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Green’s functions – some general remarks

There are a number of properties of Green’s functions that we will use several times, we
list these here in order to be able to refer to them later.

For an ODE corresponding to a Hermitian operator L acting on y on some interval
(a, b) so that

Ly =
d

dx

(
p(x)

dy

dx

)
+ q(x)y = f(x), y(a) = 0, y(b) = 0 (1)

we can find the solution y by first finding the Green’s function G(x, t) and then convolving
G(x, t) with f(x) to find a solution y:

y(x) =

∫ b

a
G(x, t)f(t) dt (2)

where x, t ∈ (a, b). This works because the Green’s function solves the ODE

LG(x, t) = δ(x− t) (3)

so that

Ly =

∫ b

a
LG(x, t)f(t) dt =

∫ b

a
δ(x− t)f(t) dt = f(x). (4)

Note that this is the unique solution to our ODE, since the boundary conditions are
taken care of in the construction of G.

Property 1. The first property we list is that G(x, t) is a solution to the homogeneous
ODE with f(x) = 0 whenever x 6= t since the delta function is then zero. Therefore

G(x, t) =

{
h1(t)y1(x), x < t

h2(t)y2(x), x > t

≡

{
G−(x, t), x < t

G+(x, t), x > t
(5)
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where yi(x) are solutions of the homogeneous equation that obey the boundary condi-
tions, y1(a) = 0, y2(b) = 0, and hi are functions of t.

Property 2. G(x, t) is continuous at x = t,

G+(x = t, t) = G−(x = t, t) (6)

Property 3. The x-derivative of G(x, t) (which we will denote G′(x, t)) has a jump
discontinuity at x = t (this generates the delta function on the RHS in the ODE for
G(x, t)):

∂G+(x = t, t)

∂x
− ∂G−(x = t, t)

∂x
=

1

p(t)
(7)

For an operator which is not hermitian, the RHS of this may or may not be equal to
1/p(t). The RHS value can be found in general by integrating the defining equation of
G(x, t), LG(x, t) = δ(x− t), over a small interval between t− ε and t+ ε and taking the
limit ε→ 0, typically using integration by parts to relate the integrals containing G′′, G′

and G respectively and using the fact that G(x, t) is continuous at x = t.

Note: We have required homogeneous boundary conditions (y(a) = y(b) = 0) to ensure
that L is hermitian. Green’s functions are not exclusively defined for hermitian operators,
in fact every linear differential operator admits a Green’s function and we can use the
Green’s function technique also for problems with inhomogeneous boundary conditions,
if y(a) = c1, y(b) = c2, we should then express our problem in terms of

u = y − c1(b− x) + c2(x− a)
b− a

(8)

where then u(a) = u(b) = 0. We can also use Green’s functions for initial value problems
(which also are not Sturm-Liouville problems with a hermitian operator) where y and y′

are defined at one point (for example at x = 0) but there is no upper boundary.

1. P10.1.4. Find the Green’s function corresponding to

−d
2y

dx2
− y

4
= f(x) (9)

with boundary conditions y(0) = y(π) = 0.

Solution. We begin by finding the solution of the homogeneous ODE with f(x) =
0. This will determine the x-dependence of G(x, t). The homogenous equation is

−d
2y

dx2
− y

4
=

d

dx

(
(−1)dy

dx

)
− 1

4
y = 0 (10)

i.e. p(x) = −1. This ODE has linearly independent solutions y1 = sin (x/2)
and y2 = cos (x/2). The boundary condition at x = 0 is satisfied by y1 and the
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boundary condition at x = π is satisfied by y2. We thus have in accordance with
Property 1

G−(x, t) = h1(t)y1(x), x < t, (11)
G+(x, t) = h2(t)y2(x), x > t (12)

Property 2 says that G−(t, t) = G+(t, t) i.e.

h1(t) sin (t/2) = h2(t) cos (t/2)

⇒ h2(t) = h1(t) tan (t/2) (13)

Property 3 says that there is a discontinuity inG′(x, t) (prime denoting x-derivative)
at x = t, we find (using the relation between h1 and h2 above)

h2(t)

(
−1

2
sin (t/2)

)
− h1(t)

1

2
cos (t/2) =

1

−1
⇒ h1(t) tan (t/2) sin (t/2) + h1(t) cos (t/2) = 2

⇒ h1(t) =
2

cos (t/2) + sin (t/2) tan (t/2)
= 2 cos (t/2) (14)

resulting in h2(t) = 2 sin (t/2) and G(x, t) is

G(x, t) =

{
2 cos (t/2) sin (x/2), x < t

2 sin (t/2) cos (x/2), x > t
(15)

and we see that G(x, t) is symmetric in the sense that G+(x, t) = G−(t, x) which
is true for hermitian operators. The solution to the inhomogeneous ODE can now
be found according to

y(x) =

∫ π

0
G(x, t)f(t) dt. (16)

2. P7, 2014-11-08. Determine the Green’s function for the differential equation(
d2

dx2
− λ2

)
y(x) = R(x) (17)

for a positive constant λ on the interval (−∞,∞) where the boundary conditions
are that y(−∞) = y(∞) = 0.

Try this problem yourself first without looking at the solution.
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Solution. The independent solutions to the homogeneous ODE with R(x) = 0,

d2y

dx2
− λ2y =

d

dx

(
1
dy

dx

)
− λ2y = 0 (18)

(i.e. p(x) = 1) are in this case

y1 = eλx, y2 = e−λx (19)

and the general solution is a sum of these with arbitrary coefficients. We note that
for a t dividing the real line into the intervals (−∞, t) and (t,∞), only y1 satisfies
the boundary condition at −∞ (y2 diverges for x large and negative), whereas only
y2 satisfies the boundary condition at +∞ (y1 diverges for x large and positive)
and according to Property 1 the Green’s function can therefore be written

G(x, t) =

{
h1(t)e

λx, x < t

h2(t)e
−λx, x > t

(20)

where we will write G−(x, t) for the case x < t and G+(x, t) for the case x > t.

Using Property 2 we find that

h1(t)e
λt = h2(t)e

−λt ⇒ h2(t) = h1(t)e
2λt. (21)

Putting this into the expression obtained by using Property 3 we then find

h2(t)(−λ)e−λt − h1(t)λeλt = 1

⇒ h1(t) = −
e−λt

2λ
(22)

⇒ h2(t) = −
eλt

2λ
(23)

and the Green’s function becomes

G(x, t) = − 1

2λ

{
eλ(x−t), x < t

eλ(t−x), x > t
(24)

which is symmetric since this is a Sturm-Liouville problem, i.e. G+(x, t) = G−(t, x)∗.
Note that we can also write the G(x, t) for all x as

G(x, t) = − 1

2λ
e−|t−x|. (25)
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3. P9, 2014-01-02. Determine the Green’s function and then use it to solve the
following initial value problem:

d2y

dt2
+ 3

dy

dt
− 4y = sinωt, y(0) = y′(0) = 0 (26)

Verify that your solution satisfies the initial conditions.

Solution. This is an initial value problem and not a Sturm-Liouville eigenvalue
problem. We can still use the same technique to construct a Green’s function
G(t, s) with t, s in the interval [0,∞) however, but the symmetry property of the
solution will be lost. Here, the solutions to the homogeneous ODE are of the form
emt where

m2 + 3m− 4 = 0 ⇔ m = −4, 1 (27)

i.e.

y1 = e−4t, y2 = et (28)

A general solution is then given by

y = c1e
−4t + c2e

t (29)

and the initial values of y and y′ require

y(0) = c1 + c2 = 0 (30)
y′(0) = −4c1 + c2 = 0 (31)

and only the trivial solution c1 = c2 = 0 satisfies this. Therefore G(t, s) = 0 for
t < s. For t > s we have no initial or similar conditions and G(t, s) is some linear
combination of y1 and y2 with s-dependent coefficients,

G(t, s) = h1(s)e
−4t + h2(s)e

t, t > s. (32)

We now use the two constraints Property 2 and Property 3 to determine the two
unknowns h1 and h2. Property 2 requires continuity in G at t = s, and since the
solution for t < s is G = 0 we have

h1(s)e
−4s + h2(s)e

s = 0 ⇒ h2(s) = −h1(s)e−5s. (33)

Property 3 requires the t-derivative of G to be discontinuous at t = s, we find

− 4h1(s)e
−4s + h2(s)e

s − 0 = 1

⇒ −4h1(s)e−4s − h1(s)e−5ses = 1

⇒ h1(s) = −
1

5
e4s (34)

⇒ h2(s) =
1

5
e−s (35)
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so the Green’s function is

G(t, s) =

0, t < s

−e
4s

5
e−4t +

e−s

5
et, t > s

=

0, t < s
1

5
et−s

(
1− e−5(t−s)

)
, t > s

(36)

which is not symmetric as the Green’s functions in the previous problems were.

To solve the initial value problem with a RHS of sinωt we use the fact that

y(t) =

∫ ∞
0

G(t, s) sinωs ds

=

∫ t

0
G(t, s) sinωs ds (37)

since G(t, s) = 0 for s > t. Inserting our Green’s function we find

y(t) =
1

5

∫ t

0
et−s

(
1− e−5(t−s)

)
sinωs ds (38)

and using1 ∫ t

0
ea(t−s) sinωs ds =

ωeat − ω cosωt− a sinωt
ω2 + a2

(39)

we have

y(t) =
1

5

{
ωet − ω cosωt− sinωt

ω2 + 1
− ωe−4t − ω cosωt+ 4 sinωt

ω2 + 16

}
(40)

Last of all, we verify that this satisfies the initial conditions y(0) = y′(0) = 0:

y(0) =
1

5

{
ωe0 − ω cos 0− sin 0

ω2 + 1
− ωe0 − ω cos 0 + 4 sin 0

ω2 + 16

}
= 0 (41)

y′(0) =
1

5

{
ωe0 + ω2 sin 0− ω cos 0

ω2 + 1
− −4ωe

0 + ω2 sin 0 + 4ω cos 0

ω2 + 16

}
= 0 (42)

4. P5, 2006-06-02 Use the Green’s functions technique to determine the function y
satisfying the differential equation

d2y

dx2
+

4

x

dy

dx
− 4

x2
y = f(x) (43)

1The integral I can for example be found by integrating by parts twice. Doing that, we find that I is
equal to two boundary terms plus I itself multiplied by a constant and this relation can be solved for I.
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over the interval [0,∞) under the condition that y is everywhere finite on this
interval and f(x) is given by

f(x) =

{
exp (−λx), 1 ≤ x <∞
0, 0 ≤ x < 1

(44)

Solution. The differential operator is not hermitian in this case but we can find the
Green’s function by applying the same conditions as before. The Green’s function
satisfies

d2G(x, t)

dx2
+

4

x

dG(x, t)

dx
− 4

x2
G(x, t) = δ(x− t) (45)

and its x-dependence is given by the solutions of the homogeneous ODE with RHS
equal to zero for x 6= t. To find the homogeneous solutions we try the substitution
x = ez and solve the ODE in terms of z first. We did this substitution in the last
tutorial class and found then (see solutions to tutorial class 2)

dy

dx
=

1

x

dy

dz
(46)

d2y

dx2
=

1

x2

(
d2y

dx2
− dy

dz

)
(47)

Inserting these in the ODE we find that expressed in terms of z it is given by
y′′ + 3y′ − 4y = 0. This has solutions yi ∼ emiz where

m2 + 3m− 4 = 0 ⇒ m = −4, 1 (48)

i.e.

y1 = e−4z =
1

x4
, y2 = ez = x. (49)

The solutions can also be found by assuming the ansatz y ∼ xα and solving the
resulting algebraic equation for α, resulting in α = −4, 1. The boundary conditions
require that y is finite everywhere on [0,∞). Dividing the interval into [0, t) and
(t,∞) we see that for x < t, only y2 is finite on the entire interval [0, t) and for
x > t only y1 is finite on all of (t,∞). Therefore we express the Green’s function
in accordance with Property 1 as

G(x, t) =

h1(t)x, x < t

h2(t)
1

x4
, x > t

(50)

To find the t-dependence (i.e. the functions h1 and h2) we again use Property 2
and Property 3 . With Property 2 we obtain

h1(t)t = h2(t)
1

t4
⇒ h2(t) = h1(t)t

5 (51)
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and Property 3 results in2

h2(t)

(
− 4

t5

)
− h1(t) = 1 (52)

This results in the Green’s function being given by

G(x, t) = −1

5

x, x < t

t5
1

x4
, x > t

(53)

and we note the lack of symmetry which comes from the fact that L is not hermitian.
The solution for y is obtained by convolving G(x, t) with f(x)

y(x) =

∫ ∞
0

G(x, t)f(t) dt = − 1

5x4

∫ x

1
t5e−λt dt− x

5

∫ ∞
x

e−λt dt. (54)

This can be solved by integrating the first integral multiple times using integrations
by parts. This results in

y(x) =
1

5λ6x4

{
e−λx

[
5λ4x4 + 20λ3x3 + 60λ2x2 + 120λx+ 120

]
− e−λ

[
λ5 + 5λ4 + 20λ3 + 60λ2 + 120λ+ 120

] }
. (55)

Alternative solution. We can also solve this problem by multiplying the ODE
by an integrating factor

e
∫
(4/x) dx = e4 lnx = x4 (56)

and writing it in a self-adjoint Sturm-Liouville form as

x4y′′ + 4x3y′ − 4x2y =
(
x4y′

)′ − 4x2y = x4f(x). (57)

This results in a different Green’s function for the self-adjoint operator x4L, given
by

G̃(x, t) = −1
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1

t4
x, x < t

t
1

x4
, x > t

(58)

which is symmetric, as expected for a hermitian operator. The solution for y is
however still the same as before since the RHS in the inhomogeneous equation is
now x4f(x) rather than just f(x),

y(x) =

∫ ∞
0

G̃(x, t) t4f(t) dt = − 1

5x4

∫ x

1
t t4e−λt dt− x

5

∫ ∞
x

1

t4
t4e−λt dt

= − 1

5x4

∫ x

1
t5e−λt dt− x

5

∫ ∞
x

e−λt dt. (59)

2We need to be a bit careful with the RHS of the discontinuity requirement in this case, since we’re
not dealing with a self-adjoint operator and hence don’t have a specified p(t) to put in the denominator.
The proper way to do it then is to integrate the defining equation for the Green’s function G′′+r(x)G′+
s(x)G = δ(x− t) over a small interval [t− ε, t+ ε] and take the limit ε→ 0. In this case it will give the
condition limε→0(G

′(t+ ε, t)−G′(t− ε, t) = 1.
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