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Jordan’s lemma

When using contour integrals to calculate real integrals over the real line by extending
the integration into the complex plane we frequently have to consider contributions over
semicircles CR in the complex plane with radius R → ∞. When we have an integrand
containing a complex exponential eiaz we can use Jordan’s lemma to determine whether
the integral over CR is zero. The lemma states that the following integral goes to zero:

lim
R→∞

∫
CR

f(z)eiaz dz = lim
R→∞

IR = 0, (1)

if a > 0, CR is a positively oriented semicircle with radius R in the upper halfplane
centered at the origin and f is such that

lim
R→∞

f(z) = 0 for all z with 0 ≤ θ ≤ π (2)

To prove this, write eiaz = eiaR cos θ−aR sin θ and look at the modulus of the integral
(remembering that dz = iReiθdθ on a circular arc of constant radius R):

|IR| ≤ R
∫ π

0
|f(Reiθ)|e−aR sin θ dθ (3)

Now let |f(z)| = |f(Reiθ)| < ε for some R, then we know that ε → 0 when R → ∞ (by
assumption). Then

|IR| < εR

∫ π

0
e−aR sin θ dθ = 2εR

∫ π/2

0
e−aR sin θ dθ (4)

Now use that sin θ ≥ 2θ/π in the range 0 ≤ θ ≤ π/2. Then

|IR| < 2εR

∫ π/2

0
e−2aRθ/π dθ

= 2εR
π

2aR

[
−e−2aRθ/π

]π/2
0

=
επ

a

(
1− e−aR

)
→ 0 when R→∞ (5)
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since ε→ 0 when R→∞, i.e. IR = 0 when R→∞, which completes the proof.
We can extend Jordan’s lemma for the case of a < 0 or equivalently the case of the

integral of f(z)e−iaz, a > 0. However, then the lemma holds for a semicircle in the lower
half-plane instead.

1. P1 2016-01-20. Use calculus of residues to calculate the integral∫ ∞
−∞

x sinx

x2 + 4x+ 5
dx. (6)

Solution. We denote the integral by I and note that

I = Im

(∫ ∞
−∞

xeix

x2 + 4x+ 5
dx

)
(7)

We now consider the contour integral∮
C
f(z) dz =

∮
C

zeiz

z2 + 4z + 5
dz (8)

where the contour C is a closed, counterclockwise semicircle in the upper halfplane
with radius R → ∞. Then I is equal to the imaginary part of the integral along
the real line. We write∮

C
f(z) dz =

∫
CR

f(z) dz +

∫ ∞
−∞

xeix

x2 + 4x+ 5
dx (9)

and I is the imaginary part of the second integral on the right-hand side. The
integrand is singular when the denominator is zero, i.e. when

z2 + 4z + 5 = 0 ⇔ z = −2± i (10)

and the simple pole at z = −2 + i is enclosed by C. Therefore, by the residue
theorem we have∮

C
f(z) dz = 2πiRes(f(z),−2 + i)

= 2πi lim
z→−2+i

(z − (−2 + i))
zeiz

(z − (−2 + i))(z − (−2− i))

= 2πi
(−2 + i)e−2i−1

2i

=
π(−2 + i)

e
(cos 2− i sin 2)

=
π

e
(sin 2− 2 cos 2) + i

π

e
(cos 2 + 2 sin 2) (11)

Jordan’s lemma tells us that ∮
CR

f(z) dz = 0 (12)
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when R → ∞ since the integrand contains a complex exponential eiaz with a =
1 > 0 and the remaining part of the integrand z/(z2 + 4z + 5) goes to zero when
R→∞. Therefore∫ ∞

−∞

xeix

x2 + 4x+ 5
dx = 2πiRes(f(z),−2 + i)

=
π

e
(sin 2− 2 cos 2) + i

π

e
(cos 2 + 2 sin 2) (13)

and

I = Im

(∫ ∞
−∞

xeix

x2 + 4x+ 5
dx

)
=
π

e
(cos 2 + 2 sin 2) (14)

2. P1 2014-11-08. Use calculus of residues to evaluate the integral∫ ∞
0

cosπx

x2 + 1
dx. (15)

Specify carefully the contour used.

Try for yourself without looking at the solution!
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Solution. We note first that the integrand is symmetric around x = 0 so that
(denoting the integral we seek in Eq. (15) as I)

I =
1

2

∫ ∞
−∞

cosπx

x2 + 1
dx =

1

2
Re

(∫ ∞
−∞

eiπx

(x+ i)(x− i)
dx

)
(16)

We now consider instead the contour integral∮
C
f(z) dz =

∮
C

eiπz

(z + i)(z − i)
dz (17)

where the contour is the closed, counterclockwise semicircle in the upper halfplane
with radius R centered at zero. In the limit R → ∞ the real part of the contour
along the real line will yield the integral we seek, I. The (simple) poles of f(z) are
at z = ±i and the pole at z = i lies inside our contour. Therefore by the residue
theorem ∮

f(z) dz =

∫
CR

f(z) dz +

∫ ∞
−∞

eiπx

(x+ i)(x− i)
dx (18)

where CR is the open halfcircle in the upper halfplane centered at zero. From
Jordan’s lemma we have ∫

CR

f(z) dz = 0 (19)

since the exponential is eiaz with a = π > 0 and the remaining part of the integrand,
1/(z2 + 1), goes to zero for R→∞. Therefore∫ ∞

−∞

eiπx

(x+ i)(x− i)
dx = 2πiRes(f(z), i). (20)

Since z = i is a simple pole the right-hand side is in this case given by

2πiRes(f(z), i). = 2πi lim
z→i

[
(z − i) eiπz

(z − i)(z + i)

]
= 2πi

e−π

2i
=

π

eπ
(21)

and our integral I becomes

I =
1

2
Re
( π
eπ

)
=

π

2eπ
(22)
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3. P1 2015-01-02. Specify the contour and use calculus of residues to evaluate the
integral ∫ ∞

0

cos (x/2)

(x2 + 4)2
dx. (23)

Solution. We denote the integral by I. Note that since the integrand is an even
function around x = 0 we can write

I =
1

2

∫ ∞
−∞

cos (x/2)

(x2 + 4)2
dx =

1

2
Re

(∫ ∞
−∞

eix/2

(x2 + 4)2
dx

)
(24)

Now consider the contour integral∮
C
f(z) dz =

∮
C

eiz/2

(z2 + 4)2
dz (25)

over a contour C that is a closed, counterclockwise semicircle in the upper halfplane
with radius R. The integrand is singular with double poles at z = ±2i. In the
limit R → ∞ the real part of the integral on the real line is equal to 2I. By the
residue theorem the whole contour integral is equal to 2πi times the sum of enclosed
residues. In this case we enclose the double pole at z = 2i with residue

Res(f(z), 2i) = lim
z→2i

d

dz

[
(z − 2i)2

eiz/2

(z − 2i)2(z + 2i)2

]

= lim
z→2i

[
eiz/2

(z + 2i)2

(
i

2
− 2

z + 2i

)]

=
e−1

(4i)2

(
i

2
− 2

4i

)
= − i

16e
(26)

We split the contour in two parts: the open semicircle CR of radius R in the upper
halfplane and the integral along the real line. The integral over CR is a case of
Jordan’s lemma with an exponential eiz/2 multiplying 1/(z2 + 4)2 (which goes to
zero for |z| → ∞) and is therefore zero. Then only the integral along the real line
contributes to the contour integral and we have∮

C
f(z) dz =

∫ ∞
−∞

eix/2

(x2 + 4)2
dx

= 2πiRes(f(z), 2i)

= 2πi

(
− i

16e

)
=

π

8e
(27)

5



Figure 1: The contour used in P1 2013-01-03. Note that there is a branch cut along the
positive real line.

So the integral we seek is

I =
1

2
Re

(∫ ∞
−∞

eix/2

(x2 + 4)2
dx

)
=

π

16e
(28)

4. P1 2013-01-03. Use calculus of residues to evaluate the integral∫ ∞
0

xp−1

1 + x
dx (29)

where 0 < p < 1.

Solution. When we extend the integration into the complex plane the integrand
has a simple pole at z = −1 and a branch point at z = 0, since zp−1 is a multivalued
function1. We therefore make a branch cut from the origin along the real line to
infinity so that the integrand is single-valued in the whole plane. We consider then
the contour integral ∮

C
f(z) dz =

∮
C

zp−1

z + 1
dz (30)

where C is a closed contour that can not cross the branch cut along the positive
real line. We draw the contour according to Fig. 4 and write the total contour

1If we follow the value of zp−1 on the contour the unit circle, the value will be 1p−1 = 1 just when we
start at z = +1 and 1p−1e(p−1)2πi = e2πpi 6= 1 after one circuit around the origin when we come back to
z = +1.
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integral as (keeping note of the counterclockwise, positive orientation)∮
f(z) dz =

∫
CR

f(z) dz +

∫
Cε

f(z) dz +

∫
C+

f(z) dz +

∫
C−

f(z) dz

= IR + Iε +

∫ ∞
ε

xp−1

x+ 1
dx+ e(p−1)2πi

∫ ε

∞

xp−1

x+ 1
dx

= IR + Iε +
(
1− e2πpi

) ∫ ∞
ε

xp−1

x+ 1
dx (31)

where we have changed the direction of integration of the integral over C− and
used that e(p−1)2πi = e2πpi. The integral in the last term is equal to the integral we
seek in the limit ε → 0. Note the important fact that the integrals along C+ and
C− do not cancel each other since the value of the integrand is different just above
and below the branch cut respectively.2

The integrals IR and Iε are both zero in the limits R → ∞, ε → 0. This can for
example be seen by expressing the integral in polar form.

IR =

∫ 2π

0

Rp−1e(p−1)iθiReiθ

Reiθ + 1
dθ = iRp

∫ 2π

0

eipθ

Reiθ + 1
dθ (32)

Therefore

|IR| ≤ Rp
∫ 2π

0

dθ√
1 +R2 + 2R cos θ

≤ Rp
∫ 2π

0

dθ√
1 +R2 − 2R

=
Rp

(1−R)2
2π (33)

This goes to zero when R → ∞ and 0 < p < 1. In fact it also goes to zero in the
limit R → 0 which is exactly the case obtained for the integral Iε (the calculation
is the same as for IR except that R should be exchanged for ε), so both IR and Iε
are zero. Then by the residue theorem we have (remember that there a simple pole
at z = −1) (

1− e2πpi
) ∫ ∞

ε

xp−1

x+ 1
dx = 2πiRes

(
zp−1

z + 1
,−1

)
= 2πi lim

z→−1
(z + 1)

zp−1

z + 1

= 2πi
(
eiπ
)p−1

= 2πie−iπeipπ

= −2πieipπ (34)
2Consider z in polar coordinates. Then, just above the branch cut z = xei·0 = x whereas just below

the branch cut, where θ = 2π, we have z = xe2πi (using that |z| = x for z along the x axis). Then the
integrand has the value (xe0)p−1/(xe0 + 1) = xp−1/(x + 1) just above the branch. Just below the cut,
it instead has the value (xe2πi)p−1/(xe2πi + 1) = xp−1e2πpi/(x+ 1) since e2πi = 1.
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Taking the limit ε → 0 so that our left-hand side contains the integral I we seek
we get

I =
−2πieipπ

(1− ei2pπ)

=
−2πieipπ

eipπ (e−ipπ − eipπ)

=
π

sin pπ
(35)

5. P11.9.5. Evaluate
∞∑

n=−∞

(−1)n

(n+ a)2
(36)

where a is real and not an integer.

Solution. We evaluate the sum using techniques from residue calculus. The idea
is to consider the series in Eq. (??) as a sum of residues inside some contour C
and set this sum (times 2πi) equal to the contour integral around C of the specific
function which fulfils that. To do this, we first note that for n integer, the function
π csc (πz) = π/ sin (πz) has simple poles at z = n and we find with the aid of
l’Hôpital’s rule that the residues there are

Res(π csc (πz), z = n) = lim
z→n

(z − n) π

sin (πz)

= lim
z→n

1

cos (πz)

= (−1)n. (37)

since cos (nπ) = (−1)n. We then consider the contour integral of f(z)π csc (πz),
where f(z) is a meromorphic function3, around a large counterclockwise circle C
of radius N + 1

2 , centered at the origin. We have then from the residue theorem

∮
C
f(z)π csc (πz) dz = 2πi

[ N∑
n=−N

(−1)nf(n) (38)

+
∑
i

(residues of f(z)π csc (πz) at singularites zi of f(z))
]

3A meromorphic function is a function that is analytic in its domain except for possibly a discrete
set of finite-order, isolated poles but no essential singularities.
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and if zf(z) → 0 when |z| → ∞ the entire contour integral vanishes when we let
N →∞ so that

∞∑
n=−∞

(−1)nf(n) = −
∑
i

(residues of f(z)π csc (πz) at singularites zi of f(z))

(39)

where we assume that f has singularities only at non-integer z. That is, we can
evaluate the series

∑∞
n=−∞(−1)nf(n) for some f that is non-singular at all n by

summing up all the residues of the expression f(z)π csc (πz) at the points where
f(z) is singular. In this case we have to choose f(z) = 1/(z + a)2 which has one
singularity in the complex plane: a double pole at z = −a where a is a non-integer.
The residue of f(z)π csc (πz) is there given by

Res(f(z)π csc (πz), z = −a) = lim
z→−a

1

(2− 1)!

d

dz

[
(z + a)2

π csc (πz)

(z + a)2

]
= π lim

z→−a

d

dz
csc (πz)

= π lim
z→−a

(−π) cos (πz)
sin2 (πz)

= −π2 cos (πa)
sin2 (πa)

(40)

where we note that a is not an integer so that the expression is finite. The sum
then becomes

∞∑
n=−∞

(−1)n

(n+ a)2
= π2

cos (πa)

sin2 (πa)
(41)
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