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The residue theorem

There are many aspects of complex analysis covered in this course in chapter 11. In
my opinion the most important thing to remember is the residue theorem. The theorem
states ∮

C
f(z) dz = 2πi

∑
i

Res(f(z), zi) (1)

where Res(f(z), zi) is the residue (the coefficient of 1/z in the Laurent expansion of f)
of the complex-valued function f(z) at the pole zi, which is in the interior of the closed
contour C. The meaning of the theorem is that we can find the value of a contour
integral of a complex-valued function over a closed contour by computing the residues at
its singularities inside the contour. We can also use this to evaluate real-valued integrals
by extending the integration into the complex plane. The residue of an n:th order pole
at z0 is calculated as

Res(f(z), z0) =
1

(n− 1)!
lim
z→z0

dn−1

dzn−1
[(z − z0)nf(z)] (2)

Notably a simple pole (with n = 1) has residue limz→z0(z − z0)f(z).
A very important property of contour integrals is the fact that the integral of an

analytic function over a closed path has a value that remains unchanged over all possible
continuous deformations of the contour within the region of analyticity.

Starting with the residue theorem we can obtain some well known special cases, for
example Cauchy’s integral formula, which states that

1

2πi

∮
f(z) dz

z − z0
=

{
f(z0), z0 within the contour,
0, z0 exterior to the contour

(3)

where f(z) here needs to be analytic in the whole interior of C (unlike in the residue
theorem above!) and f(z0) is exactly the residue of f(z)/(z−z0) at z0. The case where z0
lies outside the contour yields the Cauchy integral theorem which states that the contour
integral over a closed curve is zero if the integrand f(z) is analytic within the whole
interior of C.
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1. P11.2.11. Two-dimensional irrotational fluid flow is conveniently described by
a complex potential f(z) = u(x, y) + i v(x, y). We label the real part u(x, y) the
velocity potential and the imaginary part v(x, y) the stream function. The fluid
velocity is given by ~V = ~∇u. If f(z) is analytic:

(a) Show that df/dz = Vx − iVy.
(b) Show that ~∇ · ~V = 0 (no sources or sinks).

(c) Show that ~∇× ~V = 0 (irrotational, nonturbulent flow).

Solution. First of all, note that

~V = (Vx, Vy) = ~∇u =

(
∂u

∂x
,
∂u

∂y

)
(4)

Second of all, note that if f is analytic its real and imaginary parts obey the
Cauchy–Riemann equations:

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
(5)

(a) We have

df

dz
=
du

dz
+ i

dv

dz

=

(
∂u

∂x

∂x

∂z
+
∂u

∂y

∂y

∂z

)
+ i

(
∂v

∂x

∂x

∂z
+
∂v

∂y

∂y

∂z

)
(6)

where we have used the chain rule. Using that

x =
z + z∗

2
, y =

z − z∗

2i
(7)

we find then

df

dz
=
∂u

∂x

1

2
+
∂u

∂y

1

2i
+ i

∂v

∂x

1

2
+ i

∂v

∂y

1

2i

=
1

2

(
∂u

∂x
+
∂v

∂y

)
+
i

2

(
∂v

∂x
− ∂u

∂y

)
=

1

2

(
2
∂u

∂x

)
+
i

2

(
−2∂u

∂y

)
= Vx − iVy (8)

where we have used the Cauchy–Riemann equations in the next to last step.

(b) The divergence of ~V is

~∇ · ~V =
∂Vx
∂x

+
∂Vy
∂y

=
∂

∂x

(
∂u

∂x

)
+

∂

∂y

(
∂u

∂y

)
(9)
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We now use the Cauchy–Riemann equations to exchange ∂u/∂x for ∂v/∂y
in the first term and ∂u/∂y for −∂v/∂x and then exchange the order of the
derivatives to obtain

~∇ · ~V =
∂

∂x

(
∂v

∂y

)
+

∂

∂y

(
−∂v
∂x

)
=

∂

∂y

∂v

∂x
− ∂

∂y

∂v

∂x

= 0 (10)

(c) The curl of ~V is

~∇× ~V =

∣∣∣∣∣∣∣
∂

∂x

∂

∂y

Vx Vy

∣∣∣∣∣∣∣
=
∂Vy
∂x
− ∂Vx

∂y

=
∂

∂x

∂u

∂y
− ∂

∂y

∂u

∂x

= 0 (11)

where we have changed the order of the derivatives in one of the terms in the
last step.

2. P11.3.7. Show that ∮
C

dz

z2 + z
= 0 (12)

in which the contour C is a circle defined by |z| = R > 1.
Hint: Direct use of the Cauchy integral theorem is illegal. The integral may be evaluated
by expanding into partial fractions and then treating the two terms individually. This
yields 0 for R > 1 and 2πi for R < 1.

Solution. The contour C is shown in the left part of Fig. 1. As stated we can not
use the Cauchy integral theorem (which states that

∮
C f(z) dz = 0 for f analytic

inside C) directly since the integrand has poles at z = 0 and z = −1 and hence is
not analytic inside C. We do a partial fraction decomposition,

1

z2 + z
=
A

z
+

B

z + 1
=
A+ (A+B)z

z2 + z
(13)
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Figure 1: The contours and the positions of the poles in P11.3.7.

for some constants A and B. Comparing the LHS and RHS we see that we have
A = 1 and B = −A = −1 and

1

z2 + z
=

1

z
− 1

z + 1
(14)

so that the integral is ∮
C

dz

z2 + z
=

∮
C

dz

z
−
∮
C

dz

z + 1
. (15)

The integrand in the first of these integrals can be written as f(z)/(z − 0) with
f(z) = 1, i.e. f is analytic within all of C. Therefore the first integral is equal
to 2πi times f(0) = 1. The same reasoning for the second integral with integrand
f(z)/(z−1) with f(z) = 1 analytic within C gives that the second integral is 2πi·1.
In total we find ∮

C

dz

z2 + z
= 2π · 1− 2πi · 1 = 0 (16)

We could also have used the residue theorem directly, this would have resulted in
residues

Res

(
1

z2 + z
, 0

)
= lim

z→0
(z − 0)

1

z2 + z
= lim

z→0

1

z + 1
= 1 (17)

Res

(
1

z2 + z
,−1

)
= lim

z→−1
(z − (−1)) 1

z2 + z
= lim

z→0

1

z
= −1 (18)

giving a zero value for the integral:∮
C

dz

z2 + z
= 2πi (1 + (−1)) = 0 (19)
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3. P11.4.1 Show that

1

2πi

∮
zm−n−1 dz = δmn (20)

where δmn is the Kronecker delta with m and n integers and the contour encircles
the origin once.

Solution. An earlier result in the book (Eq. 11.29) is that for a counterclockwise
closed path C that encloses z0 we have for any integer n∮

C
(z − z0)n dz =

{
0, n 6= −1
2πi, n = −1

(21)

which can easily be calculated (see below). Using this, we have for the contour
integral in this problem

1

2πi

∮
zm−n−1 dz =

1

2πi

{
0, m− n− 1 6= −1
2πi, m− n− 1 = −1

=

{
0, m 6= n

1, m = n

= δmn (22)

Calculating the integral in Eq. (21): Taking the contour C to be a circle with
unit radius centered around z0 we can express z as z = z0 + ρeiθ = z0 + eiθ where
ρ = 1 and θ are the radius and angle as measured with respect to the point z0. We
then have dz = ieiθdθ and we can write the integral as∮

C
(z − z0)n dz =

∫ 2π

0
eniθieiθ dθ (23)

For n = −1 we get∮
C
(z − z0)n dz = i

∫ 2π

0
1 dθ = 2πi (n = −1) (24)

whereas for n 6= −1 we get∮
C
(z − z0)n dz = i

∫ 2π

0
e(n+1)iθ dθ =

i

i(n+ 1)

[
e(n+1)iθ

]2π
0

= 0 (n 6= −1) (25)

since e(n+1)i2π = e0 = 1 for integer n.
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Figure 2: The contour and the position of the poles in P11.4.8.

4. P11.4.8. Evaluate ∮
C

dz

z(2z + 1)
, (26)

for the contour the unit circle.

Solution. This problem can be solved in the same way as P11.3.7, by making
a partial fraction decomposition of the integrand, deforming the contour into two
circles C1 and C2, each encircling one of the two poles at z = 0 and z = −1/2
and noting that only one of the terms contributes for each Ci integral with values
according the Cauchy’s integral formula, and the results cancel out to give zero.

We can also do it by applying the residue theorem (which is just a consequence of
Cauchy’s integral formula with the integrand expanded as a Laurent series). To
find the poles of the integrand we solve

z(2z + 1) = 0 ⇒ z = 0, z = −1

2
(27)

and thus the poles of the integrand are found at z = 0 and z = −1/2, both inside
the contour (see Fig. 2). The respective residues are given by

Res

(
1

z(2z + 1)
, 0

)
= lim

z→0
(z − 0)

1

z(2z + 1)
= lim

z→0

1

2z + 1
= 1 (28)

Res

(
1

z(2z + 1)
,−1

2

)
= lim

z→− 1
2

(z −
(
−1

2

)
)

1

z(2z + 1)
= lim

z→− 1
2

1

2z
= −1 (29)

and therefore the value of the contour integral is∮
C

dz

z(2z + 1)
= 2πi

[
Res

(
1

z(2z + 1)
, 0

)
+Res

(
1

z(2z + 1)
,−1

2

)]
= 2πi(1 + (−1))
= 0 (30)
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