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1. P3 2005-05-30. The wave function for the harmonic oscillator in its ground
state is given by

ψ(x) =
1√
a
√
π
exp

(
− x2

2a2

)
. (1)

Use the Fourier transform to convert this wave function onto a wave function in
k-space, i.e. find ψ̃(k).
Hint: Choose a suitable path in the complex plane for the integration.
Solution. The Fourier transform of the position space wave function is given by

ψ̃(k) =
1√
2π

∫ ∞

−∞
ψ(x)eikx dx

=
1√
2π

1√
a
√
π

∫ ∞

−∞
e−

x2

2a2
+ikx dx (2)

We complete the square in the exponent and find

− x2

2a2
+ ikx = − 1

2a2
(x2 − 2ika2x)

= − 1

2a2
(
x− ika2

)
−
(
− 1

2a2

)(
−ika2

)2
= − 1

2a2
(
x− ika2

)
− k2a2

2
(3)

so the Fourier transformed wave function is

ψ̃(k) =
e−

k2a2

2

√
2π
√
a
√
π

∫ ∞

−∞
e−

(x−ika2)2

2a2 dx. (4)

We now make the variable change
(x− ika2)√

2a2
= t,

dx√
2a2

= dt

x→ ±∞ ⇒ t→ ±∞− iε, ε =
ka√
2

(5)
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which transforms the integral into

ψ̃(k) =

√
2a2e−

k2a2

2√
2πa

√
π

∫ ∞−iε

−∞−iε
e−t2 dt (6)

−iεC

Re(t)

Im(t)

Figure 1: Contour in P3 2005-05-30. Note that −iε is not a pole.

We do the integral using contour integration techniques. We integrate over a
positively oriented, closed contour C that starts by going from t = −∞ − iε to
t = +∞ − iε, then goes up to the real axis at t = +∞, along the real axis to
t = −∞ and back down to the point t = −∞− iε (see Fig. 1). The contour does
not enclose any pole of the integrand (in fact the integrand is an entire function
of t and has no poles in the complex plane), therefore the total integral over C is
zero. The integrand goes to zero for |t| → ∞, so the integrations along the two
pieces that run parallell to the imaginary axis both become zero. We then have
(writing t = u+ iv)∮

C
e−t2 dt =

∫ ∞−iε

−∞−iε
e−t2 dt+

∫ −∞

∞
e−u2

du = 0 (7)

so that ∫ ∞−iε

−∞−iε
e−t2 dt =

∫ ∞

−∞
e−u2

du. (8)

The righthand integral is a standard Gaussian integral with value∫ ∞

−∞
e−u2

du =
√
π (9)

and therefore the Fourier transformed wave function is

ψ̃(k) =

√
2a2e−

k2a2

2√
2πa

√
π

√
π

=

√
a

π1/4
e−

k2a2

2 (10)
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which is again a Gaussian, but of width inversely related to a compared to ψ(x)
(large a means that ψ(x) is narrow while ψ̃(k) is wide and vice versa).
Note: The Gaussian integral I can be done in several ways. One way is to write

I ≡
∫ ∞

−∞
e−t2 dt = 2

∫ ∞

0
e−t2 dt = 2

∫ ∞

0
e−z dz

2z1/2
= Γ

(
1

2

)
=

√
π (11)

where we have made the variable transform z = t2 and recognised the integral
as a Gamma function. We can also solve the Gaussian integral by letting t = r
where r is the radial distance r in polar coordinates. Since r2 = x2 + y2 and
dx dy = r sin θ dθ dr = 2πr dr since the integrand is independent of θ we have

I2 =

∫ ∞

−∞
e−x2

dx

∫ ∞

−∞
e−y2 dy = 2π

∫ ∞

0
e−r2r dr = 2π

∫ ∞

0

e−s

2
ds = π (12)

and therefore I =
√
π

2. P10 2013-11-09. The nuclear form factor F (~k) and the charge distribution ρ(~r)
are 3D Fourier transforms of each other

F (~k) =
1

(2π)3/2

∫
ρ(~r)ei

~k·~r d3r. (13)

Show that, if the measured form factor is obtained as F (~k) = 1
(2π)3/2

(
1 + k2

a2

)−1

then the underlying charge distribution is ρ(~r) = a2

4π
e−ar

r

Solution. Since F (~k) is the Fourier transform of ρ(~r), ρ(~r) is the inverse transform
of F (~k),

ρ(~r) =
1

(2π)3/2

∫
F (~k)e−i~k·~r d3k (14)

where the integral is over all of k-space. We write the integral in spherical coordi-
nates so that d3k = k2dkd(cos θ)dϕ and ~k · ~r = kr cos θ where we have aligned our
coordinate system so that ~k is parallell to the z axis and the angle between ~k and
~r hence coincides with the polar angle θ. There is no dependence on the azimuthal
angle ϕ, that part of the integration therefore just gives a factor 2π and we are
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left with

ρ(~r) =
2π

(2π)3/2

∫ k=∞

k=0

∫ cos θ=1

cos θ=−1

e−ikr cos θ

1 + k2

a2

k2 dk d(cos θ)

=
a2

4π2

∫ ∞

0

k2

a2 + k2

[
−e

−ikr cos θ

ikr

]cos θ=1

cos θ=−1

dk

=
a2

4π2ri

∫ ∞

0

k

a2 + k2

(
eikr − e−ikr

)
dk

=
a2

4π2ri

(∫ ∞

0

keikr

a2 + k2
dk −

∫ −∞

0

(−k)e+ikr

a2 + (−k)2
(−dk)

)
=

a2

4π2ri

∫ ∞

−∞

keikr

a2 + k2
dk. (15)

We solve the integral using contour integration, with a contour C that is the
integration along the real axis and a semi-circle in the upper half-plane. Since
k > 0 and the integrand without the exponential vanishes for large k we can
use Jordan’s lemma to show that the integration along the circular arc gives zero
contribution to the integral. The integrand has poles at k = ±ia and the contour
C encloses the pole at k = +ia, so we get from the residue theorem∫ ∞

−∞

keikr

a2 + k2
dk = 2πiRes

(
keikr

a2 + k2
, k = ia

)
= 2πi lim

k→ia
(k − ia)

keikr

(k − ia)(k + ia)

= 2πi
iaei

2ar

2ia
= πie−ar (16)

and the charge density therefore becomes

ρ(~r) =
a2

4π2ri
πie−ar

=
a2

4π

e−ar

r
(17)

which was what we wanted to show.

3. P7 2013-01-03. An oscillator is subject to both a dissipation and a driving
force f(t) where f(t) = γ exp (−t) for t ≥ 0 and f(t) = 0 for t < 0. The equation
describing the subsequent motion can be written

d2

dt2
X(t) + 2β

d

dt
X(t) + ω2

0X(t) = f(t). (18)
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Use the Fourier transform g̃(ω) = (1/
√
2π)

∫∞
−∞G(t) exp (iωt) dt to show that the

retarded Green’s function Gr(t) is given by

Gr(t, t
′) =

{
0, t < t′

(1/ω1) exp (−β(t− t′)) sin (ω1(t− t′)), t > t′
(19)

where ω1 =
√
ω2
0 − β2. (Retarded Green’s function has the cause preceding the

effect.)
Solution. The Green’s function satisfies the differential equation

d2

dt2
G(t, t′) + 2β

d

dt
G(t, t′) + ω2

0G(t, t
′) = δ(t− t′). (20)

The Fourier transform of G(t, t′) with respect to t is

g̃(ω, t′) =
1√
2π

∫ ∞

−∞
G(t, t′)eiωt dt (21)

and derivatives of G(t, t′) become simple in Fourier space. We have, using the
inverse transform formula

d

dt
G(t, t′) =

d

dt

(
1√
2π

∫ ∞

−∞
g̃(ω, t′)e−iωt dω

)
=

1√
2π

∫ ∞

−∞
g̃(ω, t′)

d

dt
e−iωt dω

=
1√
2π

∫ ∞

−∞
(−iω)g̃(ω, t′)e−iωt dω (22)

so the inverse transform of (−iω)g̃ is dG/dt and hence the Fourier transform of
dG/dt is (−iω)g̃. In the same way the Fourier transform of d2G/dt2 is (−iω)2g̃ =
−ω2g̃. The Fourier transform of the left-hand side of the Green’s function differ-
ential equation is therefore

L [LHS] =
(
−ω2 − 2iβω + ω2

0

)
g̃(ω, t′) (23)

The Fourier transform of δ(t− t′) is

L
[
δ(t− t′)

]
=

1√
2π

∫ ∞

−∞
δ(t− t′)eiωt dt

=
eiωt

′

√
2π

(24)

and when we Fourier transform both sides of the Green’s function differential
equation we therefore get(

−ω2 − 2iβω + ω2
0

)
g̃(ω, t′) =

e−iωt

√
2π

(25)
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where we note that the factor multiplying g̃ on the left-hand side is now simply an
algebraic expression. We get

g̃(ω, t′) =
1√
2π

eiωt
′

ω2
0 − ω2 − 2iβω

(26)

and inverse transforming to get G(t, t′) we find

G(t, t′) =
1√
2π

∫ ∞

−∞
g̃(ω, t′)e−iωt dω

=
1

2π

∫ ∞

−∞

e−iω(t−t′)

ω2
0 − ω2 − 2iβω

dω

= − 1

2π

∫ ∞

−∞

e−iω(t−t′)

ω2 + 2iβω − ω2
0

dω. (27)

We will solve the integral using contour integration in the complex plane. The
integrand has poles at

ω2 + 2iβω − ω2
0 = 0 ⇒ ω = −iβ ±

√
ω2
0 − β2 ≡ −iβ ± ω1 (28)

where we have defined the constant ω1 in the last equality. We note that the sign
in the exponent depends on the sign of t− t′ and therefore separate into two cases:
t− t′ < 0 and t− t′ > 0. We note also that the remaining part of integrand without
the exponential goes to zero for large |ω|.

t−t′ < 0 We close the contour in the upper half-plane with a semi-circle and call
it C. The contour then encloses no poles, since both poles are in the lower half-
plane. The factor multiplying ω in the exponent is now positive and the remaining
part of the integrand goes to zero for large |ω| → ∞ so by Jordan’s lemma the
integration along the semi-circle is zero and therefore∮

C

e−iω(t−t′)

ω2 + 2iβω − ω2
0

dω = 0, t− t′ < 0 (29)

so that G(t, t′) = 0 for t− t′ < 0.

t− t′ > 0 We now close the contour instead in the lower half-plane with a semi-
circle, negatively oriented (to make the integration along the real axis in the correct
direction), and call the contour C ′. The contour then encloses the two poles at
ω = −iβ±ω1. The effect of having the contour in the lower halfplane is that sin θ is
negative (since then π ≤ θ ≤ 2π). Together with the opposite sign of t−t′ compared
to above this results in the same conditions as for the standard application of
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Jordan’s lemma (i.e. an exponent with a positive constant)1. Therefore we have∮
C′

e−iω(t−t′)

ω2 + 2iβω − ω2
0

dω = −2πi
∑
i

Res

(
e−iω(t−t′)

ω2 + 2iβω − ω2
0

, ωi

)
(30)

with the minus sign on the RHS coming from the negative orientation of C ′. The
contribution along the circular part is again zero from the “extended version” of
Jordan’s lemma. Call this part of the integral IR, then, taking the absolute value,
we have (noting that C ′ is negatively oriented)

|IR| =
∫ π

2π

eR(t−t′) sin θ

|R2e2iθ + 2iβReiθ − ω2
0|
Rdθ (31)

and since t−t′ > 0 and sin θ < 0 for π < θ < 2π the exponent is always negative, so
that the integrand goes to zero as R→ ∞ (the part without the exponential goes to
zero since the denominator is O(R2) and the numerator O(R)) and the integration
along the semicircle therefore contributes nothing. The conclusion is that the
integral along the real axis is the sum of the enclosed residues at ωa = −iβ + ω1

and ωb = −iβ − ω1:∫ ∞

−∞

e−iω(t−t′)

ω2 + 2iβω − ω2
0

dω =

∮
C′

e−iω(t−t′)

ω2 + 2iβω − ω2
0

dω

= −2πi
∑
j=a,b

Res

(
e−iω(t−t′)

ω2 + 2iβω − ω2
0

, ωj

)
. (32)

The residues are

Resω=−iβ+ω1 = lim
ω→−iβ+ω1

e−iω(t−t′)

ω − (−iβ − ω1)
=
e−β(t−t′)e−iω1(t−t′)

2ω1
(33)

Resω=−iβ−ω1 = lim
ω→−iβ−ω1

e−iω(t−t′)

ω − (−iβ + ω1)
=
e−β(t−t′)e+iω1(t−t′)

−2ω1
(34)

and their sum becomes∑
i

Res

(
e−iω(t−t′)

ω2 + 2iβω − ω2
0

, ωi

)
= −e

−β(t−t′)

2ω1

(
eiω1(t−t′) − e−iω(t−t′)

)
= − ie

−β(t−t′)

ω1
sin
(
ω1(t− t′)

)
. (35)

The integral becomes∫ ∞

−∞

e−iω(t−t′)

ω2 + 2iβω − ω2
0

dω = (−2πi)

(
− ie

−β(t−t′)

ω1
sin
(
ω1(t− t′)

))

= −2πe−β(t−t′)

ω1
sin
(
ω1(t− t′)

)
, t− t′ > 0 (36)

1That is, we can extend Jordan’s lemma to account also for negative constants in the exponents
remembering that in this case we need to take a contour that is a semicircle in the lower halfplane.
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and the Green’s function is therefore (note the relative factor −1/2π between the
Green’s function and the integral, see Eq. (27))

G(t, t′) =

0, t < t′

e−β(t−t′)

ω1
sin
(
ω1(t− t′)

)
, t > t′

(37)

and since the Green’s function represents a point source perturbation at t′ this
indeed has the cause preceding the effect since it is zero for t < t′ and is therefore
the retarded Green’s function.

4. P6 2015-01-02. Use Laplace transforms to solve the set of equations subject to
y(0) = 1, z(0) = 0 with

dy

dt
− 2y + z = 0

dz

dt
− y − 2z = 0.

Solution. The Laplace transform of a function y(t) is given by

L[y(t)] = ỹ(s) =

∫ ∞

0
y(t)e−st dt (38)

and it can be shown (try it!) that the transform of a derivative is given by

L[y′(t)] = sỹ(s)− y(0). (39)

The Laplace transformed system of ODE:s then becomes{
sỹ(s)− y(0)− 2ỹ(s) + z̃(s) = 0

sz̃(s)− z(0)− ỹ(s)− 2z̃(s) = 0
(40)

and inserting the given initial conditions y(0) = 1, z(0) = 0 this can be written{
(s− 2)ỹ(s) + z̃(s) = 1

(s− 2)z̃(s)− ỹ(s) = 0
. (41)

The first of these equations gives z̃ = 1− (s− 2)ỹ and inserting this in the second
equation we find

(s− 2) (1− (s− 2)ỹ)− ỹ = 0

⇒
(
(s− 2)2 + 1

)
ỹ = s− 2

⇒ ỹ(s) =
s− 2

(s− 2)2 + 1
(42)
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i.e.

z̃(s) = 1− (s− 2)2

(s− 2)2 + 1
=

1

(s− 2)2 + 1
(43)

We now need to inverse transform to find the solutions z(t) and y(t) to our original
system of ODE:s. In principle this can be done with the Bromwich integral using
residue calculus but in this case we can find the inverse transforms by looking in
a table of transforms like table 20.1 on p. 1012 in AWH and using the general
properties of Laplace transforms. In table 20.1 in AWH we find that

L[cos (t)] = s

s2 + 1
, L[sin (t)] = 1

s2 + 1
(44)

which is close to the expressions for z̃ and ỹ. These are shifted in their argument
and evaluated at s− 2 instead of s, so we need to know what the properties of the
Laplace transform are under such a shift. Under a substitution s → s− a so that
the Laplace transform is evaluated instead at s− a a Laplace transform f(s) of a
function F (t) becomes,

f(s− a) =

∫ ∞

0
e−(s−a)tF (t) dt =

∫ ∞

0
e−st

(
eatF (t)

)
dt = L[eatF (t)] (45)

or in other words

L−1[f(s− a)] = eatF (t) (46)

Using this property we can in our case identify the expressions for z̃(s) and ỹ(s)
as the transforms of

y(t) = L−1

[
s− 2

(s− 2)2 + 1

]
= e2t cos t (47)

z(t) = L−1

[
1

(s− 2)2 + 1

]
= e2t sin t (48)

which are therefore the solutions to our system of ODE:s.
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