Tutorial Class 5 Mathematical Methods in Physics

Carl Niblaeus

Last typeset: October 1, 2018

Jordan's lemma

When using contour integrals to calculate real integrals over the real line by extending the integration into the complex plane we frequently have to consider contributions over semicircles C_R in the complex plane with radius $R \to \infty$. When we have an integrand containing a complex exponential e^{iaz} we can use *Jordan's lemma* to determine whether the integral over C_R is zero. The lemma states that the following integral goes to zero:

$$\lim_{R \to \infty} \int_{C_R} f(z) e^{iaz} dz = \lim_{R \to \infty} I_R = 0, \tag{1}$$

if a > 0, C_R is a positively oriented semicircle with radius R in the upper halfplane centered at the origin and f is such that

$$\lim_{R \to \infty} f(z) = 0 \text{ for all } z \text{ with } 0 \le \theta \le \pi$$
(2)

To prove this, write $e^{iaz} = e^{iaR\cos\theta - aR\sin\theta}$ and look at the modulus of the integral (remembering that $dz = iRe^{i\theta}d\theta$ on a circular arc of constant radius R):

$$|I_R| \le R \int_0^\pi |f(Re^{i\theta})| e^{-aR\sin\theta} \, d\theta \tag{3}$$

Now let $|f(z)| = |f(Re^{i\theta})| < \epsilon$ for some R, then we know that $\epsilon \to 0$ when $R \to \infty$ (by assumption). Then

$$|I_R| < \epsilon R \int_0^{\pi} e^{-aR\sin\theta} d\theta = 2\epsilon R \int_0^{\pi/2} e^{-aR\sin\theta} d\theta$$
(4)

Now use that $\sin \theta \ge 2\theta/\pi$ in the range $0 \le \theta \le \pi/2$. Then

$$|I_R| < 2\epsilon R \int_0^{\pi/2} e^{-2aR\theta/\pi} d\theta$$

= $2\epsilon R \frac{\pi}{2aR} \left[-e^{-2aR\theta/\pi} \right]_0^{\pi/2}$
= $\frac{\epsilon\pi}{a} \left(1 - e^{-aR} \right) \to 0$ when $R \to \infty$ (5)

since $\epsilon \to 0$ when $R \to \infty$, i.e. $I_R = 0$ when $R \to \infty$, which completes the proof.

We can extend Jordan's lemma for the case of a < 0 or equivalently the case of the integral of $f(z)e^{-iaz}$, a > 0. However, then the lemma holds for a semicircle in the *lower* half-plane instead.

1. P1 2016-01-20. Use calculus of residues to calculate the integral

$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + 4x + 5} \, dx. \tag{6}$$

Solution. We denote the integral by I and note that

$$I = \operatorname{Im}\left(\int_{-\infty}^{\infty} \frac{xe^{ix}}{x^2 + 4x + 5} \, dx\right) \tag{7}$$

We now consider the contour integral

$$\oint_C f(z) \, dz = \oint_C \frac{ze^{iz}}{z^2 + 4z + 5} \, dz \tag{8}$$

where the contour C is a closed, counterclockwise semicircle in the upper halfplane with radius $R \to \infty$. Then I is equal to the imaginary part of the integral along the real line. We write

$$\oint_C f(z) \, dz = \int_{C_R} f(z) \, dz + \int_{-\infty}^{\infty} \frac{x e^{ix}}{x^2 + 4x + 5} \, dx \tag{9}$$

and I is the imaginary part of the second integral on the right-hand side. The integrand is singular when the denominator is zero, i.e. when

$$z^2 + 4z + 5 = 0 \quad \Leftrightarrow \quad z = -2 \pm i \tag{10}$$

and the simple pole at z = -2 + i is enclosed by C. Therefore, by the residue theorem we have

$$\oint_C f(z) \, dz = 2\pi i \operatorname{Res}(f(z), -2 + i)$$

$$= 2\pi i \lim_{z \to -2+i} (z - (-2 + i)) \frac{z e^{iz}}{(z - (-2 + i))(z - (-2 - i))}$$

$$= 2\pi i \frac{(-2 + i) e^{-2i - 1}}{2i}$$

$$= \frac{\pi (-2 + i)}{e} (\cos 2 - i \sin 2)$$

$$= \frac{\pi}{e} (\sin 2 - 2 \cos 2) + i \frac{\pi}{e} (\cos 2 + 2 \sin 2)$$
(11)

Jordan's lemma tells us that

$$\oint_{C_R} f(z) \, dz = 0 \tag{12}$$

when $R \to \infty$ since the integrand contains a complex exponential e^{iaz} with a = 1 > 0 and the remaining part of the integrand $z/(z^2 + 4z + 5)$ goes to zero when $R \to \infty$. Therefore

$$\int_{-\infty}^{\infty} \frac{xe^{ix}}{x^2 + 4x + 5} \, dx = 2\pi i \operatorname{Res}(f(z), -2 + i)$$
$$= \frac{\pi}{e} \left(\sin 2 - 2\cos 2\right) + i \frac{\pi}{e} \left(\cos 2 + 2\sin 2\right) \tag{13}$$

and

$$I = \operatorname{Im}\left(\int_{-\infty}^{\infty} \frac{xe^{ix}}{x^2 + 4x + 5} \, dx\right)$$
$$= \frac{\pi}{e} \left(\cos 2 + 2\sin 2\right) \tag{14}$$

2. P1 2014-11-08. Use calculus of residues to evaluate the integral

$$\int_0^\infty \frac{\cos \pi x}{x^2 + 1} \, dx. \tag{15}$$

Specify carefully the contour used.

Try for yourself without looking at the solution!

Solution. We note first that the integrand is symmetric around x = 0 so that (denoting the integral we seek in Eq. (15) as I)

$$I = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos \pi x}{x^2 + 1} \, dx = \frac{1}{2} \operatorname{Re} \left(\int_{-\infty}^{\infty} \frac{e^{i\pi x}}{(x+i)(x-i)} \, dx \right) \tag{16}$$

We now consider instead the contour integral

$$\oint_C f(z) \, dz = \oint_C \frac{e^{i\pi z}}{(z+i)(z-i)} \, dz \tag{17}$$

where the contour is the closed, counterclockwise semicircle in the upper halfplane with radius R centered at zero. In the limit $R \to \infty$ the real part of the contour along the real line will yield the integral we seek, I. The (simple) poles of f(z) are at $z = \pm i$ and the pole at z = i lies inside our contour. Therefore by the residue theorem

$$\oint f(z) \, dz = \int_{C_R} f(z) \, dz + \int_{-\infty}^{\infty} \frac{e^{i\pi x}}{(x+i)(x-i)} \, dx \tag{18}$$

where C_R is the open halfcircle in the upper halfplane centered at zero. From Jordan's lemma we have

$$\int_{C_R} f(z) \, dz = 0 \tag{19}$$

since the exponential is e^{iaz} with $a = \pi > 0$ and the remaining part of the integrand, $1/(z^2 + 1)$, goes to zero for $R \to \infty$. Therefore

$$\int_{-\infty}^{\infty} \frac{e^{i\pi x}}{(x+i)(x-i)} dx = 2\pi i \operatorname{Res}(f(z), i).$$
(20)

Since z = i is a simple pole the right-hand side is in this case given by

$$2\pi i \operatorname{Res}(f(z), i) = 2\pi i \lim_{z \to i} \left[(z - i) \frac{e^{i\pi z}}{(z - i)(z + i)} \right] = 2\pi i \frac{e^{-\pi}}{2i} = \frac{\pi}{e^{\pi}}$$
(21)

and our integral I becomes

$$I = \frac{1}{2} \operatorname{Re}\left(\frac{\pi}{e^{\pi}}\right) = \frac{\pi}{2e^{\pi}}$$
(22)

3. **P1 2015-01-02.** Specify the contour and use calculus of residues to evaluate the integral

$$\int_0^\infty \frac{\cos\left(x/2\right)}{(x^2+4)^2} \, dx.$$
(23)

Solution. We denote the integral by *I*. Note that since the integrand is an even function around x = 0 we can write

$$I = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos(x/2)}{(x^2+4)^2} \, dx = \frac{1}{2} \operatorname{Re}\left(\int_{-\infty}^{\infty} \frac{e^{ix/2}}{(x^2+4)^2} \, dx\right)$$
(24)

Now consider the contour integral

$$\oint_C f(z) \, dz = \oint_C \frac{e^{iz/2}}{(z^2 + 4)^2} \, dz \tag{25}$$

over a contour C that is a closed, counterclockwise semicircle in the upper halfplane with radius R. The integrand is singular with double poles at $z = \pm 2i$. In the limit $R \to \infty$ the real part of the integral on the real line is equal to 2I. By the residue theorem the whole contour integral is equal to $2\pi i$ times the sum of enclosed residues. In this case we enclose the double pole at z = 2i with residue

$$\operatorname{Res}(f(z), 2i) = \lim_{z \to 2i} \frac{d}{dz} \left[(z - 2i)^2 \frac{e^{iz/2}}{(z - 2i)^2 (z + 2i)^2} \right]$$
$$= \lim_{z \to 2i} \left[\frac{e^{iz/2}}{(z + 2i)^2} \left(\frac{i}{2} - \frac{2}{z + 2i} \right) \right]$$
$$= \frac{e^{-1}}{(4i)^2} \left(\frac{i}{2} - \frac{2}{4i} \right)$$
$$= -\frac{i}{16e}$$
(26)

We split the contour in two parts: the open semicircle C_R of radius R in the upper halfplane and the integral along the real line. The integral over C_R is a case of Jordan's lemma with an exponential $e^{iz/2}$ multiplying $1/(z^2 + 4)^2$ (which goes to zero for $|z| \to \infty$) and is therefore zero. Then only the integral along the real line contributes to the contour integral and we have

$$\oint_C f(z) \, dz = \int_{-\infty}^{\infty} \frac{e^{ix/2}}{(x^2 + 4)^2} \, dx$$

$$= 2\pi i \operatorname{Res}(f(z), 2i)$$

$$= 2\pi i \left(-\frac{i}{16e}\right)$$

$$= \frac{\pi}{8e}$$
(27)

Figure 1: The contour used in P1 2013-01-03. Note that there is a branch cut along the positive real line.

So the integral we seek is

$$I = \frac{1}{2} \operatorname{Re}\left(\int_{-\infty}^{\infty} \frac{e^{ix/2}}{(x^2 + 4)^2} \, dx\right) = \frac{\pi}{16e}$$
(28)

4. P1 2013-01-03. Use calculus of residues to evaluate the integral

$$\int_0^\infty \frac{x^{p-1}}{1+x} \, dx \tag{29}$$

where 0 .

Solution. When we extend the integration into the complex plane the integrand has a simple pole at z = -1 and a branch point at z = 0, since z^{p-1} is a multivalued function¹. We therefore make a branch cut from the origin along the real line to infinity so that the integrand is single-valued in the whole plane. We consider then the contour integral

$$\oint_C f(z) \, dz = \oint_C \frac{z^{p-1}}{z+1} \, dz \tag{30}$$

where C is a closed contour that can *not* cross the branch cut along the positive real line. We draw the contour according to Fig. 4 and write the total contour

¹If we follow the value of z^{p-1} on the contour the unit circle, the value will be $1^{p-1} = 1$ just when we start at z = +1 and $1^{p-1}e^{(p-1)2\pi i} = e^{2\pi p i} \neq 1$ after one circuit around the origin when we come back to z = +1.

integral as (keeping note of the counterclockwise, positive orientation)

$$\oint f(z) \, dz = \int_{C_R} f(z) \, dz + \int_{C_{\epsilon}} f(z) \, dz + \int_{C_+} f(z) \, dz + \int_{C_-} f(z) \, dz$$
$$= I_R + I_{\epsilon} + \int_{\epsilon}^{\infty} \frac{x^{p-1}}{x+1} \, dx + e^{(p-1)2\pi i} \int_{\infty}^{\epsilon} \frac{x^{p-1}}{x+1} \, dx$$
$$= I_R + I_{\epsilon} + \left(1 - e^{2\pi p i}\right) \int_{\epsilon}^{\infty} \frac{x^{p-1}}{x+1} \, dx \tag{31}$$

where we have changed the direction of integration of the integral over C_{-} and used that $e^{(p-1)2\pi i} = e^{2\pi p i}$. The integral in the last term is equal to the integral we seek in the limit $\epsilon \to 0$. Note the important fact that the integrals along C_{+} and C_{-} do *not* cancel each other since the value of the integrand is different just above and below the branch cut respectively.²

The integrals I_R and I_{ϵ} are both zero in the limits $R \to \infty$, $\epsilon \to 0$. This can for example be seen by expressing the integral in polar form.

$$I_R = \int_0^{2\pi} \frac{R^{p-1} e^{(p-1)i\theta} i R e^{i\theta}}{R e^{i\theta} + 1} \ d\theta = i R^p \int_0^{2\pi} \frac{e^{ip\theta}}{R e^{i\theta} + 1} \ d\theta \tag{32}$$

Therefore

$$|I_R| \le R^p \int_0^{2\pi} \frac{d\theta}{\sqrt{1+R^2+2R\cos\theta}}$$
$$\le R^p \int_0^{2\pi} \frac{d\theta}{\sqrt{1+R^2-2R}}$$
$$= \frac{R^p}{(1-R)^2} 2\pi$$
(33)

This goes to zero when $R \to \infty$ and $0 . In fact it also goes to zero in the limit <math>R \to 0$ which is exactly the case obtained for the integral I_{ϵ} (the calculation is the same as for I_R except that R should be exchanged for ϵ), so both I_R and I_{ϵ} are zero. Then by the residue theorem we have (remember that there a simple pole at z = -1)

$$(1 - e^{2\pi pi}) \int_{\epsilon}^{\infty} \frac{x^{p-1}}{x+1} dx = 2\pi i \operatorname{Res}\left(\frac{z^{p-1}}{z+1}, -1\right)$$
$$= 2\pi i \lim_{z \to -1} (z+1) \frac{z^{p-1}}{z+1}$$
$$= 2\pi i \left(e^{i\pi}\right)^{p-1}$$
$$= 2\pi i e^{-i\pi} e^{ip\pi}$$
$$= -2\pi i e^{ip\pi}$$
(34)

²Consider z in polar coordinates. Then, just above the branch cut $z = xe^{i \cdot 0} = x$ whereas just below the branch cut, where $\theta = 2\pi$, we have $z = xe^{2\pi i}$ (using that |z| = x for z along the x axis). Then the integrand has the value $(xe^{0})^{p-1}/(xe^{0}+1) = x^{p-1}/(x+1)$ just above the branch. Just below the cut, it instead has the value $(xe^{2\pi i})^{p-1}/(xe^{2\pi i}+1) = x^{p-1}e^{2\pi pi}/(x+1)$ since $e^{2\pi i} = 1$.

Taking the limit $\epsilon \to 0$ so that our left-hand side contains the integral I we seek we get

$$I = \frac{-2\pi i e^{ip\pi}}{(1 - e^{i2p\pi})}$$
$$= \frac{-2\pi i e^{ip\pi}}{e^{ip\pi} (e^{-ip\pi} - e^{ip\pi})}$$
$$= \frac{\pi}{\sin p\pi}$$
(35)

5. **P11.9.5.** Evaluate

$$\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{(n+a)^2}$$
(36)

where a is real and not an integer.

Solution. We evaluate the sum using techniques from residue calculus. The idea is to consider the series in Eq. (??) as a sum of residues inside some contour C and set this sum (times $2\pi i$) equal to the contour integral around C of the specific function which fulfils that. To do this, we first note that for n integer, the function $\pi \csc(\pi z) = \pi/\sin(\pi z)$ has simple poles at z = n and we find with the aid of l'Hôpital's rule that the residues there are

$$\operatorname{Res}(\pi \operatorname{csc}(\pi z), z = n) = \lim_{z \to n} (z - n) \frac{\pi}{\sin(\pi z)}$$
$$= \lim_{z \to n} \frac{1}{\cos(\pi z)}$$
$$= (-1)^n. \tag{37}$$

since $\cos (n\pi) = (-1)^n$. We then consider the contour integral of $f(z)\pi \csc(\pi z)$, where f(z) is a meromorphic function³, around a large counterclockwise circle Cof radius $N + \frac{1}{2}$, centered at the origin. We have then from the residue theorem

$$\oint_C f(z)\pi \csc(\pi z) \, dz = 2\pi i \bigg[\sum_{n=-N}^N (-1)^n f(n)$$

$$+ \sum_i (\text{residues of } f(z)\pi \csc(\pi z) \text{ at singularites } z_i \text{ of } f(z)) \bigg]$$
(38)

 $^{^{3}\}mathrm{A}$ meromorphic function is a function that is analytic in its domain except for possibly a discrete set of finite-order, isolated poles but no essential singularities.

and if $zf(z)\to 0$ when $|z|\to\infty$ the entire contour integral vanishes when we let $N\to\infty$ so that

$$\sum_{n=-\infty}^{\infty} (-1)^n f(n) = -\sum_i (\text{residues of } f(z)\pi \csc(\pi z) \text{ at singularities } z_i \text{ of } f(z))$$
(39)

where we assume that f has singularities only at non-integer z. That is, we can evaluate the series $\sum_{n=-\infty}^{\infty} (-1)^n f(n)$ for some f that is non-singular at all n by summing up all the residues of the expression $f(z)\pi \csc(\pi z)$ at the points where f(z) is singular. In this case we have to choose $f(z) = 1/(z+a)^2$ which has one singularity in the complex plane: a double pole at z = -a where a is a non-integer. The residue of $f(z)\pi \csc(\pi z)$ is there given by

$$\operatorname{Res}(f(z)\pi\operatorname{csc}(\pi z), z = -a) = \lim_{z \to -a} \frac{1}{(2-1)!} \frac{d}{dz} \left[(z+a)^2 \frac{\pi \operatorname{csc}(\pi z)}{(z+a)^2} \right]$$
$$= \pi \lim_{z \to -a} \frac{d}{dz} \operatorname{csc}(\pi z)$$
$$= \pi \lim_{z \to -a} \frac{(-\pi) \operatorname{css}(\pi z)}{\sin^2(\pi z)}$$
$$= -\pi^2 \frac{\cos(\pi a)}{\sin^2(\pi a)}$$
(40)

where we note that a is *not* an integer so that the expression is finite. The sum then becomes

$$\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{(n+a)^2} = \pi^2 \frac{\cos(\pi a)}{\sin^2(\pi a)}$$
(41)