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1. P2 2011-10-29 Express the polynomial 7x4 − 3x + 1 as a linear combination of
Legendre polynomials.

Solution. The Legendre polynomials P` are a complete and linearly independent
set of functions, meaning that any polynomial R(x) of degree k can be expressed as
a linear combination of Legendre polynomials with degree ` ≤ k. In other words,
the {P`(x)} are a basis which a polynomial can be expanded in. We have

R(x) =
k∑
`=0

a`P`(x) (1)

which then corresponds the change of basis from the basis spanned by {1, x, x2, x3, x4}
to the one spanned by {P`(x) : ` = 0, 1, 2, 3, 4} since R(x) is here a polynomial of
degree 4. We have then

R(x) = 7x4 − 3x+ 1 = a0P0 + a1P1 + a2P2 + a3P3 + a4P4 (2)

and using the explicit expressions for the P` (see e.g. table 15.1 on p. 719 in AWH,
they can also be obtained using the Rodrigues formula) given by

P0(x) = 1 (3)
P1(x) = x (4)

P2(x) =
1

2
(3x2 − 1) (5)

P3(x) =
1

2
(5x3 − 3x) (6)

P4(x) =
1

8
(35x4 − 30x2 + 3) (7)

we have

7x4 − 3x+ 1 =

(
a0 −

a2
2

+
3a4
8

)
+

(
a1 −

3a3
2

)
x

+

(
3a2
2
− 30a4

8

)
x2 +

5a3
2
x3 +

35a4
8

x4. (8)
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Comparing coefficients on the LHS and RHS we then find

a0 −
a2
2

+
3a4
8

= 1

a1 −
3a3
2

= −3

3a2
2
− 30a4

8
= 0

5a3
2

= 0

35a4
8

= 7

(9)

and solving for the a` we find 

a0 =
12

5
a1 = −3

a2 = 4

a3 = 0

a4 =
8

5

(10)

so that

7x4 − 3x+ 1 =
12

5
P0 − 3P1 + 4P2 +

8

5
P4. (11)

Note that we must have a term with P4 in our expression since this is the first P`
for which there is a term proportional to x4, and that there is no term with P3

since there was no term proportional to x3 in R(x).

2. P7 2009-10-24. Use the series definition of the Legendre functions

Pn(x) =

[n/2]∑
k=0

(−1)k
(2n− 2k)!

2nk!(n− k)!(n− 2k)!
xn−2k (12)

to explicitly verify the recursion relation

P ′n+1(x) = (n+ 1)Pn(x) + xP ′n(x). (13)

Here, [n/2] stands for the largest integer ≤ n/2.
Hint: For n even, i.e. n = 2p, [(n+ 1)/2 = [n/2] = p. For n odd, i.e. n = 2p+ 1,
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[(n + 1)/2] = p + 1 6= [n/2] = p but the extra terms with k = p + 1 vanish due to
the factorial (−1)!→∞ in the denominator.

Solution. We begin by writing out the terms in the RHS explicitly:

(n+ 1)Pn(x) =

[n/2]∑
k=0

(−1)k
(n+ 1)(2n− 2k)!

2nk!(n− k)!(n− 2k)!
xn−2k (14)

xP ′n(x) = x

[n/2]∑
k=0

(−1)k
(n− 2k)(2n− 2k)!

2nk!(n− k)!(n− 2k)!
xn−2k−1

=

[n/2]∑
k=0

(−1)k
(n− 2k)(2n− 2k)!

2nk!(n− k)!(n− 2k)!
xn−2k. (15)

The RHS is then

(n+ 1)Pn(x) + xP ′n(x) =

[n/2]∑
k=0

(−1)k
(2n+ 1− 2k)(2n− 2k)!

2nk!(n− k)!(n− 2k)!
xn−2k. (16)

We now write out and simplify the LHS:

P ′n+1(x) =
d

dx

[(n+1)/2]∑
k=0

(−1)k
(2n+ 2− 2k)!

2n+1k!(n+ 1− k)!(n+ 1− 2k)!
xn+1−2k

=

[(n+1)/2]∑
k=0

(−1)k
(n+ 1− 2k)(2n+ 2− 2k)!

2n+1k!(n+ 1− k)!(n+ 1− 2k)!
xn−2k

=

[(n+1)/2]∑
k=0

(−1)k
(2n+ 2− 2k)(2n+ 1− 2k)(2n− 2k)!

2n+1k!(n+ 1− k)!(n− 2k)!
xn−2k

=

[(n+1)/2]∑
k=0

(−1)k
(2n+ 1− 2k)(2n− 2k)!

2nk!(n− k)!(n− 2k)!
xn−2k. (17)

This final expression is very similar to what we want to show, except that the sum
goes to (n+ 1)/2 instead of n/2 as in Eq. (16). We now use what is stated in the
hint.

For n even, i.e. n = 2p for some integer p, we have that the final value of the
summation index is

[(n+ 1)/2] = [p+ 1/2] = p = [n/2] (18)

where, to reiterate, we use the notation that [(n + 1)/2] is equal to the largest
integer ≤ (n + 1)/2. This means that for n even we can replace the final value of
the summation index in Eq. (17) with [n/2] and the proof is done.
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For n odd, i.e. n = 2p + 1 for some integer p we have instead that the final value
of the summation index is

[(n+ 1)/2] = [p+ 1] 6= [n/2] = p (19)

To complete our proof we write out explicitly the final term in the sum on the LHS
for the case of n being odd. For n odd (n + 1)/2 is an integer, so k = (n + 1)/2
will be the final value of the summation index in the sum, we have then inserting
k = (n+ 1)/2

final term, n odd = (−1)(n+1)/2 (2n+ 1− (n+ 1))(2n− (n+ 1))!

2n
(
n+1
2

)
!
(
n− n+1

2

)
! (n− (n+ 1))!

xn−(n+1)

= (−1)(n+1)/2 n(n− 1)!

2n
(
n+1
2

)
!
(
n−1
2

)
!(−1)!

1

x

→ 0 (20)

where we have used that (−1)!→∞, which for example can be seen by using the
fact that (−1)! = Γ(0) and z = 0 is a pole of the Γ function.1 Therefore, the last
term in the sum is zero and we can write, for n both even and odd

P ′n+1(x) =

[(n+1)/2]∑
k=0

(−1)k
(2n+ 1− 2k)(2n− 2k)!

2nk!(n− k)!(n− 2k)!
xn−2k

=

[n/2]∑
k=0

(−1)k
(2n+ 1− 2k)(2n− 2k)!

2nk!(n− k)!(n− 2k)!
xn−2k

= (n+ 1)Pn(x) + P ′n(x) (22)

which completes our proof.

3. P4 2015-01-02. A plane wave may be expanded in a series of spherical waves
by the Rayleigh equation

eikr cos θ =

∞∑
n=0

anjn(kr)Pn(cos θ). (23)

Show that an = in(2n+ 1).
1We have from the Weierstrass infinite product definition

1

Γ(0)
= 0 · e0

∞∏
n=0

(
1 +

0

n

)
e0 = 0 ·

∞∏
n=0

1 = 0, (21)

so that Γ(0) = (−1)!→∞.
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Solution. The jn are spherical Bessel functions, defined by

jn(x) =

√
π

2x
Jn+ 1

2
(x) (24)

where Jn+ 1
2
is a Bessel function of the first kind (of half-integral order, since n is

an integer). From Eq. 14.155 in AWH a series expansion of jn(x) is given by

jn(x) =

√
π

2x

∞∑
s=0

(−1)s

s!Γ(s+ n+ 3
2)

(x
2

)2s+n+ 1
2

=

√
πxn

2n+1

∑
s=0

(−1)s

s!Γ(s+ n+ 3
2)

(x
2

)2s
(25)

To find the an we begin by using the orthogonality of the Legendre functions,
namely that ∫ π

0
Pn(cos θ)Pm(cos θ) sin θ dθ =

2

2n+ 1
δmn (26)

Therefore we multiply our original expression in the problem by Pm(cos θ) sin θ
with m 6= n and integrate from 0 to π to get∫ π

0
Pm(cos θ)eikr cos θ sin θ dθ =

∞∑
n=0

anjn(kr)

∫ π

0
Pm(cos θ)Pn(cos θ) sin θ dθ

=
2

2m+ 1
amjm(kr) (27)

To get rid of the r-dependence in the jm(kr) on the right-hand side we differentiate
both sides of Eq. (27) m times with respect to x = kr with x→ 0. For small x, we
can use the limiting expression in Eq. 14.177 in AWH which states that for x� 1,
jn(x) is approximately given by2

jn(x) ≈ xn

(2n+ 1)!!
, x� 1. (28)

We can take the m derivatives of the spherical Bessel function and let x → 0 to
get,

lim
x→0

dm

dxm
jm(x) =

m!

(2m+ 1)!!
(29)

2Looking at the series expansion of jm(x), we see that jm(x) goes as xm times the terms in the sum.
Each successive term in the sum contributes with a higher power of x and for small x the terms will
therefore be smaller and smaller for higher s (note that x ≥ 0 here since x = kr). The limiting expression
for x� 1 is obtained by including only the s = 0 term in the sum.
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Eq. (27) then becomes after the differentiation and limit-taking

lim
x→0

dm

dxm

∫ π

0
Pm(cos θ)eix cos θ sin θ dθ =

2am
(2m+ 1)

m!

(2m+ 1)!!
(30)

where we ultimately want to find the expression for what am is, so we have to
calculate what the LHS is.

The same differentiation and limit x = kr → 0 on the LHS of this leads to (note
that the exponential term just gives a factor one when the limit is taken)

lim
x→0

dm

dxm

∫ π

0
Pm(cos θ)eix cos θ sin θ dθ = lim

x→0

∫ π

0
im cosm θPm(cos θ)eix cos θ sin θ dθ

= im
∫ π

0
cosm θPm(cos θ) sin θ dθ

= im
∫ 1

−1
tmPm(t) dt (31)

where in the last line we have made the variable substitution t = cos θ in the
integral. To perform this integral is the task of problem 15.1.15 in AWH. It can be
done using the Rodrigues formula for the Legendre polynomials and integrating by
parts multiple times. The result is∫ 1

−1
tmPm(t) dt =

2m!

(2m+ 1)!!
. (32)

Putting this into Eq. (31), we find in the end that Eq. (30) becomes

im
2m!

(2m+ 1)!!
=

2am
(2m+ 1)

m!

(2m+ 1)!!
(33)

leading to

am = im(2m+ 1) (34)

which was what we wanted to show.

4. P2 2016-01-20. Write the Legendre polynomial P`(x) given through Rodrigues’
formula

P`(x) =
1

2``!

d`

dx`
(x2 − 1)` (35)

and use Leibniz’ rule to do the explicit differentiation to show that P`(1) = 1.
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Solution. Leibniz’ rule is for differentiating a product is stated in Eq. 15.75 on
p. 742 as well as in Eq. 1.81 on p. 36 in AWH, it is given by

dm

dxm

[
A(x)B(x)

]
=

m∑
s=0

(
m
s

)
dm−sA(x)

dxm−s
dsB(x)

dxs
. (36)

Here we let (x2 − 1)` = (x− 1)`(x+ 1)` and apply Leibniz’ formula to get

d`

dx`

[
(x− 1)`(x+ 1)`

]
=
∑̀
s=0

(
`
s

)
d`−s

dx`−s
[
(x− 1)`

] ds
dxs

[
(x+ 1)`

]
(37)

We want the value at x = 1. This means that we are only interested in terms in
the sum where there is no factor (x− 1) left. Therefore, only the term in the sum
where we differentiate (x− 1)` exactly ` times will contribute to the value of P`(x)
at x = 1, this is the term with s = 0, all other terms in the sum will contain at
least one factor (x− 1) and thus give zero at x = 1. With only the s = 0 term left
we find

P`(1) =
( 1

2``!

d`

dx`
(x2 − 1)`

)∣∣∣
x=0

=
( 1

2``!

(
`
0

)
d`

dx`
[
(x− 1)`

]
(x+ 1)`

)∣∣∣
x=0

=
( 1

2``!
`!(x+ 1)`

)∣∣∣
x=1

=
1

2`
(1 + 1)`

= 1 (38)

where we used that

d`

dx`
(x− 1)` = `

d`−1

dx`−1
(x− 1)`−1 = . . . = `(`− 1) · · · 3 · 2 d

dx
(x− 1) = `! (39)

7



5. P6 2013-11-09. A conducting sphere of radius a is divided into two electrically
separate hemispheres by a thin insulating barrier at its equator. The top hemi-
sphere is maintained at a potential V0 and the bottom hemisphere at −V0. Show
that the potential exterior to the two hemispheres is

V (r, θ) = V0

∞∑
s=0

(−1)s(4s+ 3)
(2s− 1)!!

(2s+ 2)!!

(a
r

)2s+2
P2s+1(cos θ) (40)

where P2s+1(cos θ) is the Legendre polynomial of order 2s+ 1.

Solution. From electrodynamics we know that a conductor is an equipotential
(so that it makes sense that the two separated hemispheres are each kept at a
constant potential). Furthermore, the potential V satisfies the Laplace equation in
regions without any charge. In this case we have no ϕ-dependence in the problem
(azimuthal symmetry). Therefore, V = V (r, θ) and exterior to the sphere the
potential satisfies ∇2V (r, θ) = 0.

Using the conventional method of separation of variables in spherical coordinates
one can show that the solution to Laplace equation with azimuthal symmetry is
given by a Legendre series (Eq. 15.42 in AWH)

V (r, θ) =
∞∑
`=0

(A`r
` +B`r

−`−1)P`(cos θ). (41)

(Note that when there is a ϕ-dependence in the problem, the solution will instead
contain associated Legendre functions Pm` (cos θ), see Eq. 15.41 in AWH.) In this
case we are interested in the potential in a region from r = a out to infinite r.
The potential becomes infinite at r →∞ unless we set all A` to zero (similarly we
would instead have had to set all B` = 0 if we were interested in a region containing
r = 0). We are left with

V (r, θ) =

∞∑
`=0

B`r
−`−1P`(cos θ) (42)

and we will now apply the boundary condition at r = a to determine the coefficients
B`. We have there

V (a, θ) =

{
+V0, 0 ≤ θ < π/2

−V0, π/2 < θ ≤ π
. (43)

We can project out the B` using the fact that the Legendre polynomials P`(cos θ)
are orthogonal on the interval 0 ≤ θ ≤ π with weight sin θ3,∫ π

0
P`(cos θ)P`′(cos θ) sin θ dθ =

2

2`+ 1
δ``′ . (44)

3The factor sin θ is an artefact of the change of variables from x to cos θ. The P`(x) are orthogonal
on the interval −1 < x < 1 with unit weight.
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Using this we find that∫ π

0
V (a, θ)P`(cos θ) sin θ dθ =

∑
`′

B`′a
−`′−1

∫ π

0
P`(cos θ)P`′(cos θ) sin θ dθ

=
∑
`′

B`′a
−`′−1 2

2`′ + 1
δ``′

= B`a
−`−1 2

2`+ 1
(45)

or

B` =
a`+1(2`+ 1)

2
V0

(∫ π/2

0
P`(cos θ) sin θ dθ −

∫ π

π/2
P`(cos θ) sin θ dθ

)
. (46)

Denoting by I` the expression in parentheses containing the two integrals we have
(performing a change of variables x = cos θ)

I` =

∫ 1

0
P`(x) dx−

∫ 0

−1
P`(x) dx (47)

(48)

Now let x → −x (i.e. make a change of variables) in the second integral, then
dx→ −dx and we have

I` =

∫ 1

0
P`(x) dx+

∫ 0

+1
P`(−x) dx

=

∫ 1

0
[P`(x)− P`(−x)] dx

=

0, ` even

2

∫ 1

0
P`(x) dx, ` odd

(49)

where we have used the parity of the Legendre polynomials in the last equality
(P`(x) = P`(−x) for even ` and P`(x) = −P`(−x) for ` odd). The integral can be
calculated using the recursion relation for the Legendre polynomials given by

(2`+ 1)P`(x) = P ′`+1(x)− P ′`−1(x) (50)

together with the values of the P`±1 at x = 0 and x = 1. We have

P`(1) = 1, all `, P2n(0) = (−1)n
(2n− 1)!!

(2n)!!
. (51)

Note that since ` is odd, `± 1 is even and the value at x = 0 for even order 2n is
therefore the one we need. This gives, writing ` = 2k + 1 (all I` and hence B` are
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zero for even `)

I2k+1 = 2

∫ 1

0
P2k+1(x) dx =

2

2(2k + 1) + 1

[
P2k+2(x)

∣∣1
0
− P2k(x)

∣∣1
0

]
=

2

4k + 3
[−P2k+2(0) + P2k(0)]

=
2

4k + 3

[
−(−1)k+1 (2k + 1)!!

2k + 2)!!
+ (−1)k

(2k − 1)!!

(2k)!!

]
=

2

4k + 3
(−1)k

(2k − 1)!!

(2k)!!

[
+

2k + 1

2k + 2
+ 1

]
=

2

4k + 3
(−1)k

(2k − 1)!!

(2k)!!

[
4k + 3

2k + 2

]
= 2(−1)k

(2k − 1)!!

(2k + 2)!!
. (52)

We could also use the recursion relation already in Eq. (47) (using then also the
value P`±1(−1) = (−1)`±1 = 1 for ` ± 1 even) to get the same result. So the
B` = B2k+1 are given by

B2k+1 =
a2k+2(4k + 3)

2
V0 2(−1)k

(2k − 1)!!

(2k + 2)!!

= a2k+2(4k + 3)V0 (−1)k
(2k − 1)!!

(2k + 2)!!
(53)

(with all B` = 0 for even `) and the potential exterior to the sphere becomes

V (r, θ) = V0

∞∑
k=0

(4k + 3)(−1)k
(2k − 1)!!

(2k + 2)!!

(a
r

)2k+2
P2k+1(cos θ). (54)
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