4p) Apply this recipe the following scale invariant equation:

$$
\begin{equation*}
x y^{\prime \prime}(x)+(2-x y(x)) y^{\prime}(x)=y^{2}(x) \tag{2}
\end{equation*}
$$

to find the differential equation for $w(u)$, namely $w w^{\prime}-w=u w$.
(b) (1bp) Perform the integrals, to show that the general solution $y(x)$ can be written as

$$
y(x)=\frac{c_{1}}{x} \tan \left[\left(\frac{c_{1}}{2} \ln x+c_{2}\right)\right]-\frac{1}{x} .
$$

3 Equivalence between 2nd order linear ODEs and Riccati equations

Any 2nd order linear ODE is equivalent to a Riccati equation. We are going to use this fact to solve the following equation:

$$
\begin{equation*}
y^{\prime \prime}(x)+2 x y^{\prime}(x)+(2 x+1) y(x)=0 . \tag{3}
\end{equation*}
$$

(a) (1 p) Perform the transformation $y(x)=e^{u(x)}$ and show that $v(x)=u^{\prime}(x)$ satisfies a Riccati equation.
(b) (1 p) Look for a particular solution of this Riccati equation which has the simple form $v_{0}(x)=$ $a x+b, \quad(a, b) \in \mathbb{C}^{2}$.
(c) (1 p) Substitute $v(x)=w(x)+v_{0}(x)$ in the Riccati equation. You should recognize the kind of equation that you get for $w(x)$. Apply the trick seen in class to transform this last equation into a 1st order linear non homogeneous ODE.
(d) (1p) Solve this non homogeneous ODE by the method of the integrating factor. Write your solution in terms of the function erfi $(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{t^{2}} d t$. One can now write the solution for (3) as an integral expression, but you do not have to do this.

4 Nuclear disintegration

(3p) Consider N_{0} unstable nuclei of type A that disintegrates into nuclei of type B with a rate λ_{A}. Nuclei of type B are themselves unstable and disintergrate into nuclei of type C with a rate λ_{B}. The dynamics of the reaction is governed by the following differential equations:

$$
\left\{\begin{array}{l}
\frac{d N_{A}}{d t}=-\lambda_{A} N_{A} \tag{4}\\
\frac{d N_{B}}{d t}=-\lambda_{B} N_{B}+\lambda_{A} N_{A}
\end{array}\right.
$$

Find the number $N_{B}(t)$ of nuclei of type B at time t using an integrating factor.

