Tutorial Class 9
 Mathematical Methods in Physics

Carl Niblaeus

Last typeset: October 19, 2018

1. P3 2005-05-30. The wave function for the harmonic oscillator in its ground state is given by

$$
\begin{equation*}
\psi(x)=\frac{1}{\sqrt{a \sqrt{\pi}}} \exp \left(-\frac{x^{2}}{2 a^{2}}\right) . \tag{1}
\end{equation*}
$$

Use the Fourier transform to convert this wave function onto a wave function in k-space, i.e. find $\tilde{\psi}(k)$.
Hint: Choose a suitable path in the complex plane for the integration.
Solution. The Fourier transform of the position space wave function is given by

$$
\begin{align*}
\tilde{\psi}(k) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \psi(x) e^{i k x} d x \\
& =\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{a \sqrt{\pi}}} \int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2 a^{2}}+i k x} d x \tag{2}
\end{align*}
$$

We complete the square in the exponent and find

$$
\begin{align*}
-\frac{x^{2}}{2 a^{2}}+i k x & =-\frac{1}{2 a^{2}}\left(x^{2}-2 i k a^{2} x\right) \\
& =-\frac{1}{2 a^{2}}\left(x-i k a^{2}\right)-\left(-\frac{1}{2 a^{2}}\right)\left(-i k a^{2}\right)^{2} \\
& =-\frac{1}{2 a^{2}}\left(x-i k a^{2}\right)-\frac{k^{2} a^{2}}{2} \tag{3}
\end{align*}
$$

so the Fourier transformed wave function is

$$
\begin{equation*}
\tilde{\psi}(k)=\frac{e^{-\frac{k^{2} a^{2}}{2}}}{\sqrt{2 \pi} \sqrt{a \sqrt{\pi}}} \int_{-\infty}^{\infty} e^{-\frac{\left(x-i k a^{2}\right)^{2}}{2 a^{2}}} d x \tag{4}
\end{equation*}
$$

We now make the variable change

$$
\begin{align*}
& \frac{\left(x-i k a^{2}\right)}{\sqrt{2 a^{2}}}=t, \quad \frac{d x}{\sqrt{2 a^{2}}}=d t \\
& x \rightarrow \pm \infty \Rightarrow t \rightarrow \pm \infty-i \epsilon, \quad \epsilon=\frac{k a}{\sqrt{2}} \tag{5}
\end{align*}
$$

which transforms the integral into

$$
\begin{equation*}
\tilde{\psi}(k)=\frac{\sqrt{2 a^{2}} e^{-\frac{k^{2} a^{2}}{2}}}{\sqrt{2 \pi a \sqrt{\pi}}} \int_{-\infty-i \epsilon}^{\infty-i \epsilon} e^{-t^{2}} d t \tag{6}
\end{equation*}
$$

Figure 1: Contour in P3 2005-05-30. Note that $-i \epsilon$ is not a pole.

We do the integral using contour integration techniques. We integrate over a positively oriented, closed contour C that starts by going from $t=-\infty-i \epsilon$ to $t=+\infty-i \epsilon$, then goes up to the real axis at $t=+\infty$, along the real axis to $t=-\infty$ and back down to the point $t=-\infty-i \epsilon$ (see Fig. 1). The contour does not enclose any pole of the integrand (in fact the integrand is an entire function of t and has no poles in the complex plane), therefore the total integral over C is zero. The integrand goes to zero for $|t| \rightarrow \infty$, so the integrations along the two pieces that run parallell to the imaginary axis both become zero. We then have (writing $t=u+i v$)

$$
\begin{equation*}
\oint_{C} e^{-t^{2}} d t=\int_{-\infty-i \epsilon}^{\infty-i \epsilon} e^{-t^{2}} d t+\int_{\infty}^{-\infty} e^{-u^{2}} d u=0 \tag{7}
\end{equation*}
$$

so that

$$
\begin{equation*}
\int_{-\infty-i \epsilon}^{\infty-i \epsilon} e^{-t^{2}} d t=\int_{-\infty}^{\infty} e^{-u^{2}} d u \tag{8}
\end{equation*}
$$

The righthand integral is a standard Gaussian integral with value

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-u^{2}} d u=\sqrt{\pi} \tag{9}
\end{equation*}
$$

and therefore the Fourier transformed wave function is

$$
\begin{align*}
\tilde{\psi}(k) & =\frac{\sqrt{2 a^{2}} e^{-\frac{k^{2} a^{2}}{2}}}{\sqrt{2 \pi a \sqrt{\pi}}} \sqrt{\pi} \\
& =\frac{\sqrt{a}}{\pi^{1 / 4}} e^{-\frac{k^{2} a^{2}}{2}} \tag{10}
\end{align*}
$$

which is again a Gaussian, but of width inversely related to a compared to $\psi(x)$ (large a means that $\psi(x)$ is narrow while $\tilde{\psi}(k)$ is wide and vice versa).
Note: The Gaussian integral I can be done in several ways. One way is to write

$$
\begin{equation*}
I \equiv \int_{-\infty}^{\infty} e^{-t^{2}} d t=2 \int_{0}^{\infty} e^{-t^{2}} d t=2 \int_{0}^{\infty} e^{-z} \frac{d z}{2 z^{1 / 2}}=\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} \tag{11}
\end{equation*}
$$

where we have made the variable transform $z=t^{2}$ and recognised the integral as a Gamma function. We can also solve the Gaussian integral by letting $t=r$ where r is the radial distance r in polar coordinates. Since $r^{2}=x^{2}+y^{2}$ and $d x d y=r \sin \theta d \theta d r=2 \pi r d r$ since the integrand is independent of θ we have

$$
\begin{equation*}
I^{2}=\int_{-\infty}^{\infty} e^{-x^{2}} d x \int_{-\infty}^{\infty} e^{-y^{2}} d y=2 \pi \int_{0}^{\infty} e^{-r^{2}} r d r=2 \pi \int_{0}^{\infty} \frac{e^{-s}}{2} d s=\pi \tag{12}
\end{equation*}
$$

and therefore $I=\sqrt{\pi}$
2. P10 2013-11-09. The nuclear form factor $F(\vec{k})$ and the charge distribution $\rho(\vec{r})$ are 3D Fourier transforms of each other

$$
\begin{equation*}
F(\vec{k})=\frac{1}{(2 \pi)^{3 / 2}} \int \rho(\vec{r}) e^{i \vec{k} \cdot \vec{r}} d^{3} r \tag{13}
\end{equation*}
$$

Show that, if the measured form factor is obtained as $F(\vec{k})=\frac{1}{(2 \pi)^{3 / 2}}\left(1+\frac{k^{2}}{a^{2}}\right)^{-1}$ then the underlying charge distribution is $\rho(\vec{r})=\frac{a^{2}}{4 \pi} \frac{e^{-a r}}{r}$
Solution. Since $F(\vec{k})$ is the Fourier transform of $\rho(\vec{r}), \rho(\vec{r})$ is the inverse transform of $F(\vec{k})$,

$$
\begin{equation*}
\rho(\vec{r})=\frac{1}{(2 \pi)^{3 / 2}} \int F(\vec{k}) e^{-i \vec{k} \cdot \vec{r}} d^{3} k \tag{14}
\end{equation*}
$$

where the integral is over all of k-space. We write the integral in spherical coordinates so that $d^{3} k=k^{2} d k d(\cos \theta) d \varphi$ and $\vec{k} \cdot \vec{r}=k r \cos \theta$ where we have aligned our coordinate system so that \vec{k} is parallell to the z axis and the angle between \vec{k} and \vec{r} hence coincides with the polar angle θ. There is no dependence on the azimuthal angle φ, that part of the integration therefore just gives a factor 2π and we are
left with

$$
\begin{align*}
\rho(\vec{r}) & =\frac{2 \pi}{(2 \pi)^{3 / 2}} \int_{k=0}^{k=\infty} \int_{\cos \theta=-1}^{\cos \theta=1} \frac{e^{-i k r \cos \theta}}{1+\frac{k^{2}}{a^{2}}} k^{2} d k d(\cos \theta) \\
& =\frac{a^{2}}{4 \pi^{2}} \int_{0}^{\infty} \frac{k^{2}}{a^{2}+k^{2}}\left[-\frac{e^{-i k r \cos \theta}}{i k r}\right]_{\cos \theta=-1}^{\cos \theta=1} d k \\
& =\frac{a^{2}}{4 \pi^{2} r i} \int_{0}^{\infty} \frac{k}{a^{2}+k^{2}}\left(e^{i k r}-e^{-i k r}\right) d k \\
& =\frac{a^{2}}{4 \pi^{2} r i}\left(\int_{0}^{\infty} \frac{k e^{i k r}}{a^{2}+k^{2}} d k-\int_{0}^{-\infty} \frac{(-k) e^{+i k r}}{a^{2}+(-k)^{2}}(-d k)\right) \\
& =\frac{a^{2}}{4 \pi^{2} r i} \int_{-\infty}^{\infty} \frac{k e^{i k r}}{a^{2}+k^{2}} d k \tag{15}
\end{align*}
$$

We solve the integral using contour integration, with a contour C that is the integration along the real axis and a semi-circle in the upper half-plane. Since $k>0$ and the integrand without the exponential vanishes for large k we can use Jordan's lemma to show that the integration along the circular arc gives zero contribution to the integral. The integrand has poles at $k= \pm i a$ and the contour C encloses the pole at $k=+i a$, so we get from the residue theorem

$$
\begin{align*}
\int_{-\infty}^{\infty} \frac{k e^{i k r}}{a^{2}+k^{2}} d k & =2 \pi i \operatorname{Res}\left(\frac{k e^{i k r}}{a^{2}+k^{2}}, k=i a\right) \\
& =2 \pi i \lim _{k \rightarrow i a}(k-i a) \frac{k e^{i k r}}{(k-i a)(k+i a)} \\
& =2 \pi i \frac{i a e^{i^{2} a r}}{2 i a} \\
& =\pi i e^{-a r} \tag{16}
\end{align*}
$$

and the charge density therefore becomes

$$
\begin{align*}
\rho(\vec{r}) & =\frac{a^{2}}{4 \pi^{2} r i} \pi i e^{-a r} \\
& =\frac{a^{2}}{4 \pi} \frac{e^{-a r}}{r} \tag{17}
\end{align*}
$$

which was what we wanted to show.
3. P7 2013-01-03. An oscillator is subject to both a dissipation and a driving force $f(t)$ where $f(t)=\gamma \exp (-t)$ for $t \geq 0$ and $f(t)=0$ for $t<0$. The equation describing the subsequent motion can be written

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} X(t)+2 \beta \frac{d}{d t} X(t)+\omega_{0}^{2} X(t)=f(t) \tag{18}
\end{equation*}
$$

Use the Fourier transform $\tilde{g}(\omega)=(1 / \sqrt{2 \pi}) \int_{-\infty}^{\infty} G(t) \exp (i \omega t) d t$ to show that the retarded Green's function $G_{r}(t)$ is given by

$$
G_{r}\left(t, t^{\prime}\right)= \begin{cases}0, & t<t^{\prime} \tag{19}\\ \left(1 / \omega_{1}\right) \exp \left(-\beta\left(t-t^{\prime}\right)\right) \sin \left(\omega_{1}\left(t-t^{\prime}\right)\right), & t>t^{\prime}\end{cases}
$$

where $\omega_{1}=\sqrt{\omega_{0}^{2}-\beta^{2}}$. (Retarded Green's function has the cause preceding the effect.)
Solution. The Green's function satisfies the differential equation

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} G\left(t, t^{\prime}\right)+2 \beta \frac{d}{d t} G\left(t, t^{\prime}\right)+\omega_{0}^{2} G\left(t, t^{\prime}\right)=\delta\left(t-t^{\prime}\right) \tag{20}
\end{equation*}
$$

The Fourier transform of $G\left(t, t^{\prime}\right)$ with respect to t is

$$
\begin{equation*}
\tilde{g}\left(\omega, t^{\prime}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} G\left(t, t^{\prime}\right) e^{i \omega t} d t \tag{21}
\end{equation*}
$$

and derivatives of $G\left(t, t^{\prime}\right)$ become simple in Fourier space. We have, using the inverse transform formula

$$
\begin{align*}
\frac{d}{d t} G\left(t, t^{\prime}\right) & =\frac{d}{d t}\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \tilde{g}\left(\omega, t^{\prime}\right) e^{-i \omega t} d \omega\right) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \tilde{g}\left(\omega, t^{\prime}\right) \frac{d}{d t} e^{-i \omega t} d \omega \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}(-i \omega) \tilde{g}\left(\omega, t^{\prime}\right) e^{-i \omega t} d \omega \tag{22}
\end{align*}
$$

so the inverse transform of $(-i \omega) \tilde{g}$ is $d G / d t$ and hence the Fourier transform of $d G / d t$ is $(-i \omega) \tilde{g}$. In the same way the Fourier transform of $d^{2} G / d t^{2}$ is $(-i \omega)^{2} \tilde{g}=$ $-\omega^{2} \tilde{g}$. The Fourier transform of the left-hand side of the Green's function differential equation is therefore

$$
\begin{equation*}
\mathcal{L}[\mathrm{LHS}]=\left(-\omega^{2}-2 i \beta \omega+\omega_{0}^{2}\right) \tilde{g}\left(\omega, t^{\prime}\right) \tag{23}
\end{equation*}
$$

The Fourier transform of $\delta\left(t-t^{\prime}\right)$ is

$$
\begin{align*}
\mathcal{L}\left[\delta\left(t-t^{\prime}\right)\right] & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \delta\left(t-t^{\prime}\right) e^{i \omega t} d t \\
& =\frac{e^{i \omega t^{\prime}}}{\sqrt{2 \pi}} \tag{24}
\end{align*}
$$

and when we Fourier transform both sides of the Green's function differential equation we therefore get

$$
\begin{equation*}
\left(-\omega^{2}-2 i \beta \omega+\omega_{0}^{2}\right) \tilde{g}\left(\omega, t^{\prime}\right)=\frac{e^{-i \omega t}}{\sqrt{2 \pi}} \tag{25}
\end{equation*}
$$

where we note that the factor multiplying \tilde{g} on the left-hand side is now simply an algebraic expression. We get

$$
\begin{equation*}
\tilde{g}\left(\omega, t^{\prime}\right)=\frac{1}{\sqrt{2 \pi}} \frac{e^{i \omega t^{\prime}}}{\omega_{0}^{2}-\omega^{2}-2 i \beta \omega} \tag{26}
\end{equation*}
$$

and inverse transforming to get $G\left(t, t^{\prime}\right)$ we find

$$
\begin{align*}
G\left(t, t^{\prime}\right) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \tilde{g}\left(\omega, t^{\prime}\right) e^{-i \omega t} d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{-i \omega\left(t-t^{\prime}\right)}}{\omega_{0}^{2}-\omega^{2}-2 i \beta \omega} d \omega \\
& =-\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{-i \omega\left(t-t^{\prime}\right)}}{\omega^{2}+2 i \beta \omega-\omega_{0}^{2}} d \omega \tag{27}
\end{align*}
$$

We will solve the integral using contour integration in the complex plane. The integrand has poles at

$$
\begin{equation*}
\omega^{2}+2 i \beta \omega-\omega_{0}^{2}=0 \quad \Rightarrow \quad \omega=-i \beta \pm \sqrt{\omega_{0}^{2}-\beta^{2}} \equiv-i \beta \pm \omega_{1} \tag{28}
\end{equation*}
$$

where we have defined the constant ω_{1} in the last equality. We note that the sign in the exponent depends on the sign of $t-t^{\prime}$ and therefore separate into two cases: $t-t^{\prime}<0$ and $t-t^{\prime}>0$. We note also that the remaining part of integrand without the exponential goes to zero for large $|\omega|$.
$t-t^{\prime}<0 \quad$ We close the contour in the upper half-plane with a semi-circle and call it C. The contour then encloses no poles, since both poles are in the lower halfplane. The factor multiplying ω in the exponent is now positive and the remaining part of the integrand goes to zero for large $|\omega| \rightarrow \infty$ so by Jordan's lemma the integration along the semi-circle is zero and therefore

$$
\begin{equation*}
\oint_{C} \frac{e^{-i \omega\left(t-t^{\prime}\right)}}{\omega^{2}+2 i \beta \omega-\omega_{0}^{2}} d \omega=0, \quad t-t^{\prime}<0 \tag{29}
\end{equation*}
$$

so that $G\left(t, t^{\prime}\right)=0$ for $t-t^{\prime}<0$.
$t-t^{\prime}>0 \quad$ We now close the contour instead in the lower half-plane with a semicircle, negatively oriented (to make the integration along the real axis in the correct direction), and call the contour C^{\prime}. The contour then encloses the two poles at $\omega=-i \beta \pm \omega_{1}$. The effect of having the contour in the lower halfplane is that $\sin \theta$ is negative (since then $\pi \leq \theta \leq 2 \pi$). Together with the opposite sign of $t-t^{\prime}$ compared to above this results in the same conditions as for the standard application of

Jordan's lemma (i.e. an exponent with a positive constant) ${ }^{1}$. Therefore we have

$$
\begin{equation*}
\oint_{C^{\prime}} \frac{e^{-i \omega\left(t-t^{\prime}\right)}}{\omega^{2}+2 i \beta \omega-\omega_{0}^{2}} d \omega=-2 \pi i \sum_{i} \operatorname{Res}\left(\frac{e^{-i \omega\left(t-t^{\prime}\right)}}{\omega^{2}+2 i \beta \omega-\omega_{0}^{2}}, \omega_{i}\right) \tag{30}
\end{equation*}
$$

with the minus sign on the RHS coming from the negative orientation of C^{\prime}. The contribution along the circular part is again zero from the "extended version" of Jordan's lemma. Call this part of the integral I_{R}, then, taking the absolute value, we have (noting that C^{\prime} is negatively oriented)

$$
\begin{equation*}
\left|I_{R}\right|=\int_{2 \pi}^{\pi} \frac{e^{R\left(t-t^{\prime}\right) \sin \theta}}{\left|R^{2} e^{2 i \theta}+2 i \beta R e^{i \theta}-\omega_{0}^{2}\right|} R d \theta \tag{31}
\end{equation*}
$$

and since $t-t^{\prime}>0$ and $\sin \theta<0$ for $\pi<\theta<2 \pi$ the exponent is always negative, so that the integrand goes to zero as $R \rightarrow \infty$ (the part without the exponential goes to zero since the denominator is $\mathcal{O}\left(R^{2}\right)$ and the numerator $\left.\mathcal{O}(R)\right)$ and the integration along the semicircle therefore contributes nothing. The conclusion is that the integral along the real axis is the sum of the enclosed residues at $\omega_{a}=-i \beta+\omega_{1}$ and $\omega_{b}=-i \beta-\omega_{1}$:

$$
\begin{align*}
\int_{-\infty}^{\infty} \frac{e^{-i \omega\left(t-t^{\prime}\right)}}{\omega^{2}+2 i \beta \omega-\omega_{0}^{2}} d \omega & =\oint_{C^{\prime}} \frac{e^{-i \omega\left(t-t^{\prime}\right)}}{\omega^{2}+2 i \beta \omega-\omega_{0}^{2}} d \omega \\
& =-2 \pi i \sum_{j=a, b} \operatorname{Res}\left(\frac{e^{-i \omega\left(t-t^{\prime}\right)}}{\omega^{2}+2 i \beta \omega-\omega_{0}^{2}}, \omega_{j}\right) \tag{32}
\end{align*}
$$

The residues are

$$
\begin{align*}
& \operatorname{Res}_{\omega=-i \beta+\omega_{1}}=\lim _{\omega \rightarrow-i \beta+\omega_{1}} \frac{e^{-i \omega\left(t-t^{\prime}\right)}}{\omega-\left(-i \beta-\omega_{1}\right)}=\frac{e^{-\beta\left(t-t^{\prime}\right)} e^{-i \omega_{1}\left(t-t^{\prime}\right)}}{2 \omega_{1}} \tag{33}\\
& \operatorname{Res}_{\omega=-i \beta-\omega_{1}}=\lim _{\omega \rightarrow-i \beta-\omega_{1}} \frac{e^{-i \omega\left(t-t^{\prime}\right)}}{\omega-\left(-i \beta+\omega_{1}\right)}=\frac{e^{-\beta\left(t-t^{\prime}\right)} e^{+i \omega_{1}\left(t-t^{\prime}\right)}}{-2 \omega_{1}} \tag{34}
\end{align*}
$$

and their sum becomes

$$
\begin{align*}
\sum_{i} \operatorname{Res}\left(\frac{e^{-i \omega\left(t-t^{\prime}\right)}}{\omega^{2}+2 i \beta \omega-\omega_{0}^{2}}, \omega_{i}\right) & =-\frac{e^{-\beta\left(t-t^{\prime}\right)}}{2 \omega_{1}}\left(e^{i \omega_{1}\left(t-t^{\prime}\right)}-e^{-i \omega\left(t-t^{\prime}\right)}\right) \\
& =-\frac{i e^{-\beta\left(t-t^{\prime}\right)}}{\omega_{1}} \sin \left(\omega_{1}\left(t-t^{\prime}\right)\right) \tag{35}
\end{align*}
$$

The integral becomes

$$
\begin{align*}
\int_{-\infty}^{\infty} \frac{e^{-i \omega\left(t-t^{\prime}\right)}}{\omega^{2}+2 i \beta \omega-\omega_{0}^{2}} d \omega & =(-2 \pi i)\left(-\frac{i e^{-\beta\left(t-t^{\prime}\right)}}{\omega_{1}} \sin \left(\omega_{1}\left(t-t^{\prime}\right)\right)\right) \\
& =-\frac{2 \pi e^{-\beta\left(t-t^{\prime}\right)}}{\omega_{1}} \sin \left(\omega_{1}\left(t-t^{\prime}\right)\right), \quad t-t^{\prime}>0 \tag{36}
\end{align*}
$$

[^0]and the Green's function is therefore (note the relative factor $-1 / 2 \pi$ between the Green's function and the integral, see Eq. (27))
\[

G\left(t, t^{\prime}\right)= $$
\begin{cases}0, & t<t^{\prime} \tag{37}\\ \frac{e^{-\beta\left(t-t^{\prime}\right)}}{\omega_{1}} \sin \left(\omega_{1}\left(t-t^{\prime}\right)\right), & t>t^{\prime}\end{cases}
$$
\]

and since the Green's function represents a point source perturbation at t^{\prime} this indeed has the cause preceding the effect since it is zero for $t<t^{\prime}$ and is therefore the retarded Green's function.
4. P6 2015-01-02. Use Laplace transforms to solve the set of equations subject to $y(0)=1, z(0)=0$ with

$$
\begin{aligned}
& \frac{d y}{d t}-2 y+z=0 \\
& \frac{d z}{d t}-y-2 z=0
\end{aligned}
$$

Solution. The Laplace transform of a function $y(t)$ is given by

$$
\begin{equation*}
\mathcal{L}[y(t)]=\tilde{y}(s)=\int_{0}^{\infty} y(t) e^{-s t} d t \tag{38}
\end{equation*}
$$

and it can be shown (try it!) that the transform of a derivative is given by

$$
\begin{equation*}
\mathcal{L}\left[y^{\prime}(t)\right]=s \tilde{y}(s)-y(0) \tag{39}
\end{equation*}
$$

The Laplace transformed system of ODE:s then becomes

$$
\left\{\begin{array}{l}
s \tilde{y}(s)-y(0)-2 \tilde{y}(s)+\tilde{z}(s)=0 \tag{40}\\
s \tilde{z}(s)-z(0)-\tilde{y}(s)-2 \tilde{z}(s)=0
\end{array}\right.
$$

and inserting the given initial conditions $y(0)=1, z(0)=0$ this can be written

$$
\left\{\begin{array}{l}
(s-2) \tilde{y}(s)+\tilde{z}(s)=1 \tag{41}\\
(s-2) \tilde{z}(s)-\tilde{y}(s)=0
\end{array}\right.
$$

The first of these equations gives $\tilde{z}=1-(s-2) \tilde{y}$ and inserting this in the second equation we find

$$
\begin{align*}
& (s-2)(1-(s-2) \tilde{y})-\tilde{y}=0 \\
& \Rightarrow \quad\left((s-2)^{2}+1\right) \tilde{y}=s-2 \\
& \Rightarrow \quad \tilde{y}(s)=\frac{s-2}{(s-2)^{2}+1} \tag{42}
\end{align*}
$$

i.e.

$$
\begin{equation*}
\tilde{z}(s)=1-\frac{(s-2)^{2}}{(s-2)^{2}+1}=\frac{1}{(s-2)^{2}+1} \tag{43}
\end{equation*}
$$

We now need to inverse transform to find the solutions $z(t)$ and $y(t)$ to our original system of ODE:s. In principle this can be done with the Bromwich integral using residue calculus but in this case we can find the inverse transforms by looking in a table of transforms like table 20.1 on p. 1012 in AWH and using the general properties of Laplace transforms. In table 20.1 in AWH we find that

$$
\begin{equation*}
\mathcal{L}[\cos (t)]=\frac{s}{s^{2}+1}, \quad \mathcal{L}[\sin (t)]=\frac{1}{s^{2}+1} \tag{44}
\end{equation*}
$$

which is close to the expressions for \tilde{z} and \tilde{y}. These are shifted in their argument and evaluated at $s-2$ instead of s, so we need to know what the properties of the Laplace transform are under such a shift. Under a substitution $s \rightarrow s-a$ so that the Laplace transform is evaluated instead at $s-a$ a Laplace transform $f(s)$ of a function $F(t)$ becomes,

$$
\begin{equation*}
f(s-a)=\int_{0}^{\infty} e^{-(s-a) t} F(t) d t=\int_{0}^{\infty} e^{-s t}\left(e^{a t} F(t)\right) d t=\mathcal{L}\left[e^{a t} F(t)\right] \tag{45}
\end{equation*}
$$

or in other words

$$
\begin{equation*}
\mathcal{L}^{-1}[f(s-a)]=e^{a t} F(t) \tag{46}
\end{equation*}
$$

Using this property we can in our case identify the expressions for $\tilde{z}(s)$ and $\tilde{y}(s)$ as the transforms of

$$
\begin{align*}
& y(t)=\mathcal{L}^{-1}\left[\frac{s-2}{(s-2)^{2}+1}\right]=e^{2 t} \cos t \tag{47}\\
& z(t)=\mathcal{L}^{-1}\left[\frac{1}{(s-2)^{2}+1}\right]=e^{2 t} \sin t \tag{48}
\end{align*}
$$

which are therefore the solutions to our system of ODE:s.

[^0]: ${ }^{1}$ That is, we can extend Jordan's lemma to account also for negative constants in the exponents remembering that in this case we need to take a contour that is a semicircle in the lower halfplane.

