Tutorial Class 8 Mathematical Methods in Physics

Carl Niblaeus

Last typeset: October 15, 2018

Spherical harmonics and the Schrödinger equation

1. The time-independent Schrödinger equation for a spherically symmetric potential V(r) can be written for a wave function $\psi(r, \theta, \varphi)$ as

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V(r)\psi = E\psi \tag{1}$$

where E is the energy and m the particle mass.

- (a) Separate the radial and angular part assuming $\psi = R(r)Y(\theta, \varphi)$ and set the separation constant to $\ell(\ell+1)$ to find the differential equations obeyed by R(r) and $Y(\theta, \varphi)$.
- (b) Separate variables again, assuming $Y(\theta, \varphi) = \Theta(\theta)\Phi(\varphi)$ with separation constant m^2 to obtain the ordinary differential equations for Θ and Φ . What are the solutions for Θ and Φ ?
- (c) How are the spherical harmonics Y_{ℓ}^m defined?
- (d) What is the partial differential equation that the spherical harmonics Y_{ℓ}^m obey? (There will be one for each m and ℓ .)
- 2. The angular momentum operator $\mathbf{L} = (L_x, L_y, L_z)$ in quantum mechanics is in spherical coordinates given by

$$\mathbf{L} = -i\hbar \left(\sin\varphi \frac{\partial}{\partial\theta} + \cot\theta \cos\varphi \frac{\partial}{\partial\varphi}, \cos\varphi \frac{\partial}{\partial\theta} - \cot\theta \sin\varphi \frac{\partial}{\partial\varphi}, \frac{\partial}{\partial\varphi}\right)$$
(2)

(a) Using the above form for **L**, show that $\mathbf{L}^2 = \mathbf{L} \cdot \mathbf{L}$ in spherical coordinates becomes

$$\mathbf{L}^{2} = -\hbar^{2} \left(\frac{\partial^{2}}{\partial \theta^{2}} + \cot \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}} \right)$$
(3)

- (b) What is the eigenvalue of the \mathbf{L}^2 operator when acting on Y_{ℓ}^m ?
- (c) What is the eigenvalue of the L_z operator when acting on Y_{ℓ}^m ?
- (d) Are the eigenvalues what you expected?
- (e) With some potential V(r) specified, the radial equation will give rise to another quantum number n that gives one energy E_n for every n, and the allowed values of ℓ for a given n is $\ell = 0, 1 \dots (n-1)$. One can show that all energies E_n for the different allowed values of ℓ and m are equal, or *degenerate*, in the case of a Coulomb potential $V(r) \propto 1/r$. What is the degeneracy of the energy level E_n in terms of ℓ and m?