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1. P7 2015-01-02. Show that, for integer n,

(a)
∫ ∞
0

x2n+1e−ax
2
dx =

n!

2an+1

(b)
∫ ∞
0

x2ne−ax
2
dx =

Γ(n+ 1
2)

2an+
1
2

=
(2n− 1)!!

2n+1an

√
π

a

Solution. We note first of all that the LHS expressions are quite similar to the
Euler definition of the Gamma function as a definite integral:

Γ(z) =

∫ ∞
0

e−ttz−1 dt, Re(z) > 0. (1)

We will also need the two following important properties of the Gamma function:

Γ(n+ 1) = n! ⇔ Γ(n) = (n− 1)! (2)

Γ

(
1

2

)
=
√
π. (3)

(a) We start by making a change of integration variable so that t = ax2, x =
(t/a)1/2 and x dx = dt/(2a). This results in∫ ∞

0
x2n+1e−ax

2
dx =

∫ ∞
0

((
t

a

) 1
2
)2n

e−t
dt

2a

=
1

2a

1

an

∫ ∞
0

tne−t dt

=
Γ(n+ 1)

2an+1

=
n!

2an+1
(4)

which is what we wanted to show.
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(b) We make the same change of variables as above, resulting in∫ ∞
0

x2ne−ax
2
dx = =

1

2a

∫ ∞
0

((
t

a

) 1
2
)(2n−1)

e−t dt

=
1

2an+
1
2

∫ ∞
0

tn−
1
2 e−t dt

=
1

2an+
1
2

Γ

(
n+

1

2

)
=

1

2an+
1
2

√
π(2n− 1)!!

2n

=
(2n− 1)!!

2n+1an

√
π

a
(5)

where in the next to last equality we have used Eqs. (2) and (3) to obtain

Γ

(
n+

1

2

)
=

(
n− 1

2

)
Γ

(
n− 1

2

)
=

(
n− 1

2

)(
n− 3

2

)
Γ

(
n− 3

2

)
...

=

n factors︷ ︸︸ ︷(
n− 1

2

)(
n− 3

2

)
· · · 3

2

1

2
Γ

(
1

2

)
=

(2n− 1)(2n− 3) · · · 3 · 1
2 · 2 · · · 2

√
π

=
(2n− 1)!!

2n
√
π (6)

For completeness we here quote the definitions of the odd and even double factorials:

(2n− 1)!! = 1 · 3 · 5 · · · (2n− 3)(2n− 1) (7)
(2n)!! = 2 · 4 · 6 · · · (2n− 2)(2n) (8)

2. P6 2011-01-05. Make the change of variables z = ex
2/2 in the differential

equation xy′′ − y′ + x3(ex
2 − p2)y = 0 and solve the equation.
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Solution. With z = ex
2/2 we find

dy

dx
=
dz

dx

dy

dz

= xex
2/2dy

dz
(9)

d2y

dx2
=

d

dx

(
xex

2/2dy

dz

)
= xex

2/2 d

dx

(
dy

dz

)
+ x2ex

2/2dy

dz
+ ex

2/2dy

dz

= x2ex
2 d2y

dz2
+ x2ex

2/2dy

dz
+ ex

2/2dy

dz
(10)

We insert this into the ODE and find

0 = x3ex
2 d2y

dz2
+ x3ex

2/2dy

dz
+ xex

2/2dy

dz
− xex2/2dy

dz
+ x3(ex

2 − p2)y

= x3
(
ex

2 d2y

dz2
+ ex

2/2dy

dz
+ (ex

2 − p2)y
)

(11)

Dividing by x3 we have

z2
d2y

dz2
+ z

dy

dz
+ (z2 − p2)y = 0 (12)

We recognise this as Bessel’s differential equation of order p.

In case of p being an integer the general solution is then a linear combination of the
Bessel functions of first and second kind of order p, Jp(z) and Yp(z) respectively
(where Yp is also called a Neumann function), i.e. expressed in terms of the original
variable x we have

y(x) = C1Jp(e
x2/2) + C2Yp(e

x2/2), p integer. (13)

If p is not an integer, Jp and J−p are linearly independent and the general solution
is instead formed by the linear combination of these (the Frobenius method then
gives two linearly independent solutions) so that

y(x) = C1Jp(e
x2/2) + C2J−p(e

x2/2), p not integer. (14)

3. P7 2010-01-04. Use the series definition of the Bessel function,

Jn(x) =
∞∑
s=0

(−1)s

s!(n+ s)!

(x
2

)n+2s
(15)

to explicitly verify that
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(a) J1(x) + J3(x) =
4

x
J2(x)

(b)
d

dx
(xJ1(x)) = xJ0(x)

Solution. The expressions we should prove come from the general recursive rela-
tions that the Bessel functions obey, given by

Jn−1(x) + Jn+1(x) =
2n

x
Jn(x) (16)

Jn−1(x)− Jn+1(x) = 2
d

dx
Jn(x) (17)

These can be combined to give the second relation given in the problem,

d

dx
(xnJn(x)) = xnJn−1(x). (18)

(a) From the series definition we have

J1(x) =

∞∑
s=0

(−1)s

s!(1 + s)!

(x
2

)1+2s

=
2

x

∞∑
s=0

(2 + s)
(−1)s

s!(2 + s)!

(x
2

)2+2s

=
4

x
J2(x) +

2

x

∞∑
s=0

s(−1)s

s!(2 + s)!

(x
2

)2+2s

=
4

x
J2(x) +

∞∑
s=1

(−1)s

(s− 1)!(2 + s)!

(x
2

)1+2s
(19)

where in the last equality we have used that the s = 0 term in the series in
the rightmost term is zero so that we can start from s = 1 instead.
We now write down the series for J3 and shift indices to cancel the second
term in Eq. (19):

J3(x) =
∞∑
s=0

(−1)s

s!(3 + s)!

(x
2

)3+2s

=
∞∑
s=1

(−1)s−1

(s− 1)!(2 + s)!

(x
2

)3+2(s−1)

= −
∞∑
s=1

(−1)s

(s− 1)!(2 + s)!

(x
2

)1+2s
. (20)

This cancels the second term in the expression for J1(x) in Eq. (19) and we
are left with

J3(x) + J1(x) =
4

x
J2(x). (21)
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(b) We have

d

dx
(xJ1(x)) =

d

dx

(
x

∞∑
s=0

(−1)s

s!(1 + s)!

(x
2

)1+2s
)

= 2
d

dx

( ∞∑
s=0

(−1)s

s!(1 + s)!

(x
2

)2+2s
)

= 2

∞∑
s=0

1

2
(2s+ 2)

(−1)s

s!(1 + s)!

(x
2

)1+2s
(22)

where the factor 1/2 comes from the inner derivative of the expression inside
the parentheses. This further simplifies to

d

dx
(xJ1(x)) = 2

∞∑
s=0

(−1)s

(s!)2

(x
2

)1+2s

= 2
x

2

∞∑
s=0

(−1)s

(s!)2

(x
2

)2s
= xJ0(x) (23)

so that indeed we have

d

dx
(xJ1(x)) = xJ0(x). (24)

4. P7 2010-10-30. The wave equation for a circular membrane with radius a is
given in polar coordinates (r, ϕ) by

1

c2
∂2u

∂t2
=
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂ϕ2
(25)

where r ≤ a, 0 ≤ ϕ < 2π, t ≥ 0 and u(r, ϕ, t) gives the displacement of the
membrane. The membrane is fixed at r = a which gives the boundary condition
u(a, ϕ, t) = 0 for 0 ≤ ϕ < 2π and t ≥ 0.

(a) Find the general solution to the above problem under the assumption that
we have circular symmetry, i.e. that u is independent of ϕ so that it can be
written u = u(r, t).

(b) Find the solution obtained when a = c = 2 and the initial conditions are
u(r, 0) = 5J0(α3r/2) and ∂u/∂t(r, 0) = 4α7J0(α7r/2).

Solution. We assume in the following the physically reasonable additional condi-
tion that u is finite everywhere on the membrane, i.e. for r ≤ a, 0 ≤ ϕ < 2π and
t ≥ 0.
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(a) Without ϕ-dependence the wave equation becomes

1

c2
∂2u

∂t2
=
∂2u

∂r2
+

1

r

∂u

∂r
. (26)

Assuming a separable solution we write u(r, t) = R(r)T (t), insert this in the
PDE and divide everywhere by R(r)T (t) to obtain

1

c2T

d2T

dt2
=

1

R

d2R

dr2
+

1

rR

dR

dr
= −λ2 (27)

where we have with the usual argument (of the LHS being independent of r
and the RHS being independent of t) introduced a separation constant −λ2.
This separates the PDE into two ODE:s:

d2T

dt2
+ c2λ2T = 0

r2
d2R

dr2
+ r

dR

dr
+ λ2r2R = 0.

(28)

We see that there is (as expected for λ2 > 0) an oscillating solution for T ,

T (t) = A cos (cλt) +B sin (cλt). (29)

The differential equation for R(r) is a rescaled Bessel equation. To see this,
write ρ = λr so that expressed in ρ the R equation becomes

ρ2
d2R

dρ2
+ ρ

dR

dρ
+ ρ2R = 0 (30)

which we recognise as a zeroth order Bessel differential equation, with general
solution given by the linear combination of zeroth order Bessel functions of
first and second kind, J0(ρ) and Y0(ρ), i.e.

R(r) = CJ0(λr) +DY0(λr). (31)

However, Y0 is singular at the origin r = 0 and since r = 0 is part of the region
where we want to have a finite solution we must set D = 0 to make sure that
the solution is finite on the entire membrane. The boundary condition at
r = a says that the displacement there is zero, u(a, t) = 0, this results in the
condition

R(a) = CJ0(λa) = 0 ⇒ λa = αs, s = 1, 2, . . . (32)

where αs is the s:th zero of J0. Thus there is one R-solution for each s and
the general solution for u(r, t) is then obtained by summing all individual
solutions as (absorbing all Cs in the As and Bs)

u(r, t) =

∞∑
s=1

J0

(αs
a
r
) [
As cos

(αsc
a
t
)

+Bs sin
(αsc
a
t
)]

(33)
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(b) We are now interested in the particular solution when a = c = 2 and the
initial conditions are

u(r, 0) = 5J0

(α3

2
r
)
,

∂u(r, 0)

∂t
= 4α7J0

(α7

2
r
)
. (34)

We must then have

5J0

(α3

2
r
)

=

∞∑
s=1

J0

(αs
2
r
)
As (35)

and because the Bessel functions which scale with different zeros αs in their
arguments form a linearly independent and orthogonal set of functions1, only
the s = 3 term can contribute in the series on the RHS. Therefore we must
have

As =

{
5, s = 3

0, s 6= 3
(36)

For the other initial condition we have

4α7J0

(α7

2
r
)

=

∞∑
s=1

J0

(α7

2
r
) αs2

2
Bs =

∞∑
s=1

J0

(α7

2
r
)
αsBs. (37)

Again, the functions J0(αsr/2) are for different s orthogonal so that we must
have

Bs =

{
4, s = 7

0, s 6= 7
(38)

and the solution is in this case given by

u(r, t) = 5J0

(α3

2
r
)

cos (α3t) + 4J0

(α7

2
r
)

sin (α7t) (39)

5. P7 2011-10-29. A vibrating circular drum membrane is fixed at the boundary
r = r0, i.e. u(r0, ϕ, t) = 0. At time t = 0 the deformation of the membrane is de-
scribed by the function u(r, ϕ, 0) = f(r, ϕ) and the velocity ∂u/∂t(r, ϕ, 0) = g(r, ϕ).
At all times the deformation of the membrane is finite. Determine the motion of
the membrane by solving the associated wave equation ∇2u = (1/c2)∂2u/∂t2. The
normalisation of the required orthogonal functions should be considered but need
not be evaluated.

1It is also necessary with Dirichlet or Neumann boundary conditions, which is fulfilled here. Note
also that a weight r is needed for orthogonality.
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Solution. With the Laplacian in cylindrical coordinates, the wave equation be-
comes (

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2

)
u =

1

c2
∂2u

∂t2
(40)

and we have the following boundary conditions (BC) and initial conditions (IC):

u(r0, ϕ, ϕ, t) = 0, u(r, ϕ+ 2π, t) = u(r, ϕ, t) (BC) (41)

u(r, ϕ, 0) = f(r, ϕ),
∂u

∂t
(r, ϕ, 0) = g(r, ϕ) (IC) (42)

where we have added the periodicity condition to ensure that u is single-valued.
We also assume a finite solution on the membrane, i.e. |u(r, ϕ, t)| <∞ everywhere
on the membrane. We begin by assuming a solution separated spatially and tem-
porally, i.e. we assume u(r, ϕ, t) = ψ(r, ϕ)T (t). We insert this in the PDE and
divide throughout by ψ(r, ϕ)T (t), resulting in

1

ψ
∇2ψ =

1

c2T

d2T

dt2
= −k2 (43)

where we have introduced the separation constant −k2 (with k2 > 0 to get oscil-
lating solutions in t). This gives one ODE and one PDE:

d2T

dt2
+ k2c2T = 0

∇2ψ(r, ϕ) + k2ψ(r, ϕ) = 0.

(44)

We now separate variables a second time and assume ψ(r, ϕ) = R(r)Φ(ϕ). Inserted
in the PDE for ψ we then obtain after multiplying all over by r2/[R(r)Φ(ϕ)]

r2

R

d2R

dr2
+
r

R

dR

dr
+ k2r2 = − 1

Φ

d2Φ

dϕ2
= `2 (45)

where we have introduced a second separation constant `2 (chosen positive to obtain
oscillating, periodic solutions in ϕ). Our set of ODE:s is then finally

d2T

dt2
+ k2c2T = 0

r2
d2R

dr2
+ r

dR

dr
+ (k2r2 − `2)R = 0

d2Φ

dϕ2
+ `2Φ = 0

(46)

The solution for Φ(ϕ) is now

Φ`(ϕ) = A` sin (`ϕ) +B` cos (`ϕ) (47)
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and to ensure that the solution for u(r, ϕ, t) is periodic in ϕ we need ` to be an
integer, so that there is one solution for every integer ` between −∞ and +∞.2

The differential equation for R is a Bessel differential equation of order ` (which
is here an integer) in terms of the scaled variable ρ = kr and the general solution
is given by the linear combination of Bessel functions of the first and second kind
since ` is an integer. However, Bessel functions of the second kind are singular
at the origin and can therefore not be included since our solution is required to
be finite everywhere on the membrane. Therefore the solution for R is (absorbing
constants in A` and B`)

R`(r) = J`(kr) (48)

and with the boundary condition at r = r0 we must have

0 = J`(kr0) ⇒ k`m =
α`m
r0

, m = 1, 2, 3, . . . (49)

where α`m is the m:th zero of the `:th order Bessel function. Thus there is a set
of linearly independent solutions for R, one for every value of ` and m, with each
individual solution given by

R`m(r) = J`

(
α`m
r0

r

)
. (50)

Finally, the solution for T is with k`m = α`m/r0 given by

T`m(t) = C`m sin

(
α`mc

r0
t

)
+D`m cos

(
α`mc

r0
t

)
. (51)

The general solution for u(r, ϕ, t) is finally obtained by summing all individual
solutions:

u(r, ϕ, t) =

∞∑
`=−∞

∞∑
m=1

J`

(
α`m
r0

r

)
[A` sin (`ϕ) +B` cos (`ϕ)]

×
[
C`m sin

(
α`mc

r0
t

)
+D`m cos

(
α`mc

r0
t

)]
. (52)

To obtain the particular solution of interest we lastly apply the initial conditions.
At t = 0 we get for u(r, ϕ, 0)

f(r, ϕ) =

∞∑
`=−∞

∞∑
m=1

J`

(
α`m
r0

r

)
[A` sin (`ϕ) +B` cos (`ϕ)]D`m (53)

2For ` = 0 only a constant solution is possible.
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Using the orthogonality of sin and cos and of the J` with different zeros in the
argument with weight r we have∫ r0

0

∫ 2π

0
f(r, ϕ)J`

(
α`m
r0

r

)
r sin (`ϕ) drdϕ = D`mA` ×N1 (54)∫ r0

0

∫ 2π

0
f(r, ϕ)J`

(
α`m
r0

r

)
r cos (`ϕ) drdϕ = D`mB` ×N2 (55)

which we get by multiplying by sin or cos and J`(α`mr/r0) with other values of `
and m and integrating in r from 0 to r0 (remembering the weight r necessary for
the J` to be orthogonal) and in ϕ from 0 to 2π.3 The normalisation factors are
given by

N1 =

∫ r0

0

∫ 2π

0

[
J`

(
α`m
r0

r

)]2
r sin2 (`ϕ) drdϕ (56)

N2 =

∫ r0

0

∫ 2π

0

[
J`

(
α`m
r0

r

)]2
r cos2 (`ϕ) drdϕ (57)

The remaining constants are obtained by applying the second initial condition, for
the velocity. This yields (using the same method as above, but on ∂u/∂t(r, ϕ, 0))∫ r0

0

∫ 2π

0
g(r, ϕ)J`

(
α`m
r0

r

)
r sin (`ϕ) drdϕ = C`mA` ×

α`mc

r0
×N1 (58)∫ r0

0

∫ 2π

0
g(r, ϕ)J`

(
α`m
r0

r

)
r cos (`ϕ) drdϕ = C`mB` ×

α`mc

r0
×N2 (59)

where the (α`mc/r0) comes from the time derivative. Note that the constants are
all expressed in terms of definite integrals, i.e. they are just numbers as they should
be.

3Note that D`mA` and D`mB` should be thought of as single constants for each ` and m (we could
have combined them into some D`mA` = Ã`m and D`mB` = B̃`m when writing down the general solution
above). The same holds for C`mA` = C̃`m and C`mB` = D̃`m in the second initial condition.
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