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Online supplementary information 

Governing Equations 

For the viscous flow, we assume that the liquid thickness is small compared to the film length (𝐻0 ≪ 𝐿), 
and by using the lubrication approximation we obtain: 
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where 𝑝 is the pressure in the liquid, 𝑣𝑥 is the flow velocity in the x-direction, and 𝜂 is the liquid 
viscosity; the effect of gravity as a body force is ignored. The viscous shear stress in the liquid is: 
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At the top surface of the liquid layer (𝑧 = 𝐻) a shear stress is transferred to the elastic film: 

 
𝑇 = 𝜂

𝜕𝑣𝑥
𝜕𝑧 �𝑧=𝐻

 (S3) 

At the bottom of the liquid layer, we assume no-slip at the liquid/rubber interface and hence have the 
boundary condition: 

 
xv xε=   at 𝑧 = 0 (S4) 

where ε  is the strain rate of the rubber contraction, with 0ε <  for compression. The velocity is set to 
be zero at 𝑥 = 0 (center of the film) to eliminate rigid-body motion. 

Assuming the pressure 𝑝 is independent of 𝑧 for the thin liquid layer and integrating Eq. (S1) with the 
boundary conditions in Eqs. (S3) and (S4), we obtain:  
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The flow rate in the x-direction is then:  
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Using the mass conservation equation for an incompressible fluid: 
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The liquid thickness 𝐻 is related to the out-of-plane displacement 𝑤 of the top surface:  

 𝐻(𝑥) = 𝐻0 +𝑤(𝑥) (S8) 

Substituting Eqs. (S6) and (S8) into Eq. (S7), we obtain an evolution equation  
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and the in-plane displacement 𝑢 of the top surface is related to the flow velocity in Eq. (S5) as 
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For the elastic film, the equations are similar to Huang and Suo [13], except that there is no prestrain, 
but instead there are terms corresponding to the applied strain rate. The in-plane normal stress in the 
film is: 
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where 𝐸 and 𝜈 are Young’s modulus and Poisson’s ratio of the elastic film, respectively. Subject to the 
viscous shear stress 𝑇 across the film/liquid interface, force balance within the film requires that: 
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 (S12) 

In addition, a force balance perpendicular to the plane of the film yields: 
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Here 𝐷 is the flexural rigidity of the elastic film: 
3
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The boundary conditions to be applied at the ends of the film with 𝑥 = ±𝐿 are: 

No normal stress 𝜕𝑢
𝜕𝑥

+
1
2
�
𝜕𝑤
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�
2

= 0 (S14) 

No bending moment 𝜕2𝑤
𝜕𝑥2

= 0 (S15) 

No shear force 𝜕3𝑤
𝜕𝑥3

= 0 (S16) 

No pressure 𝐷
𝜕4𝑤
𝜕𝑥4

− 𝑇
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𝜕𝑥

= 0 (S17) 

 

These are the same equations as Liang et al, (Acta Mater. 50, 2933, 2002). The above equations can be 
non-dimensionalized by the scaled parameters as described in the main text, yielding the dimensionless 
evolution equations and boundary conditions given in the main text (Eqs. 1-6).  
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Linear Perturbation Analysis 

Using Eqs. 20 and 21 in the main text as perturbations, the displacements can be written as a sum of the 
base (shear lag) solution and the perturbation: 

 sh p
s s sw w w= +  (S18) 

and  

 sh p
s s su u u= +  (S19) 

where we denote the shear lag solutions with the superscript “sh”. Substituting these values for 𝑢𝑠 and 
𝑤𝑠 in the governing equations, subtracting the base equations i.e. the shear lag solutions (see main 
text), and neglecting nonlinear terms of the perturbation, we obtain the linear evolution equations for 
the displacement perturbations. The evolution for 𝑤𝑠 can be written as: 
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Similarly, the corresponding evolution of the in-plane displacement can be written as: 
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In deriving these equations, terms containing 𝑑Ω𝑠/𝑑𝜕 have been neglected, which is equivalent to 
assuming that the time-scale over which perturbations grow is very different from the time-scale over 
which the shear lag solution evolves. 

The first derivative of pressure is written as: 
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and the second derivative as: 

 2 4 3
6 4

0 0
3 2

2 4 3

2

0 0 0

0 0 0 0

2
2 3 4

2 2

1 ( ) ( ) 3 ( ) 3( )
12

3 ( ) 3( ) ( ) ( )

sh sh
sh shs s s

s s s s s s s
s s s

sh sh sh sh
s s s s

s s s s
s s s s

p w wk N k k T ik ik
x x x

T w T wk k

B B A B A

B A ik k i
x x x x

B A

∂ ∂ ∂
= − − + + +

∂ ∂ ∂

∂ ∂ ∂ ∂
+ − − −

∂ ∂ ∂ ∂

 (S23) 



4 
 

Thus Eqs. (S41) and (S42) can be represented as an eigenvalue problem of the form: 

 
Ω𝑠 �

𝐵0
𝐴0
� = �𝑀11 𝑀12

𝑀21 𝑀22
� �
𝐵0
𝐴0
� (S24) 

where M11, M12, M21, M22 are complex numbers, and functions of 𝜕𝑠 and 𝑘𝑠. 

The eigenvalues of the M matrix are the instantaneous growth rate Ωs. The shear lag solution can be 
regarded as being unstable if the real part of the eigenvalue is positive. The eigenvalues were computed 
for various values of 𝑘𝑠 using MATLAB (Mathworks Inc.). Of the two eigenvalues obtained from the 
equation, the one with the greater real part is considered as the dominant growth rate. 

  



5 
 

Quantitative comparison of linear perturbation analysis vs experiments 

Figs. 7 and 11 in the main text respectively showed the fastest growing wavenumber predicted by linear 
perturbation analysis, and the wavelength observed experimentally. Fig. S1 compares them directly in 
non-dimensional form. The symbols are measured wavenumber at one specific liquid thickness, 
𝐻0 = 0.9 𝑚𝑚 (𝐻𝑠0 = 36): filled points are same data as in Fig. 11a, whereas open points are two more 
experimental runs at the same liquid layer thickness. The solid line is a fit to the 𝑘𝑠𝑠 predicted by the 
linear perturbation analysis, i.e. it is the same as the solid line in Fig. 7a in the main text. In the 
experimental range, the linear perturbation analysis typically predicts the wavenumber to be roughly 
twice of what is observed experimentally. 

Section 3 in the main text discussed the analogy between the situation at hand (film being compressed 
at a specified rate) and the situation where a film with a compressive prestrain 𝜀0 rests on a viscous 
liquid. Fig. 6 in the main text showed that the dispersion relation is similar in these two situations if the 
prestrain is assigned the value of the instantaneous strain. Here we will test this analogy against 
experiments taking advantage of the fact that in all our experiments, buckles appear at long times (i.e. 
𝜕 ≫ 𝜏), when the scaled compressive stress has a value of 𝜎𝑠𝑠𝑚𝑥. For the experimental value of 𝐻𝑠0 =
36, it is reasonable to take the limit of an infinitely thick liquid layer considered by Sridhar et al (Appl. 
Phys. Lett. 78, 2482, 2001). In that limit, the fastest-growing wave number is predicted to be 
�4𝜀0(1 + 𝜈). Pursuing this analogy, we replace 𝜀0 with |𝜎𝑠𝑠𝑚𝑥|, thus giving the prediction that 

𝑘𝑠𝑠 = �4 �|𝛽|𝐿𝑠2

2𝐻𝑠0
� (1 + 𝜈). This prediction, also plotted in Fig. S1, is up to 50% higher than the 

experiments. 

 

Fig. S1:  Dimensionless wave number vs dimensionless compression rate. Solid symbols are the 
same as the 0.9 mm data in Fig. 11a in the main text. Open points are two more runs at the same 
liquid layer thickness. Solid line is a fit to the linear perturbation results, i.e. same as the solid line in 
Fig.7a in the main text. For explanation of dashed line, see above. 
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Numerical simulations 

A numerical method based on a finite difference scheme was adopted, with center difference for space 
discretization and implicit backward difference for time integration. The method is similar to Liang et al. 
(Acta Mater. 50, 2933, 2002), using fictitious nodes at each end to satisfy the boundary conditions. For 
each time step, the solution was obtained by iteration using the Newton-Raphson method. 

 

Fig. S2: Comparison of numerical simulation (solid lines) with the shear lag solution (symbols) at 
short times (𝜕𝑠 ≤ 10𝜏𝑠).  
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Fig. S3: Numerical simulation using the same parameters as the experiment of Fig. 8 in the main 

text (2L = 75 mm;  h = 25 µm; H0 = 0.9 mm; 1088.0 −−= sε ).  a. Evolution of wrinkle amplitude with 
time. The solid line indicates a simple power law: 𝐴 = 𝑘(𝜕 − 𝜕𝑐)0.5, with 𝜕𝑐 = 0.31𝑠. b-d. Simulated 
wrinkle profiles at various times, corresponding to Fig. 8b-d.   
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Fig. S4: Simulations approximately matching the conditions in the three panels in Fig. 9 in the main 
text, showing the effect of each of the three parameters on wrinkling. In all graphs, the y-axis is the 
dimensional value (in mm) of the out-of-plane displacement. Each graph corresponds to 𝜀̇𝜕 = 0.06. 
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