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1. P7, exam 2012-11-10. Solve the following ODE:

(1 + x2)
dy

dx
+ 6xy = 2x (1)

Solution. The ODE is separable, so we can separate variables and integrate to
obtain an implicit solution for y, that we can then solve to get the explicit solution
(the last step is not always easy or possible).

The ODE is separable if we can write it as

dy

dx
= −P (x)

Q(y)
⇔ P (x) dx+Q(y) dy = 0 (2)

for some functions P and Q. Here we have:

P (x) =
2x

1 + x2
, Q(y) =

1

3y − 1
(3)

i.e.

dy

dx
= −2x/(1 + x2)

1/(3y − 1)
(4)

and we see that the ODE is indeed separable. We then solve the ODE by integrating
from (x0, y0) to (x, y) and then obtain∫ y

y0

dy

3y − 1
= −

∫ x

x0

2x dx

1 + x2
. (5)

The lower limits integrate to constants that we can combine into a single constant
C. We get

1

3
ln (3y − 1) = − ln (1 + x2) + C (6)
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which can be simplified into

3y − 1 = C
1

(1 + x2)3
(7)

where C has now changed value and

y =
1

3
+

C

3(1 + x2)3
(8)

where the value of C is again different.

2. P7.3.3, Arfken, Weber & Harris. Find the general solution to

y′′′ − 3y′ + 2y = 0. (9)

Write the solution in terms of real quantities only.

Solution. This is a third order homogeneous ODE with constant coefficients. The
solutions will then be of the form yi = emix where mi are the roots of the algebraic
equation obtained by inserting emx into the ODE. With

y = emx, y′ = memx, y′′ = m2emx, y′′′ = m3emx (10)

inserted into the ODE we get the algebraic equation

m3 − 3m+ 2 = 0. (11)

We can immediately see that m = 1 is a root. Factorising the equation (using e.g.
polynomial long division) we find that

m3 − 3m+ 2 = (m− 1)(m2 +m− 2) = 0 (12)

and the second order equation m2 + m − 2 = 0 has roots m = −2 and m = 1,
i.e. m = 1 is a double root. Since the ODE is third order it has three linearly
independent solutions, and in the case of a double root m1 = 1 the two solutions
will be

y1 = em1x = ex, y2 =
dy1
dm1

= xem1x = xex (13)

where we have inserted m = 1 in the last equalities. In general, for an n:th order
root, the n solutions are given by

y` =
d`

dm`
emx, ` = 1, . . . , n (14)
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The third solution belonging to the root m = −2 is

y3 = e−2x (15)

and the general solution to the ODE is given by the sum of the three yi with
arbitrary coefficients,

y = C1e
x + C2xe

x + C3e
−2x (16)

3. P3, exam 2013-11-09. Consider the following differential equation:

d2y

dx2
− 2x

dy

dx
+ (E − 1)y = 0 (17)

derived from the quantum mechanical harmonic oscillator.

(a) Use Frobenius method to find the odd and even solutions for this equation.
(b) Determine the values of the energy E for which the series terminate, resulting

in polynomials of finite order.
(c) Write down explicitly the polynomials corresponding to the three lowest ener-

gies as obtained from your expansion and give their energies. (The units are
arbitrary here.)

Solution.

(a) In the Frobenius method we find the solution by assuming a power series
solution around a point x0, usually taken to be x0 = 0. In this case x0 = 0
is an ordinary point so expanding around 0 gives at least one solution (see
Fuchs’ theorem). We thus try the solution

y(x) = xs(a0 + a1x+ a2x
2 + . . .) =

∞∑
j=0

ajx
s+j (18)

where a0 6= 0, i.e. the first non-zero term goes as xs, where s need not be an
integer. We differentiate and obtain

dy

dx
=
∑
j

aj(s+ j)xs+j−1,
d2y

dx2
=
∑
j

aj(s+ j)(s+ j − 1)xs+j−2. (19)

Substituting this into the ODE results in∑
j

aj(s+ j)(s+ j − 1)xs+j−2 − 2
∑
j

aj(s+ j)xs+j (20)

+ (E − 1)
∑
j

ajx
s+j = 0
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The coefficient of each power of x on the left-hand side must therefore vanish
individually, so we obtain a set of equations, one for each value of j that must
be satisfied. The lowest power of x occurring is xs−2 in the first sum with
j = 0 (this power of x does not show up in the last two sums). Requiring that
the coefficient of xs−2 is zero results in the equation

a0s(s− 1) = 0 (21)

and since we have chosen a0 to be the coefficient of the lowest non-zero term
we have a0 6= 0 and the indicial equation becomes

s(s− 1) = 0 (22)

with solutions s = 0 or s = 1. From Fuchs’ theorem we are guaranteed that
there is a series solution for the larger root s = 1 but since the difference
between the roots is an integer we are not guaranteed that s = 0 will give
a series solution. For the coefficient of the next power of x (i.e. xs+j−1) to
vanish we get another similar equation requiring (again only the first sum
contributes) that

a1(s+ 1)s = 0 (23)

i.e. that we must set a1 = 0 for s = 1 and and can set a1 = 0 for s = 0.
For the remaining coefficients to vanish we must have (the first sum contributes
with j + 2 terms to the power of xj+s)

aj+2(s+ j + 2)(s+ j + 1)− 2aj(s+ j) + (E − 1)aj = 0 (24)

Rearranging this we get a recursion relation for the aj :

aj+2 = aj
2(s+ j) + 1− E

(j + s+ 2)(j + s+ 1)
(25)

We see now that for a1 = 0 all odd terms a1 = a3 = a5 = . . . = 0 and
only even j contribute. We then get two solutions, yeven only containing even
powers of x for s = 0 and yodd only containing odd powers for s = 1.1 This is
also a consequence of the fact that the differential operator in the ODE,

L(x)y(x) = d2y

dx2
− 2x

dy

dx
+ (E − 1)y (26)

has definite parity, i.e. L(−x)y(−x) = +L(x)y(−x) and therefore the so-
lutions of the ODE can be written as one even and one odd function of x,
linearly independent of each other. With a1 = 0, the solution for s = 1, yodd,

1With a1 6= 0 for s = 0 we would get odd powers in the solution, but these are just a multiple of the
odd solution and we can then remove this and put into the odd solution instead.
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will contain only odd powers of x and the solution with s = 0, yeven, contains
only even powers.
For s = 1 we get for yodd(x) =

∑
j even ajx

1+j

a2 = a0
(3− E)

6
= a0

(3− E)

3!

a4 = a0
(3− E)

6

(7− E)

20
= a0

(3− E)(7− E)

5!
(27)

a6 = a0
(3− E)(7− E)

120

(11− E)

42
= a0

(3− E)(7− E)(11− E)

7!
...

whereas for s = 0 we have (expanding the other solution as yeven(x) =∑
j even bjx

j)

b2 = b0
(1− E)

2
= b0

(1− E)

2!

b4 = b0
(1− E)

2

(5− E)

12
= b0

(1− E)(5− E)

4!
(28)

b6 = b0
(1− E)(5− E)

24

(9− E)

30
= b0

(1− E)(5− E)(9− E)

6!
...

and the s = 0 case gave a series solution in this case since the bj are well-
behaved2.
The solutions are

yodd(x) = a0

(
x+

3− E

3!
x3 +

(3− E)(7− E)

5!
x5

+
(3− E)(7− E)(11− E)

7!
x7 + . . .

)
(29)

yeven(x) = b0

(
1 +

1− E

2!
x2 +

(1− E)(5− E)

4!
x4

+
(1− E)(5− E)(9− E)

6!
x6 + . . .

)
(30)

(b) From the recursion relation we find that the series terminates if

aj+2

aj
=

2(s+ j) + 1− E

(s+ j + 2)(s+ j + 1)
= 0 (31)

for some s, j and E, i.e. if

E = 1 + 2(s+ j). (32)
2In other cases with other ODE:s the bj can for example diverge at some j making a series solution

invalid.
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With s = 0, 1 and j = 0, 2, 4, . . . this means that E has to satisfy

s = 0 : E = 1, 5, 9, . . . (33)
s = 1 : E = 3, 7, 11, . . . (34)

(c) The three lowest energies are E0 = 1, E1 = 3 and E2 = 5, with the first and
third belonging to the even solution with s = 0 and the second to the odd
solution with s = 1. The polynomials are

E0 = 1 : y0(x) = b0 1 (35)
E1 = 3 : y1(x) = a0 x (36)

E2 = 5 : y2(x) = b0 (1− 2x2) (37)

4. P7.4.1, Arfken, Weber & Harris. Show that Legendre’s differential equation
(1− x2)y′′ − 2xy′ + l(l + 1)y = 0 has regular singularities at −1, 1, and ∞.

Solution. A point x0 is a regular singular point if the functions (x− x0)p(x) and
(x− x0)

2q(x) are both analytic at x0, which is the same as saying that the limits

lim
x→x0

(x− x0)p(x), lim
x→x0

(x− x0)
2q(x) (38)

exist and are finite where the ODE is formulated in standard form as

y′′ + p(x)y′ + q(x)y = 0. (39)

Here we find that

p(x) =
−2x
1− x2

, q(x) =
l(l + 1)

1− x2
(40)

• x = −1

lim
x→−1

(x+ 1)
−2x
1− x2

= lim
x→−1

(x+ 1)
−2x

(1− x)(1 + x)
= lim

x→−1

2x

x− 1
= 1 (41)

lim
x→−1

(x+ 1)2
l(l + 1)

1− x2
= lim

x→−1
(x+ 1)

l(l + 1)

1− x
= 0 (42)

so both limits exist and are finite and x = −1 is a regular singularity.
• x = 1

lim
x→1

(x− 1)
−2x
1− x2

= lim
x→1

+2x

1 + x
= 1 (43)

lim
x→1

(x− 1)2
l(l + 1)

1− x2
= lim

x→1
(1− x)

l(l + 1)

1 + x
= 0 (44)

which shows that x = 1 is a regular singularity.
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• x→∞
To analyse this point we express the ODE in terms of z = 1/x and look at
the behaviour as z → 0. We must then express the derivatives in terms of the
new variable properly and when this is done we get new expressions instead
of just p(x) and q(x) in the limits. The limits that must exist and be finite
for x → ∞ to be a regular singularity are then (see Arfken, Weber & Harris
p. 344 for a full discussion):

lim
z→0

(z − 0)
2z − p(1/z)

z2
, lim

z→0
(z − 0)2

q(1/z)

z4
(45)

We find

lim
z→0

z
2z − (−2z/(z2 − 1)

z2
= lim

z→0
2(1 +

1

z2 − 1
) = 0 (46)

lim
z→0

z2
l(l + 1)z2/(z2 − 1)

z4
= lim

z→0

l(l + 1)

z2 − 1
= −l(l + 1) (47)

and since both limits exist and are finite, x → ∞ is a regular singularity of
the ODE (as expressed originally in terms of x).

7


