Tutorial Class 8
 Mathematical Methods in Physics

Carl Niblaeus

Last typeset: October 15, 2018

Spherical harmonics and the Schrödinger equation

1. The time-independent Schrödinger equation for a spherically symmetric potential $V(r)$ can be written for a wave function $\psi(r, \theta, \varphi)$ as

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V(r) \psi=E \psi \tag{1}
\end{equation*}
$$

where E is the energy and m the particle mass.
(a) Separate the radial and angular part assuming $\psi=R(r) Y(\theta, \varphi)$ and set the separation constant to $\ell(\ell+1)$ to find the differential equations obeyed by $R(r)$ and $Y(\theta, \varphi)$.
(b) Separate variables again, assuming $Y(\theta, \varphi)=\Theta(\theta) \Phi(\varphi)$ with separation constant m^{2} to obtain the ordinary differential equations for Θ and Φ. What are the solutions for Θ and Φ ?
(c) How are the spherical harmonics Y_{ℓ}^{m} defined?
(d) What is the partial differential equation that the spherical harmonics Y_{ℓ}^{m} obey? (There will be one for each m and ℓ.)
2. The angular momentum operator $\mathbf{L}=\left(L_{x}, L_{y}, L_{z}\right)$ in quantum mechanics is in spherical coordinates given by

$$
\begin{equation*}
\mathbf{L}=-i \hbar\left(\sin \varphi \frac{\partial}{\partial \theta}+\cot \theta \cos \varphi \frac{\partial}{\partial \varphi}, \cos \varphi \frac{\partial}{\partial \theta}-\cot \theta \sin \varphi \frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \varphi}\right) \tag{2}
\end{equation*}
$$

(a) Using the above form for \mathbf{L}, show that $\mathbf{L}^{2}=\mathbf{L} \cdot \mathbf{L}$ in spherical coordinates becomes

$$
\begin{equation*}
\mathbf{L}^{2}=-\hbar^{2}\left(\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right) \tag{3}
\end{equation*}
$$

(b) What is the eigenvalue of the \mathbf{L}^{2} operator when acting on Y_{ℓ}^{m} ?
(c) What is the eigenvalue of the L_{z} operator when acting on Y_{ℓ}^{m} ?
(d) Are the eigenvalues what you expected?
(e) With some potential $V(r)$ specified, the radial equation will give rise to another quantum number n that gives one energy E_{n} for every n, and the allowed values of ℓ for a given n is $\ell=0,1 \ldots(n-1)$. One can show that all energies E_{n} for the different allowed values of ℓ and m are equal, or degenerate, in the case of a Coulomb potential $V(r) \propto 1 / r$. What is the degeneracy of the energy level E_{n} in terms of ℓ and m ?

